A Basics of Finite Fields

A.1 Constructions and Computations

The following theorem could be called the fundamental theorem of finite fields.

Theorem A.1. For every prime power \(q \), there is a field of size \(q \), and it is unique up to isomorphism. There are no other finite fields.

The field with \(q \) elements can be denoted by \(\mathbb{F}_q \). The following theorem states how finite fields can be constructed.

Theorem A.2. If \(p \) is a prime, then integers modulo \(p \) form a finite field of size \(p \).

If \(q \) is a prime power, \(n \geq 2 \) an integer, and \(f(x) \in \mathbb{F}_q[x] \) an irreducible polynomial of degree \(n \), then the polynomials in \(\mathbb{F}_q[x] \) modulo \(f(x) \) form a finite field of size \(q^n \).

Note that if \(q \) is not a prime, then integers modulo \(q \) do not form a field. The second part of Theorem A.2 is most often used with a prime \(q \); this is sufficient for constructing all finite fields. However, if we already have constructed the field \(\mathbb{F}_p^k \), we can use the theorem with \(q = p^k \) to construct the field \(\mathbb{F}_{p^k} \).

Using the notation of Theorem A.2, we can write

\[
\mathbb{F}_{q^n} = \{ a_0 x^0 + \cdots + a_{n-1} x^{n-1} \mid a_0, \ldots, a_{n-1} \in \mathbb{F}_q, f(x) = 0 \}.
\]

We can also say that this is the field \(\mathbb{F}_{q^n} \) defined by \(f(x) \). If the elements of a finite field are written like this, they can be added like polynomials:

\[
\sum_{i=0}^{n-1} a_i x^i + \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} (a_i + b_i) x^i.
\]

They can also be multiplied like polynomials, except that we must use the relation \(f(x) = 0 \) to get rid of powers \(x^k \) with \(k \geq n \).

Example A.3. For a prime \(p \), we will always use the notation \(\mathbb{F}_p = \{ 0, \ldots, p-1 \} \) with the understanding that the elements are integers modulo \(p \).

We will use the field \(\mathbb{F}_2 = \{ 0, 1 \} \) particularly often, because its elements can be interpreted as bits, addition as XOR, and multiplication as AND. Remember that \(1 = -1 \) in this field, and in every field \(\mathbb{F}_{2^n} \), so addition and subtraction are the same thing.

Bytes (sequences of eight bits) can be interpreted as elements of \(\mathbb{F}_{2^8} \) so that addition is bitwise XOR. Multiplication does not have any simple interpretation, but it can be implemented efficiently. This is used in AES, for example.

Example A.4. The polynomial \(x^3 + x + 1 \in \mathbb{F}_2[x] \) is irreducible, so we can let

\[
\mathbb{F}_8 = \{ a + bx + cx^2 \mid a, b, c \in \mathbb{F}_2, \ x^3 = 1 + x \}.
\]

Let us compute the sum and product of \(1 + x^2 \) and \(1 + x + x^2 \) in this field. We have \((1 + x^2) + (1 + x + x^2) = x \) and

\[
(1 + x^2)(1 + x + x^2) = 1 + x + x^2 + x^2 + x^3 + x^4 = 1 + x + x^3 + x^4 = x(1 + x) = x + x^2.
\]
We could also use the irreducible polynomial \(x^3 + x^2 + 1 \in \mathbb{F}_2[x] \) and let
\[\mathbb{F}_8 = \{ a + bx + cx^2 \mid a, b, c \in \mathbb{F}_2, \; x^3 = 1 + x^2 \}. \]
Let us compute the sum and product \(1 + x^2 \) and \(1 + x + x^2 \) in this field. We have
\[(1 + x^2) + (1 + x + x^2) = x \]
and
\[(1 + x^2)(1 + x + x^2) = 1 + x + x^2 + x^2 + x^3 + x^4 = 1 + x + x^3 + x^4 = 1 + x + x^3 + x(1 + x^2) = 1. \]
This construction of \(\mathbb{F}_8 \) looks different, but it is isomorphic to the first one.

It is often useful to remember that \((a + b)p = a^p + b^p\) for all \(a, b \in \mathbb{F}_{p^n}\).

Example A.5. The polynomial \(x^2 + 1 \in \mathbb{F}_3[x] \) is irreducible, so we can let
\[\mathbb{F}_9 = \{ a + bx \mid a, b \in \mathbb{F}_3, \; x^2 = -1 \}. \]
Let us compute the square and cube of \(1 + 2x \) in this field. We have
\[(1 + 2x)^2 = 1 + 4x + 4x^2 = 1 + x + x^2 = x. \]
Here are two ways two compute the cube:
\[(1 + 2x)^3 = (1 + 2x)(1 + 2x)^2 = (1 + 2x)x = x + 2x^2 = 1 + x, \]
\[(1 + 2x)^3 = 1^3 + (2x)^3 = 1 + 8x^3 = 1 + 2x^3 = 1 + x. \]

The next lemma gives the irreducible polynomials that can be used to construct the fields \(\mathbb{F}_4, \mathbb{F}_8, \mathbb{F}_{16}, \) and \(\mathbb{F}_{32} \).

Lemma A.6. The irreducible polynomials of degrees 2, 3, 4 and 5 in \(\mathbb{F}_2[x] \) are given below.

