Equations over sets of natural numbers

Alexander Okhotin

Department of Mathematics, University of Turku;
Academy of Finland

January 3, 2008
Equations over sets of numbers

\[
\begin{cases}
X_1 = \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n = \varphi_n(X_1, \ldots, X_n)
\end{cases}
\]

- \(X_i \): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \).
Equations over sets of numbers

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \ldots, X_n) \\
& \vdots \\
X_n &= \varphi_n(X_1, \ldots, X_n)
\end{align*}
\]

- X_i: subset of $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.
- φ_i: variables, singleton constants, operations on sets.
Equations over sets of numbers

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n &= \varphi_n(X_1, \ldots, X_n)
\end{align*}
\]

- X_i: subset of $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.
- φ_i: variables, singleton constants, operations on sets.
- For $S, T \subseteq \mathbb{N}_0$,

\begin{align*}
S \cup T &= S \cup T \\
S \cap T &= S \setminus S \\
S + T &= \{x + y \mid x \in S, y \in T\}
\end{align*}
Equations over sets of numbers

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n &= \varphi_n(X_1, \ldots, X_n)
\end{align*}
\]

- \(X_i\): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\}\).
- \(\varphi_i\): variables, singleton constants, operations on sets.
- For \(S, T \subseteq \mathbb{N}_0\),
 - \(S \cup T, S \cap T\).
Equations over sets of numbers

\[
\begin{cases}
 X_1 = \varphi_1(X_1, \ldots, X_n) \\
 \vdots \\
 X_n = \varphi_n(X_1, \ldots, X_n)
\end{cases}
\]

- \(X_i\): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\}\).
- \(\varphi_i\): variables, singleton constants, operations on sets.
- For \(S, T \subseteq \mathbb{N}_0\),
 - \(S \cup T, S \cap T\).
 - \(\overline{S} = \mathbb{N}_0 \setminus S\).
Equations over sets of numbers

\[\begin{cases}
X_1 = \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n = \varphi_n(X_1, \ldots, X_n)
\end{cases} \]

- X_i: subset of $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.
- φ_i: variables, singleton constants, operations on sets.
- For $S, T \subseteq \mathbb{N}_0$,
 - $S \cup T, S \cap T$.
 - $\overline{S} = \mathbb{N}_0 \setminus S$.
 - $S + T = \{x + y \mid x \in S, y \in T\}$.

Example

$X = (X^+ + \{2\}) \cup \{0\}$

Unique solution: the even numbers

Representing sets by unique solutions.
Equations over sets of numbers

\[
\begin{cases}
X_1 = \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n = \varphi_n(X_1, \ldots, X_n)
\end{cases}
\]

- \(X_i\): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\}\).
- \(\varphi_i\): variables, singleton constants, operations on sets.
- For \(S, T \subseteq \mathbb{N}_0\),
 - \(S \cup T, S \cap T\).
 - \(\overline{S} = \mathbb{N}_0 \setminus S\).
 - \(S + T = \{x + y \mid x \in S, y \in T\}\).

Example

\[X = (X + \{2\}) \cup \{0\}\]
Equations over sets of numbers

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \ldots, X_n) \\
\vdots \\
X_n &= \varphi_n(X_1, \ldots, X_n)
\end{align*}
\]

- \(X_i\): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\}\).
- \(\varphi_i\): variables, singleton constants, operations on sets.
- For \(S, T \subseteq \mathbb{N}_0\),
 - \(S \cup T, S \cap T\).
 - \(\overline{S} = \mathbb{N}_0 \setminus S\).
 - \(S + T = \{x + y \mid x \in S, y \in T\}\).

Example

\[X = (X + \{2\}) \cup \{0\}\]

Unique solution: the even numbers
Equations over sets of numbers

\[
\begin{align*}
X_1 &= \varphi_1(X_1, \ldots, X_n) \\
& \vdots \\
X_n &= \varphi_n(X_1, \ldots, X_n)
\end{align*}
\]

- \(X_i\): subset of \(\mathbb{N}_0 = \{0, 1, 2, \ldots\}\).
- \(\varphi_i\): variables, singleton constants, operations on sets.
- For \(S, T \subseteq \mathbb{N}_0\),
 - \(S \cup T, S \cap T\).
 - \(\overline{S} = \mathbb{N}_0 \setminus S\).
 - \(S + T = \{x + y \mid x \in S, y \in T\}\).

