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The relationship between the length of a word and the maximum length of its unbordered factors
is investigated in this paper. Consider a finite word w of length n. We call a word bordered if it
has a proper prefix which is also a suffix of that word. Let µ(w) denote the maximum length of
all unbordered factors of w, and let ∂(w) denote the period of w. Clearly, µ(w) ≤ ∂(w).

We establish that µ(w) = ∂(w), if w has an unbordered prefix of length µ(w) and n ≥ 2µ(w) − 1.
This bound is tight and solves the stronger version of an old conjecture by Duval (1983). It follows
from this result that, in general, n ≥ 3µ(w) − 3 implies µ(w) = ∂(w) which gives an improved
bound for the question raised by Ehrenfeucht and Silberger in 1979.
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1. INTRODUCTION

Periodicity and borderedness are two properties of words which are investigated in
this paper. These two fundamental notions play a rôle (explicitly or implicitly) in
many areas. Just a few of those areas are string searching algorithms [Knuth et al.
1977; Boyer and Moore 1977; Crochemore and Perrin 1991], data compression [Ziv
and Lempel 1977; Crochemore et al. 1999], and codes [Berstel and Perrin 1985].
These are classical examples, but also computational biology, e.g., sequence assem-
bly [Margaritis and Skiena 1995] or superstrings [Breslauer et al. 1997], and serial
data communications systems [Bylanski and Ingram 1980] are areas among others
where periodicity and borderedness of words (sequences) are important concepts.
It is well known that these two properties of words are not independent of each
other. However, it is somewhat surprising that no clear relation has been estab-
lished so far, despite the fact that this basic question has been around for more
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2 · T. Harju and D. Nowotka

than 25 years.
Let us consider a finite word (a sequence of letters) w. We denote the length

of w by |w| and call a subsequence of consecutive letters of w a factor of w. The
period of w, denoted by ∂(w), is the smallest positive integer p such that the i-th
letter equals the (i + p)-th letter for all 1 ≤ i ≤ |w| − p. Let µ(w) denote the
maximum length of all unbordered factors of w. A word is bordered if it has
a proper prefix that is also a suffix, where we call a prefix proper if it is neither
empty nor the entire word. For the investigation of the relationship between |w|
and the maximality of µ(w), that is, µ(w) = ∂(w), we consider the special case
where the longest unbordered prefix of a word is of maximum length, that is, no
unbordered factor is longer than that prefix. Let w be an unbordered word. Then
a word wu is called a Duval extension (of w) if every unbordered factor of wu has
length at most |w|, that is, µ(wu) = |w|. We call wu a trivial Duval extension
if ∂(wu) = |w|, or in other words, if u is a prefix of wk for some k ≥ 1. For
example, let w = abaabb and u = aaba. Then wu = abaabbaaba is a nontrivial
Duval extension of w since (i) w is unbordered, (ii) all factors of wu longer than w
are bordered, that is, |w| = µ(wu) = 6, and (iii) the period of wu is 7, and hence,
∂(wu) > |w|. Note that this example satisfies |u| = |w| − 2.

In 1979 a line of research was initiated [Ehrenfeucht and Silberger 1979; Assous
and Pouzet 1979; Duval 1982] exploring the relationship between the length of
a word w and µ(w). In 1982 these efforts culminated in the following result by Du-
val: If |w| ≥ 4µ(w)−6 then ∂(w) = µ(w). However, it was conjectured [Assous and
Pouzet 1979] that |w| ≥ 3µ(w) implies ∂(w) = µ(w) which follows from Duval’s
conjecture [Duval 1982].

Conjecture 1.1. Let wu be a nontrivial Duval extension of w. Then |u| < |w|.

After that, no progress was recorded, to the best of our knowledge, for 20 years.
However, the topic remained popular, see for example Chapter 8 in [Lothaire 2002].
The most recent results are by Mignosi and Zamboni [2002] and the authors of this
article [Harju and Nowotka 2002b]. However, not Duval’s conjecture but rather its
opposite is investigated in those papers, that is: which words admit only trivial
Duval extensions? It is shown in [Mignosi and Zamboni 2002] that unbordered,
finite factors of Sturmian words allow only trivial Duval extensions; in other words
if an unbordered, finite factor of a Sturmian word of length µ(w) is a prefix of w,
then ∂(w) = µ(w). Sturmian words are binary infinite words of minimal subword
complexity, that is, a Sturmian word contains exactly n + 1 different factors of
length n for every n ≥ 1; see [Morse and Hedlund 1940] or Chapter 2 in [Lothaire
2002]. This result was later improved [Harju and Nowotka 2002b] by showing that
Lyndon words [Lyndon 1954] allow only trivial Duval extensions and the fact that
every unbordered, finite factor of a Sturmian word is a Lyndon word but not vice
versa. A Lyndon word is a primitive word that is minimal among all its conjugates
with respect to some lexicographic order.

The main result in this paper is a proof of the extended version of Conjecture 1.1.

Theorem 1.2. Let wu be a nontrivial Duval extension of w. Then |u| < |w|−1.

The example mentioned above already indicates that this bound on the length of
a nontrivial Duval extension is tight. An example for arbitrary lengths of w is
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given later in Section 4. Recently, a new proof of Theorem 1.2 was given by Holub
in [2005]. Theorem 1.2 implies the truth of Duval’s conjecture, as well as the
following corollary (for any word w).

Corollary 1.3. If |w| ≥ 3µ(w) − 3, then ∂(w) = µ(w).

This corollary (see Section 4) confirms the conjecture by Assous and Pouzet in [1979]
about a question asked by Ehrenfeucht and Silberger in [1979].

Our main result, Theorem 1.2, is presented in Section 4 and its corollary in
Section 5. Sections 4 and 5 use the notation introduced in Section 2 and preliminary
results from Section 3. We conclude with Section 6.

2. NOTATION

In this section we introduce the notation of this paper. We refer to [Lothaire 1983;
2002] for more basic and general definitions.

