1. \[a + b + e = 1 \]
 \[1 + a + d + e = 1 \]
 \[1 + c + d + e = 0 \]
 \[\Rightarrow (a, b, c, d, e) = (1, 0, 0, 1, 0) \]
 \[b + c + d = 1 \]
 \[a + b + c + e = 1 \]
 \[1 + a + b + d + e = 1 \]

2. 0101 1110 0111 0100
 1111 0111 0010 1010 \[\frac{7}{16} \text{ correlation} \]
 1110 1110 0101 0101 \[\frac{11}{16} \text{ correlation more likely} \]

3. output: 1000 0101 1010 0010
 LFSR1: 1000 1001 1010 1111
 LFSR2: 1011 1001 0 \[u_{n+1} = u_{n+3} + u_n \]

4. \(b, c \) = 0 about 75% of time, so \(s = a \) about 75% of time.
 Thus we find candidates for the sequence \((a, c)\) by a corr. attack.
 If we know \((a, c)\), then we know \((b, c, i)\).
 If \(b, c = 1 \) then \(b = c = 1 \), so we know about 25% of the \(b \) and \(c \). We can use this to find the sequences \((b, c)\).