Example

\[X = (X + \{2\}) \cup \{0\}\]
Unique solution: the even numbers

- Representing sets by unique solutions.
Resolved equations with \(\{ \cup, + \} \)

Equivalent to context-free grammars over the alphabet \(\{a\} \).
Resolved equations with \(\{ \cup, + \} \)

Equivalent to context-free grammars over the alphabet \(\{ a \} \).
- Fundamental model of syntax in computer science.
Resolved equations with \{ \cup, + \}

Equivalent to context-free grammars over the alphabet \{ a \}.

- Fundamental model of syntax in computer science.
 - Balanced brackets: $S \rightarrow SS \mid aSb \mid \varepsilon$.

Theorem (Bar-Hillel et al., 1961)

Every context-free language over \{ a \} is ultimately periodic.
Resolved equations with \(\{\cup, +\} \)

Equivalent to **context-free grammars** over the alphabet \(\{a\} \).

- Fundamental model of syntax in computer science.
 - Balanced brackets: \(S \rightarrow SS \mid aSb \mid \varepsilon \).
- Number \(n \leftrightarrow \text{word } a^n \)
Resolved equations with \{\cup, +\}

Equivalent to context-free grammars over the alphabet \{a\}.

- Fundamental model of syntax in computer science.
 - Balanced brackets: $S \rightarrow SS \mid aSb \mid \varepsilon$.
- Number $n \leftrightarrow$ word a^n
- Equation $X = (X + X) \cup \{2\} \leftrightarrow$ grammar $S \rightarrow SS \mid aa$
Resolved equations with \(\{\cup, +\} \)

Equivalent to \textbf{context-free grammars} over the alphabet \(\{a\} \).

- Fundamental model of syntax in computer science.
 - Balanced brackets: \(S \to SS \mid aSb \mid \varepsilon \).
- Number \(n \leftrightarrow \text{word } a^n \)
- Equation \(X = (X + X) \cup \{2\} \leftrightarrow \text{grammar } S \to SS \mid aa \)

\textbf{Theorem (Bar-Hillel et al., 1961)}

\textit{Every context-free language over } \(\{a\} \text{ is ultimately periodic.} \)
Resolved equations with \{\cup, \cap, +\}

Equivalent to conjunctive grammars over \{a\}.

Problem

Are conjunctive languages over \{a\} always ultimately periodic?
Resolved equations with \{\cup, \cap, +\} are equivalent to conjunctive grammars over \{a\}.

- Extend context-free grammars with conjunction (Okhotin, 2000).

Can represent nontrivial non-context-free formal languages, such as \{wcw | w \in \{a, b\}^*\}.
Resolved equations with \(\{ \cup, \cap, + \} \)

Equivalent to **conjunctive grammars** over \(\{a\} \).

- Extend context-free grammars with conjunction (Okhotin, 2000).
- Can represent nontrivial non-context-free formal languages, such as \(\{ wcw \mid w \in \{a, b\}^* \} \).
Resolved equations with \(\{ \cup, \cap, + \} \)

Equivalent to **conjunctive grammars** over \(\{ a \} \).

- Extend context-free grammars with conjunction (Okhotin, 2000).
- Can represent nontrivial non-context-free formal languages, such as \(\{ wcw \mid w \in \{ a, b \}^* \} \).

Problem

Are conjunctive languages over \(\{ a \} \) always ultimately periodic?
Generating nonperiodic sets using \(\{ \cup, \cap, + \} \)

Example (Jež, DLT 2007)

\[
\begin{align*}
X_1 &= (X_2 + X_2 \cap X_1 + X_3) \cup \{1\} \\
X_2 &= (X_6 + X_2 \cap X_1 + X_1) \cup \{2\} \\
X_3 &= (X_6 + X_6 \cap X_1 + X_2) \cup \{3\} \\
X_6 &= (X_3 + X_3 \cap X_1 + X_2)
\end{align*}
\]
Generating nonperiodic sets using \{∪, ∩, +\}

Example (Jeż, DLT 2007)

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>((X_2 + X_2 \cap X_1 + X_3) \cup {1})</th>
<th>(X_1)</th>
<th>({4^n \mid n \geq 0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_2)</td>
<td>((X_6 + X_2 \cap X_1 + X_1) \cup {2})</td>
<td>(X_2)</td>
<td>({2 \cdot 4^n \mid n \geq 0})</td>
</tr>
<tr>
<td>(X_3)</td>
<td>((X_6 + X_6 \cap X_1 + X_2) \cup {3})</td>
<td>(X_3)</td>
<td>({3 \cdot 4^n \mid n \geq 0})</td>
</tr>
<tr>
<td>(X_6)</td>
<td>((X_3 + X_3 \cap X_1 + X_2))</td>
<td>(X_6)</td>
<td>({6 \cdot 4^n \mid n \geq 0})</td>
</tr>
</tbody>
</table>
Generating nonperiodic sets using \{\cup, \cap, +\}

