From plants to birds: higher avian predation rates in trees responding to insect herbivory

Elina Mäntylä, University of Turku
ISBE 2008, Ithaca, NY

• Tero Klemola & Toni Laaksonen (University of Turku)
• Jarmo K. Holopainen, James D. Blande, Juha Heijari, Panu Piirtola
 & Giorgio A. Alessio (University of Kuopio)

PLoS ONE 3(7): e2832

Introduction

• ‘Crying-for-help’ – tritrophic interaction between plants, herbivores and predators
• Feeding of larvae on a single branch can cause rapid systemic inducible responses in the tree
• Plant emissions can transmit herbivore-specific information that is detectable by e.g. parasitic wasps
 – volatile organic compounds (VOCs)
• Predators (birds, parasitic and predatory insects) can reduce densities of leaf-chewing insects and thus improve plant fitness
Introduction

• Previous studies in aviary
 – Birds (three species) more attracted to intact branches cut from herbivore trees than control trees
• How birds can find insect-rich trees?
 – Visual cues:
 • larvae and their faeces
 • holes in leaves
 • changes in reflectance (photosynthesis)
 – Olfactory cues:
 • VOCs

Experiment in nature

• Mountain birch (*Betula pubescens* ssp. *czerepanovii*) – autumnal moth larvae (*Epirrita autumnata*) – local insectivorous birds
 – at Kevo Subarctic Research Station in June 2007
 – 15 herbivore and 15 control trees
 – 3 × 20 larvae in each herbivore tree
• Plasticine larvae in both herbivore and control trees to study bird predation rate
 – 10 artificial larvae per tree
 – checked daily and replaced damaged for two weeks
• VOC emissions and net photosynthesis were measured from the same experimental trees
Mesh bags and plasticine larvae

Real and artificial larvae
Local passerine birds

- pied flycatcher (*Ficedula hypoleuca*)
- willow warbler (*Phylloscopus trochilus*)
- brambling (*Fringilla montifringilla*)
- great tit (*Parus major*)
- Siberian tit (*Parus cinctus*)
- common redpoll (*Carduelis flammea*)
- yellow wagtail (*Motacilla flava*)
- bohemian waxwing (*Bombycilla garrulus*)
- bluethroat (*Luscinia svecica*)
- fieldfare (*Turdus pilaris*)

Photos by Kalle Rainio

Plasticine larvae

- Bar chart showing the amount of damaged larvae over time. The chart compares herbivore and control treatments.
 - Treatment effect: $p = 0.0072$
 - Time effect: $p = 0.0007$
 - Time squared effect: $p = 0.0002$

Days since the start of defoliation

Amount of damaged larvae

0 5 10 15 20 25 30 35

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Plasticine larvae

Amount of damaged larvae

Days since the start of defoliation

VOCs

VOC emissions

VOC emission (ng cm$^{-2}$ h$^{-1}$)

VOC emissions

VOCs

**

**

**

**

*
VOC emissions × damaged larvae

<table>
<thead>
<tr>
<th>Compound</th>
<th>No.</th>
<th>Group</th>
<th>(r_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)-DMNT</td>
<td>#6</td>
<td>homoterpene</td>
<td>0.576**</td>
</tr>
<tr>
<td>(\beta)-ocimene</td>
<td>#4</td>
<td>monoterpene</td>
<td>0.454*</td>
</tr>
<tr>
<td>linalool</td>
<td>#5</td>
<td>monoterpene</td>
<td>0.454*</td>
</tr>
<tr>
<td>(\beta)-bourbonene</td>
<td>#11</td>
<td>sesquiterpene</td>
<td>0.242</td>
</tr>
<tr>
<td>cis-3-hexen-1-ol+(E)-2-hexenal</td>
<td>#13</td>
<td>green leaf volatile</td>
<td>0.224</td>
</tr>
<tr>
<td>cis-3-hexenyl butyrate</td>
<td>#15</td>
<td>green leaf volatile</td>
<td>0.162</td>
</tr>
<tr>
<td>(\alpha)-pinene</td>
<td>#1</td>
<td>monoterpene</td>
<td>0.160</td>
</tr>
<tr>
<td>(\alpha)-copaene</td>
<td>#7</td>
<td>sesquiterpene</td>
<td>0.147</td>
</tr>
<tr>
<td>cis-3-hexenyl acetate</td>
<td>#12</td>
<td>green leaf volatile</td>
<td>0.142</td>
</tr>
<tr>
<td>(E)-(\beta)-caryophyllene</td>
<td>#10</td>
<td>sesquiterpene</td>
<td>0.093</td>
</tr>
<tr>
<td>nonanal</td>
<td>#14</td>
<td>green leaf volatile</td>
<td>0.080</td>
</tr>
<tr>
<td>limonene</td>
<td>#3</td>
<td>monoterpene</td>
<td>-0.012</td>
</tr>
<tr>
<td>caryophyllene oxide</td>
<td>#9</td>
<td>sesquiterpene</td>
<td>-0.015</td>
</tr>
<tr>
<td>(\alpha)-humulene</td>
<td>#8</td>
<td>sesquiterpene</td>
<td>-0.023</td>
</tr>
<tr>
<td>(\beta)-myrcene</td>
<td>#2</td>
<td>monoterpene</td>
<td>-0.107</td>
</tr>
</tbody>
</table>

Plasticine larvae

- **VOCs**
 - Treatment \((p = 0.0072) \)
 - Time \((p = 0.0007) \)
 - Time\(^2\) \((p = 0.0002) \)

- **photosynthesis**
Discussion

- Birds were more interested in birches that had hidden defoliation by autumnal moth larvae than in control trees with no herbivory.
- The first evidence that passerine birds in nature can use cues other than visual recognition of herbivore larvae, damaged leaves or larval faeces to locate insect-rich trees.
- Many VOCs here that may attract birds are the same compounds that are known to attract insect parasitoids of the herbivores.
Discussion

• Support for both vision and olfaction as the candidate mechanism behind bird attraction
 – vision: different reflection in herbivore and control trees due to differences in photosynthesis
 – olfaction: significant differences in emissions of several VOCs between herbivore and control trees, and significant correlation with predation rate and three VOCs [(E)-DMNT, β-ocimene and linalool]

• More research is still needed about the role of both vision and olfaction

Acknowledgements

• We want to thank Tea Ammunét, Tommi Andersson, Annette Heisswolf, Aino Kalske, Netta Klemola, Saara Koutaniemi, Kukka Kyrö, Leena Lindström and Kai Ruohomäki for their advice and help during the field work
• The study was financially supported by Jenny and Antti Wihuri Foundation, European Commission (ISONET), Finnish Cultural Foundation, EU LAPBIAT programme and the Academy of Finland
Thank you for your attention!

Photo by Toni Nikkanen