We consider a finite alphabet A of letters. Let A∗ denote the monoid of all finite
words over A including the empty word denoted by ε. We denote the i-th letter
of a word w with w(i).

1 Let w = w(1)w(2) · · ·w(n). The word w(n) · · ·w(2)w(1) is
called the reversal of w denoted by w̃. We denote the length n of w by |w|. If
w is not empty, then let w• = w(1)w(2) · · ·w(n−1). We define ε• = ε. An integer
1 ≤ p ≤ n is a period of w if w(i) = w(i+p) for all 1 ≤ i ≤ n − p. The smallest
period of w is called the minimum period (or simply, the period) of w, denoted
by ∂(w). A word w is called primitive if wk implies k = 1, that is, ∂(w) does not
divide |w|. A conjugate of w is a word w′ = uv such that vu = w. Note that every
conjugate of w occurs in ww•. A nonempty word u is called a border of a word w,
if w = uv = v′u for some nonempty words v and v′. We call w bordered if it has
a border, otherwise w is called unbordered. Note that every unbordered word is
primitive and every bordered word w has a minimum border u such that w = uvu,
where u is unbordered. Let µ(w) denote the maximum length of unbordered factors
of w. We have that

µ(w) ≤ ∂(w) .

Indeed, let u = u(1)u(2) · · ·u(µ(w)) be an unbordered factor of w. If µ(w) > ∂(w)
then u(i) = u(i+∂(w)) for all 1 ≤ i ≤ µ(w) − ∂(w) and u(1)u(2) · · ·u(µ(w)−∂(w)) is
a border of u; a contradiction.

Suppose w = uv, then u is called a prefix of w, denoted by u ≤p w, and v is called
a suffix of w, denoted by v ≤s w. If u and v are both not the empty word, then u
is called proper prefix of w, denoted by u <p w, and v is called proper suffix of w,
denoted by v <s w. Let u and v be two nonempty words. We say that u overlaps v
from the left (resp. from the right) if there is a word w such that |w| < |u|+ |v|, and
u <p w and v <s w, (resp. v <p w and u <s w). We say that u overlaps with v,
if u overlaps v from the left or right. We say that u intersects with v, if u and v
overlap or one is a factor of the other.

Example 2.1. Let A = {a, b} and u, v, w ∈ A∗ such that u = abaa and v = baaba
and w = abaaba. Then |w| = 6, and 3, 5, and 6 are periods of w, and ∂(w) = 3.

1In general, subscripts without brackets are used for variables in A∗, for example wi ∈ A∗, and
subscripts with brackets for variables in A, for example w(i) ∈ A.
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4 · T. Harju and D. Nowotka

We have that a is the shortest border of u and w, whereas ba is the shortest border
of v. We have µ(w) = 3. We also have that u and v overlap since u ≤p w and
v ≤s w and |w| < |u| + |v|.

We continue with some more notation. Let w and u be words where w is un-
bordered. We call wu a Duval extension of w if every factor of wu longer than |w|
is bordered, that is, µ(wu) = |w|. A Duval extension wu of w is called trivial, if
∂(wu) = µ(wu) = |w|. A nontrivial Duval extension wu of w is called minimal if
u = u′a and w = u′bw′ where a, b ∈ A and a 6= b, that is, wu is a nontrivial Duval
extension and wu• is a trivial Duval extension.

Example 2.2. Let w = abaabbabaababb and u = aaba. Then

w.u = abaabbabaababb.aaba

(for the sake of readability, we use a dot to mark where w ends) is a nontrivial
Duval extension of w of length |wu| = 18, where µ(wu) = |w| = 14 and ∂(wu) = 15.
However, wu is not a minimal Duval extension, whereas

w.u′ = abaabbabaababb.aa

is minimal, with u′ = aa ≤p u. Note that wu is not the longest nontrivial Duval
extension of w since

w.v = abaabbabaababb.abaaba

is longer, with v = abaaba and |wv| = 20 and ∂(wv) = 17. One can check that wv
is a nontrivial Duval extension of w of maximum length, and at the same time wv
is also a minimal Duval extension of w.

Let an integer p with 1 ≤ p < |w| be called point in w. Intuitively, a point p
denotes the place between w(p) and w(p+1) in w. A nonempty word u is called
a repetition word at point p if w = xy with |x| = p and there exist words x′ and y′

such that u ≤s x′x and u ≤p yy′. For a point p in w, let

∂(w, p) = min
{
|u|

∣∣ u is a repetition word at p
}

denote the local period at point p in w. Note that the repetition word of length
∂(w, p) at point p is necessarily unbordered and ∂(w, p) ≤ ∂(w). A factorization
w = uv, with u, v 6= ε and |u| = p, is called critical, if ∂(w, p) = ∂(w), and if this
holds, then p is called critical point.

Example 2.3. The word

w = ab.aa.b

has the period ∂(w) = 3 and two critical points, 2 and 4, marked by dots. The
shortest repetition words at the critical points are aab and baa, respectively. Note
that the shortest repetition words at the remaining points 1 and 3 are ba and a,
respectively.

Let us consider alphabets of any finite size larger than one for the rest of this
paper.
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3. PRELIMINARY RESULTS

We state some auxiliary and well-known results about repetitions and borders in
this section. These results will be used to prove Theorem 1.2 and Corollary 1.3 in
Section 4. The first lemma recalls a well-known fact.

Lemma 3.1. Let w be a primitive word over a k-letter alphabet. Then there exist
at least k unbordered conjugates of w.

Indeed, for every letter a in an alphabet A a lexicographic order ⊳a can be chosen
such that a is minimal in A. It is not hard to show that the smallest conjugate
w′ of w with respect to ⊳a is unbordered. Note that a ≤p w′, and hence, every
smallest conjugate with respect to a chosen order is different for a different letter.

Lemma 3.2. Let zf = gzh where f, g 6= ε. Let az′ be the maximum unbordered
prefix of az where a is a letter. If az does not occur in zf , then agz′ is unbordered.