Example (Jeż, DLT 2007)

\[
\begin{align*}
X_1 &= (X_2 + X_2 \cap X_1 + X_3) \cup \{1\} & X_1 &= \{4^n \mid n \geq 0\} \\
X_2 &= (X_6 + X_2 \cap X_1 + X_1) \cup \{2\} & X_2 &= \{2 \cdot 4^n \mid n \geq 0\} \\
X_3 &= (X_6 + X_6 \cap X_1 + X_2) \cup \{3\} & X_3 &= \{3 \cdot 4^n \mid n \geq 0\} \\
X_6 &= (X_3 + X_3 \cap X_1 + X_2) & X_6 &= \{6 \cdot 4^n \mid n \geq 0\}
\end{align*}
\]

Theorem (Jeż, Okhotin, CSR 2007)

Let \(k \geq 2 \) and consider:
Generating nonperiodic sets using \{\cup, \cap, +\}

Example (Jeż, DLT 2007)

\[
\begin{align*}
X_1 &= (X_2 + X_2 \cap X_1 + X_3) \cup \{1\} & X_1 &= \{4^n \mid n \geq 0\} \\
X_2 &= (X_6 + X_2 \cap X_1 + X_1) \cup \{2\} & X_2 &= \{2 \cdot 4^n \mid n \geq 0\} \\
X_3 &= (X_6 + X_6 \cap X_1 + X_2) \cup \{3\} & X_3 &= \{3 \cdot 4^n \mid n \geq 0\} \\
X_6 &= (X_3 + X_3 \cap X_1 + X_2) & X_6 &= \{6 \cdot 4^n \mid n \geq 0\}
\end{align*}
\]

Theorem (Jeż, Okhotin, CSR 2007)

Let \(k \geq 2\) and consider:

1. a language over \(\{0, 1, \ldots, k - 1\}\) of base-\(k\) positional notations.
Generating nonperiodic sets using \(\{\cup, \cap, +\}\)

Example (Jeż, DLT 2007)

\[
\begin{align*}
X_1 &= (X_2 + X_2 \cap X_1 + X_3) \cup \{1\} & X_1 &= \{4^n \mid n \geq 0\} \\
X_2 &= (X_6 + X_2 \cap X_1 + X_1) \cup \{2\} & X_2 &= \{2 \cdot 4^n \mid n \geq 0\} \\
X_3 &= (X_6 + X_6 \cap X_1 + X_2) \cup \{3\} & X_3 &= \{3 \cdot 4^n \mid n \geq 0\} \\
X_6 &= (X_3 + X_3 \cap X_1 + X_2) & X_6 &= \{6 \cdot 4^n \mid n \geq 0\}
\end{align*}
\]

Theorem (Jeż, Okhotin, CSR 2007)

Let \(k \geq 2 \) and consider:

1. a language over \(\{0, 1, \ldots, k-1\} \) of base-\(k \) positional notations.
2. a trellis automaton (one-way real-time cellular automaton) recognizing it.
Generating nonperiodic sets using \(\{ \cup, \cap, + \} \)

Example (Jeż, DLT 2007)

\[
\begin{align*}
X_1 &= (X_2 + X_2 \cap X_1 + X_3) \cup \{1\} & X_1 &= \{4^n \mid n \geq 0\} \\
X_2 &= (X_6 + X_2 \cap X_1 + X_1) \cup \{2\} & X_2 &= \{2 \cdot 4^n \mid n \geq 0\} \\
X_3 &= (X_6 + X_6 \cap X_1 + X_2) \cup \{3\} & X_3 &= \{3 \cdot 4^n \mid n \geq 0\} \\
X_6 &= (X_3 + X_3 \cap X_1 + X_2) & X_6 &= \{6 \cdot 4^n \mid n \geq 0\}
\end{align*}
\]

Theorem (Jeż, Okhotin, CSR 2007)

Let \(k \geq 2 \) and consider:

1. a language over \(\{0, 1, \ldots, k - 1\} \) of base-\(k \) positional notations.
2. a trellis automaton (one-way real-time cellular automaton) recognizing it.

Then a system defining the corresponding set of numbers can be constructed.
Growth rate of sets defined using \(\{ \cup, \cap, + \} \)

- A large class of sets can be defined.
Growth rate of sets defined using \{\cup, \cap, +\}

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?

