1. \[x^5 = x^3 + 1, \quad x^6 = x^4 + x, \quad x^7 = x^5 + x^2 = x^3 + x^2 + 1, \quad x^8 = x^7 + x^3 + x \]

2. \[\alpha^4 = (x^2 + x + 1)^4 = (x^6 + x^2 + x + 1)^2 = x^8 + x^4 + x^2 + 1 \]
 \[= x^3 + x^2 + x + 1 \]

Let \(\beta = x \) (lecture notes), then \(\alpha \beta = \alpha \) and \(\alpha^4 \beta^4 = \alpha \beta = \alpha \).

3. \[\text{ord}(x) \mid 63 \implies x \in \{1, 3, 7, 9, 21, 63\} \]
 \[x^1 \neq 1, \quad x^2 \neq 1, \quad x^3 = x(x^3 + 1) = x^4 + x^2 \neq 1, \quad x^7 = x^3(x^3 + 1) = x^6 + x^3 = 1 \]
 \[\implies \text{ord}(x) = 9 \]

4. \[2(n+5) = 2n \mod 5, \text{ so } 5 \text{ is a period, and there are no shorter periods; } \]
 \[(2n) = 2, 4, 1, 3, 0. \]

5. a) Because \(A \) is finite, \(u_i = u_j \) for some \(i, j \) such that \(i < j \).

 Then \(u_{n+i} = f(u_i) = f(u_j) = u_{n+j} \) and, by induction, \(u_{n+i} = u_{n+j} \)
 for all \(k \geq 0 \). Thus \(u_{n+i-j} = u_n \forall n \geq i \).

b) Let \(i \) above be minimal, that is, \(u_0, \ldots, u_{i-1} \) only appear once in the seq.
If \(i > 0 \), then \(f(u_i) = u_i = u_j = f(u_{i+1}) \) and \(u_{i+1} \neq u_{i-1} \)
(by the minimality of \(i \)). But this contradicts injectivity of \(f \).
Thus \(i = 0 \) and the sequence is periodic.

6. Let \(f(x) = x^9 - 1 \in \mathbb{F}_q[x] \). For all \(x \in \mathbb{F}_q^* \), \(f(x) = 0 \).
 Thus \((x^9 - 1) \mid f(x) \), so \(f(x) = g(x) \prod (x - \alpha) \) for some \(g(x) \in \mathbb{F}_q[x] \).

 But \(g(x) \) must have degree 0 and leading coefficient 1, so \(g(x) = 1 \).

a) The coefficient of \(x^9 \cdot 2 \) in \(f(x) \) is 0 and in \(\prod (x - \alpha) \) it is \(\sum_{x \in \mathbb{F}_q} (-\alpha) \), so \(\sum_{x \in \mathbb{F}_q} \alpha = 0 \).

b) The coefficient of \(x^0 \) in \(f(x) \) is -1 and in \(\prod (x - \alpha) \) it is \(\prod_{x \neq \alpha} (-1)^{\deg} \prod_{x \neq \alpha} \alpha = \prod_{x \neq \alpha} (x - \alpha) \), so \(\prod_{x \neq \alpha} \alpha = -1 \).