Proof. Assume agz′ is bordered, and let y be its shortest border. In particular,
y is unbordered. If |z′| ≥ |y| then y is a border of az′ which is a contradiction.
If |az′| = |y| or |az| < |y| then az occurs in zf which is again a contradiction.
If |az′| < |y| ≤ |az| then az′ is not maximum since y is unbordered; a contradic-
tion.

The proof of the following lemma is easy and therefore omitted.

Lemma 3.3. Let w be an unbordered word and u ≤p w and v ≤s w. Then uw
and wv are unbordered.

The critical factorization theorem (CFT) is one of the main results about period-
icity of words. A weak version of it was first conjectured by Schützenberger [1979]
and proved by Césari and Vincent [1978]. It was developed into its current form
by Duval [1979]. We refer to [Harju and Nowotka 2002a] for a short proof of the
CFT.

Theorem 3.4 CFT. Every word w, with |w| ≥ 2, has at least one critical fac-
torization w = uv, with u, v 6= ε and |u| < ∂(w), i.e., ∂(w, |u|) = ∂(w).

We have the following two lemmas about properties of critical factorizations.

Lemma 3.5. Let w = uv be unbordered and |u| be a critical point of w. Then u
and v do not intersect.

Proof. Note that ∂(w, |u|) = ∂(w) = |w| since w is unbordered. Let |u| ≤ |v|
without loss of generality. Assume that u and v do intersect. First, if u = u′s and
v = sv′ for a nonempty s, then ∂(w, |u|) ≤ |s| < |w|. On the other hand, if u = su′

and v = v′s, then s is a border of w. Finally, if v = sut, then ∂(w, |u|) ≤ |su| < |w|.
These contradictions prove the claim.

The next result follows from Lemma 3.5.

Lemma 3.6. Let w = u0u1 be unbordered and |u0| be a critical point of w. Then
u0xu1 (resp. u1xu0) is either unbordered or has a minimum border g such that
|g| ≥ |u0| + |u1| for any word x.
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Proof. Indeed, since |u0| is critical for w (for which ∂(w) = |w|), the words
u0 and u1 are not factors of each other, and no suffix of u0 can be a prefix of u1.
Therefore if g is a border of u0xu1, then it must be of the form u0yu1 for some y.

The next theorem states a basic fact about minimal Duval extensions; see [Harju
and Nowotka 2004] for a proof of it.

Theorem 3.7. Let wu be a minimal Duval extension of the unbordered word w.
Then au occurs in w where a is the last letter of w.

The following Lemmas 3.8, 3.9 and 3.10 and Corollary 3.11 are given in [Duval
1982]. Let a0, a1 ∈ A, with a0 6= a1, and t0 ∈ A∗. Let the sequences (ai), (si), (s′i),
(s′′i ), and (ti), for i ≥ 1, be defined by

—ai = ai (mod 2), that is, ai = a0 (resp. ai = a1), if i is even (resp. odd),

—si such that aisi is the shortest border of aiti−1,

—s′i such that ai+1s
′

i is the longest unbordered prefix of ai+1si,

—s′′i such that s′is
′′

i = si,

—ti such that tis
′′

i = ti−1.

For any parameters of the above definition, the following holds.

Lemma 3.8. For any a0, a1, and t0 there exists an m ≥ 1 such that

|s1| < · · · < |sm| = |tm−1| ≤ · · · ≤ |t0|

and sm = tm−1 and |t0| ≤ |sm| + |sm−1|.

Lemma 3.9. Let z ≤p t0 such that neither of a0z and a1z occurs in t0. Let a0z0

and a1z1 be the longest unbordered prefixes of a0z and a1z, respectively. Then

(1 ) if m = 1 then a0t0 is unbordered,

(2 ) if m > 1 is odd, then a1sm is unbordered and |t0| ≤ |sm| + |z0|,

(3 ) if m > 1 is even, then a0sm is unbordered and |t0| ≤ |sm| + |z1|.

Lemma 3.10. Let v be an unbordered factor of the unbordered word w of length
µ(w). If v occurs twice in w, then µ(w) = ∂(w).

Corollary 3.11. Let wu be a Duval extension of the unbordered word w. If w
occurs twice in wu, then wu is a trivial Duval extension.

4. MAIN RESULT

The extended Duval conjecture is proven in this section.

Theorem 1.2. Let wu be a nontrivial Duval extension of the unbordered word w.
Then |u| < |w| − 1.

Proof. Recall that every factor of wu longer than |w| is bordered since wu is
a Duval extension of w. Let z be the longest suffix of w that occurs twice in zu,
the second occurrence possibly overlapping with the first z.

Assume first that z = ε. Then the last letter a of w does not occur in u. Let
w = u′bw′′ and u = u′cu′′ such that b, c ∈ A and b 6= c. Now wu′c is a minimal
Duval extension of w, and by Theorem 3.7, w has the form w = w′

0au′cw′

1, where
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a is the last letter of w. Consider the factor x = au′cw′

1u. If it is unbordered then
|u| < |x| ≤ |w| and so |u| < |w| − 1. Otherwise, the shortest border g of x satisfies
|au| ≤ |g|, since, in this case, a does not occur in u. Since now g occurs in w, we
have |u| < |w| − 1 as claimed.

Assume now that z 6= ε. Also, z 6= w, since wu is otherwise trivial by Corol-
lary 3.11. Note that bz does not overlap az from the right, since such an overlap
would give azz′ = z′′bz where |z′| ≤ |z| and wz′ would be unbordered by Lemma 3.3.
Thus there are letters a, b ∈ A such that

w = w′az and u = u′bzr

where u′ 6= ε and z occurs in zr only once, that is, bz matches the rightmost
occurrence of z in u. Naturally, a 6= b by maximality of z. Also, w′ 6= ε, for
otherwise w = az and the prefix azu′bz of wu is bordered, say with the shortest
border g, but then either w is bordered (if |g| ≤ |z|) or az occurs in zu (if |g| > |z|);
a contradiction in both cases.