Theorem (Je˙z, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N}\), a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\}\).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\}\).
3. Define VALC over the alphabet of digits.
4. VALC defined by trellis automaton = a system for the corresponding set of numbers.
5. Grows faster than \(S\).
Growth rate of sets defined using $\{\cup, \cap, +\}$

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?
A large class of sets can be defined.

Any limits of the expressive power of these equations?

Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set $S \subseteq \mathbb{N}$
a faster-growing set can be defined.
Growth rate of sets defined using \{∪, ∩, +\}

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jež, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \) a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
Growth rate of sets defined using \(\{\cup, \cap, +\} \)

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \), a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\} \).
Growth rate of sets defined using \(\{\cup, \cap, +\} \)

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \)

a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\} \).
3. Define VALC over the alphabet of *digits.*
Growth rate of sets defined using \{\cup, \cap, +\}

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \) a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\} \).
3. Define VALC over the alphabet of digits.
4. VALC defined by trellis automaton \(\implies \)
Growth rate of sets defined using \{∪, ∩, +\}

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \) a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\} \).
3. Define VALC over the alphabet of *digits*.
4. VALC defined by trellis automaton \(\implies \) a system for the corresponding set of numbers.
Growth rate of sets defined using \{∪, ∩, +\}

- A large class of sets can be defined.
- Any limits of the expressive power of these equations?
- Any bounds on the growth rate?

Theorem (Jeż, Okhotin, CSR 2007)

For every recursive enumerable set \(S \subseteq \mathbb{N} \)

a faster-growing set can be defined.

1. A Turing machine recognizing \(S = \{n_1, n_2, \ldots\} \).
2. The language VALC of its computation histories: \(\{w_1, w_2, \ldots\} \).
3. Define VALC over the alphabet of digits.
4. VALC defined by trellis automaton \(\Rightarrow \)
 a system for the corresponding set of numbers
5. Grows faster than \(S \).
A single equation with \(\{\cup, \cap, +\} \)

\[X = \varphi(X) \]
A single equation with \(\{ \cup, \cap, + \} \)

\[X = \varphi(X) \]

- Weaker than the general case?
A single equation with \{\cup, \cap, +\}

\[X = \varphi(X) \]

- Weaker than the general case?
- Can any non-periodic sets be specified?
A single equation with \{\cup, \cap, +\}

\[X = \varphi(X) \]

- Weaker than the general case?
- Can any non-periodic sets be specified?

Example (Okhotin, Rondogiannis, *in preparation*)

The equation

\[X = (X + X + 11 \cap X + X + 22) \cup (X + X + 1 \cap X + X + 9) \cup \\
\quad \cup (X + X + 12 \cap X + X + 7) \cup (X + X + 14 \cap X + X + 13) \cup \{56, 113, 181\} \]

has an exponentially growing unique solution.
A single equation with \(\{\cup, \cap, +\} \)

\[X = \varphi(X) \]

- Weaker than the general case?
- Can any non-periodic sets be specified?

Example (Okhotin, Rondogiannis, *in preparation*)

The equation

\[X = (X + X + 11 \cap X + X + 22) \cup (X + X + 1 \cap X + X + 9) \cup (X + X + 12 \cap X + X + 7) \cup (X + X + 14 \cap X + X + 13) \cup \{56, 113, 181\} \]

has an exponentially growing unique solution.

Theorem (Okhotin, Rondogiannis, *in preparation*)

No superexponentially growing sets are representable.
Resolved equations with \{\sim, +\}

Denote $S^2 = S + S$.

Example (Leiss, 1994) The equation $X = X^2 + 1$ has a unique solution $L_0 = \{n \mid 2^3 i \leq n < 2^3 i + 2 \text{ for some } i \geq 0\}$.

Lemma (Okhotin, Yakimova, DLT 2006) The symmetric difference $L_0 \triangle \{n \mid n = 2^3 i \text{ or } n = 2^3 i + 1\} \triangle \text{Even}$ is not representable by any system with \{\sim, +\}.

Alexander Okhotin
Equations over sets of natural numbers
January 3, 2008
Resolved equations with \{\sim, +\}

Denote $S^2 = S + S$.

Example (Leiss, 1994)

The equation

\[
X = \overline{X^2^2} + 1
\]
Resolved equations with \(\{\sim, +\} \)

Denote \(S^2 = S + S \).

Example (Leiss, 1994)

The equation

\[
X = \overline{X^2} + 1
\]

has a unique solution \(L_0 = \{ n \mid 2^{3i} \leq n < 2^{3i+2} \text{ for some } i \geq 0 \} \).
Resolved equations with \{\sim, +\}

Denote \(S^2 = S + S\).