- **Degree 2:** \(1 + x + x^2 \).
- **Degree 3:** \(1 + x + x^3, 1 + x^2 + x^3 \).
- **Degree 4:** \(1 + x + x^4, 1 + x^3 + x^4, 1 + x + x^2 + x^3 + x^4 \).
- **Degree 5:** \(1 + x^2 + x^5, 1 + x^3 + x^5, 1 + x + x^2 + x^3 + x^5, 1 + x + x^2 + x^4 + x^5, 1 + x + x^3 + x^4 + x^5, 1 + x^2 + x^3 + x^4 + x^5 \).

Proof. We will prove the cases of degrees 2 and 4; degrees 3 and 5 are left as an exercise.

A polynomial \(a + bx + x^2 \in \mathbb{F}_2[x] \) is reducible iff it has a root in \(\mathbb{F}_2 \). It has a root 0 iff \(a = 0 \), and a root 1 iff \(a + b + 1 = 0 \). Thus it is irreducible iff \(a = b = 1 \).

A polynomial \(a + bx + cx^2 + dx^3 + x^4 \) is reducible iff it has a root in \(\mathbb{F}_2 \) or is a product of irreducible polynomials of degree 2. It has a root iff \(a = 0 \) or \(a + b + c + d + 1 = 0 \), and it is a product of irreducible polynomials of degree 2 iff it is \((1 + x + x^2)^2 = 1 + x^2 + x^4 \). This specifies the required three irreducible polynomials. \(\square \)
A.2 Order of an element

The order of an element a in a group is the smallest positive integer n such that $a^n = 1$. It is denoted by $\text{ord}(a)$. The order of an element divides the size of the group. To determine $\text{ord}(a)$ in a group of size m, it is sufficient to calculate a^d for every $d|m$, $d < m$.

We will mostly use order in the multiplicative group \mathbb{F}_q^* of a finite field \mathbb{F}_q. The size of \mathbb{F}_q^* is $q-1$.

Example A.7. Every element of \mathbb{F}_8^* has order either 1 or 7. The only element with order 1 is the identity element 1.

Every element of \mathbb{F}_{16}^* has order either 1, 3, 5, or 15. The order of $a \neq 1$ can be determined as follows: If $a^3 = 1$, then $\text{ord}(a) = 3$. If $a^5 = 1$, then $\text{ord}(a) = 5$. If $a^3 \neq a^5$, then $\text{ord}(a) = 15$.

Example A.8. Let $a \in \mathbb{F}_q^*$. If n is a large integer, then computing a^n can be made easier by reducing n modulo $\text{ord}(a)$, or modulo $q-1$ if $\text{ord}(a)$ is not known. For example, if $\text{ord}(a) = 10$, then $a^{205} = a^{200 \cdot 5} = (a^{10})^{20 \cdot 5} = 1^{20} \cdot a^5 = a^5$.

The inverse a^{-1} can be computed as $a^{\text{ord}(a)-1}$ or as a^{q-2}. However, sometimes there are easier ways. In particular, if the field is defined by $a_0 x^0 + \cdots + a_n x^n$, then the inverse of x is

$$x^{-1} = -a_0^{-1}(a_1 x^0 + \cdots + a_n x^{n-1}).$$

An irreducible polynomial $f(x) \in \mathbb{F}_q[x]$ of degree $n \geq 2$ is primitive if the order of x modulo $f(x)$ is $q^n - 1$. In other words, $f(x)$ is primitive if and only if the multiplicative group of the field

$$\mathbb{F}_{q^n} = \{ a_0 x^0 + \cdots + a_{n-1} x^{n-1} \mid a_0, \ldots, a_{n-1} \in \mathbb{F}_q, f(x) = 0 \}$$

is generated by x, that is,

$$\mathbb{F}_{q^n}^* = \{ x^0, \ldots, x^{q^n-2} \}.$$

If $q^n - 1$ is prime, then every irreducible polynomial is primitive.

Example A.9. Let us find out which polynomials in Lemma A.6 are primitive. Because $2^n - 1$ is prime for $n \in \{2, 3, 5\}$, all of these polynomials of degrees 2, 3 and 5 are primitive. For degree 4, we can follow example A.7 to see when the order is 15. Clearly, $x^3 \neq 1$ modulo every polynomial of degree 4, and

$$x^5 = x(1 + x) = x + x^2 \neq 1 \quad \text{(mod } 1 + x + x^4),$$

$$x^5 = x(x + x^3) = x + x^4 = x + 1 + x^3 \neq 1 \quad \text{(mod } 1 + x^3 + x^4),$$

$$x^5 = x(1 + x + x^2 + x^3) = x + x^2 + x^3 + x^4 = 1 \quad \text{(mod } 1 + x + x^2 + x^3 + x^4),$$

so only $1 + x + x^2 + x^3 + x^4$ is not primitive.

Often it is useful to construct finite fields with primitive polynomials. Luckily, this is always possible by the following theorem.
Theorem A.10. For every prime power q and integer $n \geq 2$, there exists a primitive polynomial of degree n in $\mathbb{F}_q[x]$.

The following theorem is occasionally useful.

Theorem A.11. Let $a \in \mathbb{F}_{q^n}$. Then $a \in \mathbb{F}_q$ if and only if $a^q = a$.

Proof. If $a \in \mathbb{F}_{q^n}^*$, then $\text{ord}(a)|(q - 1)$, so $a^{q-1} = 1$. Thus $a^q = a$, and of course $0^q = 0$.

If $a \in \mathbb{F}_{q^n}$ and $a^q = a$, then a is a root of the polynomial $x^q - x$. Every element of \mathbb{F}_q is a root of this polynomial, and it cannot have more than q roots, so $a \in \mathbb{F}_q$. \qed