Let az0 and bz1 denote the longest unbordered prefix of az and bz, respectively.
Let a0 = a and a1 = b and t0 = zr and the integer m be defined as in Lemma 3.9.
We have then a word sm, with its properties defined by Lemma 3.9, such that

t0 = smt′ .

Consider x′ = azu′bz0. We have az ≤p a0zu and x′ ≤p a0zu, and bz0 ≤s x′. Also,
az occurs only as a prefix in x′. It follows from Lemma 3.2 that x′ is unbordered
(where z′ = z0 and f = u′bzr and g = zu′b and h = r in Lemma 3.2), and hence,

|x′| = |azu′bz0| ≤ |w| . (1)

w u

a z b zu′ r

z0 z0

sm t′

In the following we separately consider the two cases of even and odd parity of m.

Claim 4.1. If m is even then |u| < |w| − 1.

Now m ≥ 2 and asm (= amsm) is unbordered since m is even, and |t0| ≤ |sm| + |z1|
by Lemma 3.9.

Case: Let |t0| = |sm| + |z1| with z1 = z. Then |z| ≤ |sm−1| by Lemma 3.8, and
moreover, am−1sm−1 is the shortest border of am−1tm−2 = btm−2 ≤p bt0 = bzr.
Because bsm−1 occurs twice in btm−2 and zr marks the rightmost occurence of z
in u, we have that z is not a proper prefix of sm−1, and therefore, |sm−1| ≤ |z|.
Hence, |sm−1| = |z|.

Note that we have an immediate contradiction if m = 2 since then |s1| < |z|
which contradicts |z| ≤ |sm−1|. Assume m > 2. But now, bz occurs in t0 since
bsm−1 is a border of btm−2 and ti ≤p t0, for all 0 ≤ i < m, which is a contradiction.

Case: Let |t0| < |sm| + |z1| or |z1| < |z|. Then |t′| < |z|.
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Subcase: Let |sm| ≤ |z0|. According to (1), |azu′bz0| ≤ |w|, and so

|u| = |azu| − |z| − 1

= |azu′bz0| − |z0| + |t0| − |z| − 1

< |azu′bz0| − |z0| + |sm| + |z1| − |z| − 1

≤ |w| + |z1| − |z| − 1

≤ |w| − 1

if |t0| < |sm| + |z1|, or

|u| = |azu| − |z| − 1

= |azu′bz0| − |z0| + |t0| − |z| − 1

≤ |azu′bz0| − |z0| + |sm| + |z1| − |z| − 1

≤ |w| + |z1| − |z| − 1

< |w| − 1

if |z1| < |z|. We have |u| < |w| − 1 in both cases.
Subcase: Let |sm| > |z0|. We have that asm is unbordered, and since az0 is the

longest unbordered prefix of az, necessarily az is a proper prefix of asm, and hence,
|z| < |sm|. Now, azu′bsm is unbordered, for otherwise its shortest border is longer
than az, since no prefix of az is a suffix of asm, and az occurs in u; a contradiction.
We have |azu′bsm| ≤ |w| and similarly to the previous subcase, we obtain

|u| = |azu| − |z| − 1

= |azu′bsm| − |sm| + |t0| − |z| − 1

< |azu′bsm| − |sm| + |sm| + |z1| − |z| − 1

≤ |w| + |z1| − |z| − 1

≤ |w| − 1

if |t0| < |sm| + |z1|, or

|u| = |azu| − |z| − 1

= |azu′bsm| − |sm| + |t0| − |z| − 1

≤ |azu′bsm| − |sm| + |sm| + |z1| − |z| − 1

≤ |w| + |z1| − |z| − 1

< |w| − 1

if |z1| < |z|. We have |u| < |w| − 1 in both cases.
This proves Claim 4.1.

Claim 4.2. If m is odd then |u| < |w| − 1.

The word bsm (= amsm) is unbordered, since m is odd. We have |t0| ≤ |sm| + |z0|;
see Lemma 3.9. Note that t0 = sm and t′ = ε by Lemma 3.9, if m = 1. Surely
sm 6= ε. In particular, |t′| ≤ |z0|.

If |sm| < |z|, then |u| < |w| − 1, since

|u| = |azu′bz0| − |bz0| + |bt0| − |az|
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and |azu′bz0| ≤ |w|, by (1), and |t0| ≤ |sm| + |z0|.
Assume thus that |sm| ≥ |z|, and hence, also z ≤p sm. Since sm 6= ε, we have

|bsm| ≥ 2, and therefore, by the critical factorization theorem, there exists a critical
point p in bsm such that bsm = v0v1, where |v0| = p. In particular,

bz ≤p v0v1 . (2)

w u

a z b zu′ r

z0 z0

sm t′

v0 v1

Claim 4.3. The factor v0v1 occurs in w.

Let, u′

0 and u1 be such that

u = u′

0v0v1u1

where v0v1 does not occur in u′

0. Note that v0v1 does not overlap with itself since
it is unbordered, and v0 and v1 do not intersect by Lemma 3.5. Consider the prefix
wu′

0bz of wu which is bordered and has a shortest border g with |g| > |z|. Hence,
bz ≤s g, for otherwise w would be bordered since z ≤s w. Moreover, g ≤p w, for
otherwise az would occur in u, and hence, bz occurs in w. Let

w = w0bzw1 (3)

such that bz occurs in w0bz only once, that is, we consider the leftmost occurrence
of bz in w. Note that

|w0bz| ≤ |g| ≤ |u′

0bz| (4)

where the first inequality comes (3) and the second inequality from the fact that
|u′

0bz| < |g| implies that w is bordered. Let

f = bzw1u
′

0v0v1 .