Example (Leiss, 1994)

The equation

\[
X = \overline{X^2^2} + 1
\]

has a unique solution \(L_0 = \{n \mid 2^{3i} \leq n < 2^{3i+2} \text{ for some } i \geq 0\}\).

Lemma (Okhotin, Yakimova, DLT 2006)

The symmetric difference

\[
L_0 \Delta \{n \mid n = 2^{3i} \text{ or } n = 2^{3i} + 1\} \Delta \text{Even}
\]
Resolved equations with \{\sim, +\}

Denote \(S^2 = S + S\).

Example (Leiss, 1994)

The equation

\[
X = \overline{X^2} + 1
\]

has a unique solution \(L_0 = \{n \mid 2^{3i} \leq n < 2^{3i+2} \text{ for some } i \geq 0\}\).

Lemma (Okhotin, Yakimova, DLT 2006)

The symmetric difference

\[
L_0 \Delta \{n \mid n = 2^{3i} \text{ or } n = 2^{3i} + 1\} \Delta \text{Even}
\]

is not representable by any system with \{\sim, +\}.

Alexander Okhotin
Equations over sets of natural numbers
January 3, 2008
8 / 10
Unresolved equations with \{\bigcup, +\}

\[
\begin{align*}
\varphi_1(X_1, \ldots, X_n) &= \psi_1(X_1, \ldots, X_n) \\
&\vdots \\
\varphi_m(X_1, \ldots, X_n) &= \psi_m(X_1, \ldots, X_n)
\end{align*}
\]
Unresolved equations with \{∪, +\}

\[
\begin{align*}
\varphi_1(X_1, \ldots, X_n) &= \psi_1(X_1, \ldots, X_n) \\
&\vdots \\
\varphi_m(X_1, \ldots, X_n) &= \psi_m(X_1, \ldots, X_n)
\end{align*}
\]

- Recursive sets: mathematical notion of “effectively computable”.

Theorem (Jeż, Okhotin, in preparation)

$S \subseteq \mathbb{N}$ is given by unique solution of such a system if and only if S is recursive.

An arithmetization of Turing machines using these equations.
Unresolved equations with \(\{ \cup, + \} \)

\[
\begin{align*}
\varphi_1(X_1, \ldots, X_n) &= \psi_1(X_1, \ldots, X_n) \\
\vdots \\
\varphi_m(X_1, \ldots, X_n) &= \psi_m(X_1, \ldots, X_n)
\end{align*}
\]

- Recursive sets: mathematical notion of “effectively computable”.

Theorem (Jeż, Okhotin, in preparation)

\(S \subseteq \mathbb{N}_0 \) is given by unique solution of such a system if and only if \(S \) is recursive.
Unresolved equations with \(\{ \cup, + \} \)

\[
\begin{align*}
\varphi_1(X_1, \ldots, X_n) &= \psi_1(X_1, \ldots, X_n) \\
&\vdots \\
\varphi_m(X_1, \ldots, X_n) &= \psi_m(X_1, \ldots, X_n)
\end{align*}
\]

- Recursive sets: mathematical notion of “effectively computable”.

Theorem (Jeż, Okhotin, in preparation)

\(S \subseteq \mathbb{N}_0 \) is given by unique solution of such a system if and only if \(S \) is recursive.

- An arithmetization of Turing machines using these equations.
Conclusion

- A basic mathematical object.
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

1. A Diophantine equation with PRIMES as the range of x.
2. An equation over sets of numbers with PRIMES as the unique value of X.

Any number-theoretic methods?

Problem

Construct a set not representable by equations with $\{\cup, \cap, +\}$.
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1. A Diophantine equation with PRIMES as the range of x.

Any number-theoretic methods?
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1. A Diophantine equation with PRIMES as the range of x.
2. An equation over sets of numbers with PRIMES as the unique value of X.
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example

Let PRIMES be the set of all primes.

1. A Diophantine equation with PRIMES as the range of x.
2. An equation over sets of numbers with PRIMES as the unique value of X.

- Any number-theoretic methods?
Conclusion

- A basic mathematical object.
- Using methods of theoretical computer science.
- cf. Diophantine equations.

Example
Let PRIMES be the set of all primes.

1. A Diophantine equation with PRIMES as the range of x.
2. An equation over sets of numbers with PRIMES as the unique value of X.

Any number-theoretic methods?

Problem

Construction a set not representable by equations with $\{\cup, \cap, +\}$.