If f is unbordered, then |f | ≤ |w|, and hence, |u′

0v0v1| ≤ |w0|. Now, we have
|u′

0| < |w0|, which contradicts (4).
Therefore, f is bordered. Let h be its shortest border.

w u

a z b zu′ r

u′

0 b z v0 v1 t′

w0 b z w1 u0 v0 v1 u1

h h

w′

0 v0 v1 b zf

Surely, |bz| < |h|, otherwise v0v1 is bordered by (2). So, bz ≤p h. Moreover,
|v0v1| ≤ |h| otherwise bz occurs in sm contradicting our assumption that bzr marks
the rightmost occurrence of bz in u. So, v0v1 ≤s h, and v0v1 occurs in w since
w0h ≤p w by (4). Note that |h| ≤ |u′

0v0v1| otherwise |h| > |azu′

0v0v1| (since
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bz ≤p h) and az occurs twice in w such that w = w̄1azw̄2az, but then, azw̄2azu′bz0

is unbordered (see (1) above) and |u| < |w| − 1 since |zr| < |v0v1t
′| ≤ |v0v1| + |z|

and |w| > |w̄1| + |v0v1| + |az| > |w̄1| + |v0v1| + |z| > |w̄1| + |zr| ≥ |u|.
This proves Claim 4.3.

Claim 4.4. Let u0 be such that u′

0v0v1 = u0h. Then w0, as defined in (3),
occurs in u0.

Let v′ and w′

0 be such that

w0bzv′ = w0h = w′

0v0v1 .

Note that v0v1 does not occur in w′

0, otherwise h = xv0v1y with y 6= ε (since all
occurrences of bz in w0 are also in h and bz ≤p v0v1) and v0v1 also occurs in u′

0

(since v0v1 does not overlap itself) contradicting our assumption on u′

0. We have
h = bzv′ ≤s u′

0v0v1 (see previous figure). Consider

f0 = wu0bz

with the shortest border h0.

w u

a z b z ru′

0 b z

v0 v1 v0 v1 t′

w0 b z w1 u0 b z u1

h0 h0

f0

Surely, bz ≤s h0 otherwise w is bordered with a suffix of z. Moreover, |w0bz| ≤ |h0|
and |h0| ≤ |u0bz|, since bz does not occur in w0 and w is unbordered. From this
and w0h = w′

0v0v1 and u0h = u′

0v0v1 it follows |w′

0| ≤ |u′

0| and

u′

0v0v1 = u0bzv′ and w0 occurs in u0. (5)

This proves Claim 4.4.
Let now

w = w′

0v0v1w
′

i · · · v0v1w
′

2v0v1w
′

1v0v1w2

for some word w2 that does not contain v0v1, and

u = u′

0v0v1u
′

j · · · v0v1u
′

2v0v1u
′

1v0v1t
′

such that v0v1 does not occur in w′

k, for all 0 ≤ k ≤ i, or u′

ℓ, for all 0 ≤ ℓ ≤ j. Note
that these factorizations of w and u are unique, and, moreover, w2 6= ε. (Indeed, if
w2 = ε then v0v1 ≤s w and az ≤s v0v1, and az would occur in u; a contradiction.)

We show in the following that i = j and w′

k = u′

k for all 1 ≤ k ≤ i if |u| ≥ |w|−1.

Claim 4.5. It holds that w′

k = u′

k for all 1 ≤ k ≤ min{i, j}.

The proof goes by induction on k.
Case: First let k = 1. We show that w′

1 = u′

1. Consider

f1 = v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0 .
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If f1 is unbordered, then |u| < |w| − 1 since |f1| ≤ |w| and

|u| = |f1| − |v1w
′

1v0v1w2| + |v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume that f1 is bordered, and let
h1 be its shortest border. We have that h1 = v1g1v0 for some g1 (possibly empty),
since v0 and v1 do not intersect. We show that h1 ≤p v1w

′

1v0. Indeed, otherwise
we have one of the following cases.

(1) If v1w
′

1v0v1w2 ≤p h1 then az occurs in u; a contradiction to our assumption
on az.

(2) If |v1w
′

1v0v1w2| − |az| + |v0| < |h1| < |v1w
′

1v0v1w2| and |v0| ≤ |z| then v0 and
v1 intersect and v0 occurs in z, contradicting Lemma 3.5.

(3) If v0 occurs in w2, then let v0w3 ≤s w2 for some w3, and if |az| ≤ |v0w3|. Then
we have that v0w3u

′v0v1 is unbordered (since otherwise its border is at least as
long as v0v1, because v0 and v1 do not intersect, that is, v0v1 is a suffix of that
border and therefore it is longer than |az|, but then az occurs in u which is a
contradiction). But now |t′| < |v0w3| − 1, since |t′| < |az| and |az| < |v0w3|,
for v0 does not begin with a, and |u| < |w| − 1 follows.

(4) If |v1w
′

1v0| < h1 < |v1w
′

1v0v1v0| then v0 and v1 intersect; a contradiction.

Moreover, h1 ≤s v1u
′

1v0 since otherwise v0v1 ≤p h1 and v0v1 occurs in v1w
′

1v0;
a contradiction. Let w′′

1 and u′′

1 be such that

w′

1v0 = g1v0w
′′

1 and v1u
′

1 = u′′

1v1g1 . (6)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

h1 h1

f1

Consider,

f2 = v0w
′′

1v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0v1 .

If f2 is unbordered, then |u| < |w| − 1 since |f2| ≤ |w| and

|u| = |f2| − |v0w
′′

1 v1w2| + |t′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume that f2 is bordered, and
let h2 be its shortest border. Since v0 and v1 do not intersect, v0v1 ≤s h2. Also
h2 ≤p v0w

′′

1v1 since v0v1 does not occur in w2 (and v0 and v1 do not intersect)
and az does not occur in h2 (and so h2 does not stretch beyond w). We have
v0w

′′

1 v1 ≤p h2 since v0v1 occurs in v0w
′′

1v1 only as a suffix. Hence, h2 = v0w
′′

1v1.
Note that |h2| ≤ |u′

1v0v1| since otherwise |h2| ≥ |v0v1u
′

1v0v1| (because v0 and v1 do
not intersect) and v0v1 occurs twice in h2, but v0v1 occurs only once in h2 since it
occurs only once in w′

1v0v1w2 and az does not occur in h2. Hence,

w′

1v0v1 = g1h2 and h2 ≤s u′

1v0v1 . (7)
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12 · T. Harju and D. Nowotka

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

v0 w′′

1

h2 h2

f2

Consider,

f3 = v0v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

2v0u
′′

1v1 .

If f3 is unbordered, then |u| < |w| − 1 since |f3| ≤ |w| and

|u| = |f3| − |v0v1w
′

1v0v1w2| + |g1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and |g1| ≤ |w′

1| and w2 6= ε. Assume f3 is
bordered. Then f3 has a shortest border h3 such that v0v1 ≤p h3 since v0 and v1

do not intersect. We have h3 = v0u
′′

1v1 by the arguments of the previous paragraph.
Moreover,

v0v1u
′

1 = h3g1 and h3 ≤p v0v1w
′

1 . (8)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

v1u′′

1

h3 h3

f3

Observe, that (7) and (8) imply that the number of occurrences of v0 and v1,
respectively, is the same in w′

1 and u′

1 since v0 and v1 do not intersect. Let

h1 = v1g1v0 = h′′

1v1h
′

1v0 = v1h
′

0v0h
′′

0

where

v1 and v0 occur only once in v1h
′

1 and h′

0v0, respectively. (9)

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

h′

0 v0 h′′

0 h′′

1 v1 h′

1

Let

f ′

2 = v0h
′′

0w′′

1v1w2u
′

0v0v1u
′

j · · · v0v1u
′

1v0v1

and

f ′

3 = v0v1w
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

2v0u
′′

1h′′

1v1

with the respective shortest borders h′

2 and h′

3 (which do both exist if |u| ≥ |w| − 1;
as in the case of f2 and f3) and v0v1 ≤s h′

2 and v0v1 ≤p h′

3.
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We have h′

2 ≤p v0h
′′

0w′′

1v1 since v0v1 does not occur in w2 and az does not occur
in h′

2 (and so h′

2 does not stretch beyond w). We have v0h
′′

0w′′

1v1 ≤p h′

2 since v0v1

does not occur in w′

1. Hence, h′

2 = v0h
′′

0w′′

1v1 and

w′

1v0v1 = h′

0v0h
′′

0w′′

1 v1 = h′

0h
′

2 and h′

2 ≤s u′

1v0v1 .

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

h′

0 v0 h′′

0

h′

0 v0 h′′

0

v0 h′′

0 w′′

1

h′

2 h′

2

f ′

2

We have h′

3 = v0u
′′

1h′′

1v1 by the arguments of the previous paragraph. Moreover,

v0v1u
′

1 = v0u
′′

1h′′

1v1h
′

1 = h′

3h
′

1 and h′

3 ≤p v0v1w
′

1 .

w u

v0 v1 w′

1 v0 v1 w2 v0 v1 u′

1 v0 v1 t′

g1 v0 w′′

1 u′′

1 v1 g1

h′′

1 v1 h′

1

u′′

1 h′′

1 v1 h′′

1 v1 h′

1

h′

3 h′

3

f ′

3

It is now straightforward to see that

w′′

1 = u′′

1 = ε

for otherwise v1 and v0 occur more than once in v1h
′

1 and h′

0v0, respectively, con-
tradicting (9). From (6) it follows

w′

1 = g1 = u′

1 .

Case: Assume 1 < k ≤ min{i, j} and w′

ℓ = u′

ℓ, for all 1 ≤ ℓ < k. Let us denote
both w′

ℓ and u′

ℓ by v′ℓ, for all 1 ≤ ℓ < k.
We show that w′

k = u′

k. Consider

f4 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0 .

If f4 is unbordered, then |u| < |w| − 1 since |f4| ≤ |w| and

|u| = |f4| − |v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2| + |v1v
′

k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume f4 is bordered. Then f4

has a shortest border h4 such that |v0v1| ≤ |h4|. Let h4 = v1g4v0.
Subcase: Let |v1w

′

kv0| < |h4|. Then there exists an ℓ < k such that

h4 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

ℓ+1v0v1v
′′

ℓ v0
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where v′′ℓ ≤p v′ℓ. That implies u′

k = v′′ℓ , since v0v1 does neither occur in v′′ℓ nor in
u′

k. Now, consider

f5 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1v
′

k−1v0v1 · · · v
′′

ℓ v0 .

If f5 is unbordered, then |u| < |w| − 1 since |f4| < |f5|, see above. Assume, f5 is
bordered. Then f5 has a shortest border h5 such that |h4| < |h5|, for otherwise h4

is not the shortest border of f4, since either h4 ≤p h5 or h5 ≤p h4, and the latter
implies that h4 is bordered, and hence, not minimal. There exists an ℓ′ < ℓ such
that

h5 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

ℓ′+1v0v1v
′′

ℓ′v0

where v′′ℓ′ ≤p v′ℓ′ . We have |f4| < |f5| < |f6| where

f6 = v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1v
′

k−1v0v1 · · · v
′′

ℓ′v0 ,

which is either unbordered and |u| < |w|− 1 since |f4| < |f5|, or it is bordered with
a shortest border h6, and we have |h4| < |h5| < |h6| and a factor f7, such that
|f4| < |f5| < |f6| < |f7|, and so on, until eventually an unbordered factor is reached
proving that |u| < |w| − 1.

Subcase: Let h4 ≤p v1w
′

kv0. We also have that h4 ≤s v1u
′

kv0 since v0v1 does
not occur in w′

k. Let w′

kv0 = g4v0w
′′

k and v1u
′

k = u′′

kv1g4.
Consider,

f8 = v0w
′′

kv1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

jv0v1 · · ·u
′

kv0v1 .

If f8 is unbordered, then |u| < |w| − 1 since |f8| ≤ |w| and

|u| = |f8| − |v0w
′′

kv1v
′

k−1v0v1 · · · v
′

1v0v1w2| + |v′k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and w2 6= ε. Assume f8 is bordered. Then f8

has a shortest border h8 such that v0v1 ≤s h8.
If |h8| > |v0w

′′

kv1| then the same argument as in the case |v1w
′

kv0| < |h4| above
shows that |u| < |w|−1. If |h8| < |v0w

′′

kv1| then v0v1 occurs in w′

k; a contradiction.
Hence, we have h8 = v0w

′′

kv1 and

w′

kv0v1 = g4h8 and h8 ≤s u′

kv0v1 . (10)

Consider,

f9 = v0v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2u
′

0v0v1u
′

jv0v1 · · ·u
′

k+1v0u
′′

kv1 .

If f9 is unbordered, then |u| < |w| − 1 since |f9| ≤ |w| and

|u| = |f9| − |v0v1w
′

kv0v1v
′

k−1v0v1 · · · v
′

1v0v1w2| + |g4v0v1v
′

k−1v0v1 · · · v
′

1v0v1t
′|

and |t′| ≤ |z0| ≤ |z| < |bz| ≤ |v0v1| and |g4| ≤ |w′

k| and w2 6= ε. Assume f9

is bordered. Then f9 has a shortest border h9 such that v0v1 ≤p h9. We have
h9 = v0u

′′

kv1 by the arguments from the previous paragraph. Moreover,

v0v1u
′

k = h9g1 and h9 ≤p v0v1w
′

k . (11)

Observe, that (10) and (11) imply that the number of occurrences of v1 and v0,
respectively, is the same in w′

k and u′

k since v0 and v1 do not intersect. Let

h4 = v1g4v0 = h′′

1v1h
′

1v0 = v1h
′

0v0h
′′

0
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where v1 and v0 occur only once in v1h
′

1 and h′

0v0, respectively, by (9).
Let

f ′

8 = v0h
′′

0w′′

kv1v
′

k−1 · · · v0v1v
′

1v0v1w2.u
′

0v0v1u
′

j · · · v0v1u
′

kv0v1

and

f ′

9 = v0v1w
′

kv0v1v
′

k−1 · · · v0v1v
′

1v0v1w2.u
′

0v0v1u
′

j · · · v0v1u
′

k+1v0u
′′

1h′′

1v1

with the respective shortest borders h′

8 and h′

9 (which are both not empty, if
|u| ≥ |w| − 1; as in the case of f8 and f9). Analogously to the cases of f8 and f9,
we have

w′

kv0v1 = h′

0h
′

8 and v0v1u
′

k = h′

9h
′

1 .

It is now straightforward to see that

h′

8 = h′

9 = v0v1

and

h4 = v0w
′

kv1 = v0u
′

kv1

and hence, w′

k = u′

k.
This proves Claim 4.5. If w′

k = u′

k we denote both w′

k and u′

k by v′k. We set

v̄ = v0v1w
′

ι · · · v0v1w
′

2v0v1w
′

1

= v0v1u
′

ι · · · v0v1u
′

2v0v1u
′

1

where ι = min{i, j}.

Claim 4.6. If i < j then |u| < |w| − 1.

We have that

|w′

0| < |u′

0v0v1u
′

j · · · v0v1u
′

i+1| (12)

since |w′

0| ≤ |u′

0| by (5). Let

f11 = v1w2u
′

0v0v1u
′

j · · · v0v1u
′

i+1v̄v0 .

Note that w = w′

0v̄v0v1w2. Then |w| < |f11| by (12), and hence, f11 is bordered.
Let h11 = v1g11v0 be the shortest border of f11. Recall, that w2 6= ε and either
az ≤s v1w2 or v1w2 ≤s az. If |v1w2| < |az| then v1 necessarily occurs in z, and
hence, it intersects with v0 (since bz ≤p v0v1); a contradiction. We have az ≤s v1w2.
Surely, |h11| < |v1w2| (and so h11 ≤p v1w2) for otherwise az occurs in u which
contradicts our assumption that z is of maximum length. Let w2 = g11v0w5. Note
that |v0w5| 6= |az| since az and v0 begin with different letters. We have |az| < |v0w5|
since otherwise v0 occurs in z, and hence, intersects with v1 which is a contradiction.
Consider,

f12 = v0w5u
′

0v0v1u
′

j · · · v0v1u
′

i+1v̄v0v1 .

If f12 is unbordered, then |u| < |w| − 1 since |f12| ≤ |w| and

|u| = |f12| − |v0w5| + |t′|

and |az| < |v0w5| and |t′| ≤ |z0| ≤ |z| < |bz| < |v0w5|. Assume f12 is bordered.
Then f12 has a shortest border h12 = g12v0v1 (we have |h12 ≥ |v0v1| since v0 and
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v1 cannot intersect) with |az| < |h12|, because h12 ≤p v0w5 (otherwise az occurs
in h12 and also in u; a contradiction) and |az| < |v0v1|. Let v0w5 = g12v0v1w6.
But, now

w = w′

0v̄v0v1g11g12v0v1w6

where v0v1w6 ≤s w2, contradicting our assumption that v0v1 does not occur in w2.
This proves Claim 4.6.

Claim 4.7. If i > j then |u| < |w| − 1.

We have that

w = w′

0v0v1w
′

i · · · v0v1w
′

j+1v̄v0v1w2 and u = u′

0v̄v0v1t
′

and |w| ≥ |u| − |t′| + |v0v1|. We have |u| < |w| − 1 since w2 6= ε and |t′| ≤ |z0| and
|z0| < |v0v1| − 1.

This proves Claim 4.7.

Claim 4.8. If i = j then |u| < |w| − 1.

We have

w = w′

0v̄v0v1w2 and u = u′

0v̄v0v1t
′ .

Consider

f ′ = v1w2u
′

0v̄v0 .

Case: Assume that f ′ is bordered. Then f ′ has a shortest border h′ = v1g
′v0.

w u

a z b z r

u′

0 v̄ v0 v1 t′v0 v1 w2

g′ v0 v1 g′

h′ h′

f ′

Recall, that w2 6= ε and either az ≤s v1w2 or v1w2 ≤s az. If |v1w2| < |az| then
v1 occurs in z, and hence, intersects with v0 since bz ≤p v0v1; a contradiction.
We have az ≤s v1w2. Surely, |h′| < |v1w2| for otherwise az occurs in u which
contradicts our assumption. Let w2 = g′v0w4. Note that |v0w4| 6= |az| since az
and v0 begin with different letters. We have |az| < |v0w4| since otherwise v0 occurs
in z, and hence, intersects with v1 which is a contradiction. Consider now,

f ′′ = v0w4u
′

0v̄v0v1 .

Subcase: Assume that f ′′ is unbordered. Then it easily follows that |u| < |w|−1
since we have |t′| < |az| and |az| < |v0w4|.

w u

a z b z r

u′

0 v̄ v0 v1 t′v0 v1 g′ v0 w4

h′′ h′′

f ′′g′′ v0 v1 g′′ v0 v1
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Subcase: Assume then that f ′′ is bordered. Then it has a shortest border
h′′ = g′′v0v1 with |az| < |h′′|, for otherwise az occurs in u. Let v0w4 = g′′v0v1w5.
But, now

w = w′

0v̄v0v1g
′g′′v0v1w5 = w′

0v̄v0v1w2

which contradicts our assumption that v0v1 does not occur in w2.
Case: Assume that f ′ is unbordered. Then |f ′| ≤ |w|, and hence, |w′

0| ≥ |u′

0|.
But, we also have |w′

0| ≤ |u′

0|; see (5). That implies |w′

0| = |u′

0|. Moreover,
the factors w0 and bzv′ have both nonoverlapping occurrences in u′

0v0v1 by (5).
Therefore, w′

0 = u′

0. Let, w = xaw7 and u = xbt′′, where w′

0v̄v0v1 ≤p x and
a, b ∈ A and a 6= b and w7 ≤s w2 and t′′ ≤s t′. We have that xb occurs in w by
Theorem 3.7. Since xb is not a prefix of w and v0v1 does not overlap with itself,
we have |xb| + |v0v1| ≤ |w|. From |t′| ≤ |z0| < |v0v1| and |t′′| < |t′|, we obtain
|u| < |w| − 1.

This proves the Claims 4.8 and 4.2 and finishes the proof of Theorem 1.2.

5. COROLLARY

Note that the bound |u| < |w|− 1 on the length of a nontrivial Duval extension wu
of w is tight, as the following example shows.

Example 5.1. Let w = anban+mbb and u = an+mban with n, m ≥ 1. Then

w.u = anban+mbb.an+mban

is a nontrivial Duval extension of w and |u| = |w| − 2.

In general, Duval [1982] proved that we have ∂(w) = µ(w), for any word w, if
|w| ≥ 4µ(w) − 6. Duval also noted that already |w| ≥ 3µ(w) implies ∂(w) = µ(w),
provided his conjecture holds. Corollary 1.3 follows from Theorem 1.2.

Corollary 1.3. If |w| ≥ 3µ(w) − 3 then ∂(w) = µ(w).

Proof. Assume ∂(w) 6= µ(w) and |w| ≥ 3µ(w) − 3. Let w = xvy such that v
is the leftmost unbordered factor of w of maximum length, that is, |v| = µ(w) and
µ(xv•) < µ(xv). Then x̃v and vy are Duval extensions of ṽ and v, respectively. We
have by our assumption that |x| or |y| is larger than µ(w) − 2.

If |x| ≥ µ(w) − 1 then x̃v is a trivial Duval extension by Theorem 1.2 and
all conjugates of v occur in xv. Since v is primitive and only alphabets with at
least two letters are considered there occurs an unbordered conjugate u of v in xv•

by Lemma 3.1 contradicting our assumption that v is the leftmost unbordered factor
of w of maximum length.

If |y| ≥ µ(w) − 1 then vy is a trivial Duval extension by Theorem 1.2 and all
conjugates of v occur in vy. Moreover, all conjugates of v occur in the suffix y′

of vy of length 2|v| − 1. Let u be an unbordered conjugate of v, with u 6= v (which
exists since we consider only words with at least two different letters), occurring
in y′, that is w = sut with |t| ≤ |v| − 2. Consider the Duval extension s̃u. If s̃u
is trivial than ∂(w) = µ(w) contradicting our assumption. So, s̃u is a nontrivial
Duval extension, and hence, |s| < |v| − 1 by Theorem 1.2. Now, |w| < 3|v| − 3
which is again a contradiction.
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However, this bound is unlikely to be tight. The best example for a large bound
that we could find is taken from [Assous and Pouzet 1979].

Example 5.2. Let

w = anban+1banban+2banban+1ban .

We have |w| = 7n + 10 and µ(w) = 3n + 6 and ∂(w) = 4n + 7.

Example 5.2 shows that the precise bound for the length of a word that implies
∂(w) = µ(w) is larger than (7/3)µ(w)− 4 and not larger than 3µ(w)− 3 (by Corol-
lary 1.3). The characterization of the precise bound of the length of a word as
a function of its longest unbordered factor is still an open problem.

6. CONCLUSIONS

In this paper we have given an affirmative answer to a long standing conjecture
[Duval 1982] by proving that a Duval extension wu of w longer than 2|w| − 2 is
trivial. This bound is tight and also gives a new bound on the relation between the
length of an arbitrary word w and its longest unbordered factors µ(w), namely that
|w| ≥ 3µ(w) − 3 implies ∂(w) = µ(w) as conjectured (more weakly) in [Assous and
Pouzet 1979]. However, the best known example of a word w satisfying ∂(w) > µ(w)
gives |w| = (7/3)µ(w) − 4. We believe that the actual bound of |w| is indeed close
to (7/3)µ(w) rather than 3µ(w). We pose the following conjecture.

Conjecture 6.1. If |w| ≥ 7
3µ(w) − 3 then ∂(w) = µ(w).

Certainly, more information about the structure of nontrivial Duval extensions,
like the one described in [Harju and Nowotka 2002b], would be useful for solving
Conjecture 6.1.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for the time and effort
that they put into the review of this manuscript and their detailed comments and
suggestions which greatly helped to improve this paper.

REFERENCES
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