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Abstract. Inthe context of graph transformation we look at the operation of switching, which can be
viewed as an elegant method for realizing global transformations of (group-labelled) graphs through
local transformations of the vertices.

In case vertices are given an identity, various relatively efficient algorithms exist for deciding whether
a graph can be switched so that it contains some other graph, the query graph, as an induced sub-
graph. However, when considering graphs up to isomorphism, we immediately run into the graph
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isomorphism problem for which no efficient solution is known. Surprisingly enough however, in
some cases the decision process can be simplified by transforming the query graph into a “smaller”
graph without changing the answer. The main lesson learned is that the size of the query graph is
not the dominating factor, but its cycle rank.

Although a number of our results hold specifically for undirected, unlabelled graphs, we propose a
more general framework and give many positive and negative results for more general cases, where
the graphs are labelled with elements of a (finitely generated abelian) group.

Keywords: Seidel switching, graph algorithms, complexity, NP-completeness, embedding prob-
lem, cyclomatic number

1. Introduction

The material in this paper is motivated by a quest for techniques which enable the analysis of certain
networks of processors. Our starting point is that the vertices of a directed graph can be interpreted as
processors in a network and the edges can be interpreted as the channels/connections between them,
labelled with values from some (structured) set, calhjtto capture the current state. The dynamics
of such a network lies in the ability to change the labellings of the graph which is done by operations
performed by the processors. A major aspect of the model here presented is that if a processor performs
an input action, it influences the labellings of all incoming edges in the same way; the same holds for
the output actions which govern the outgoing edges. In other words, we have no separate control over
each edge, only over each processor. On the other hand, actions done by different processors should not
interfere with each other, making this model an asynchronous one.

Ehrenfeucht and Rozenberg set forth in [6] a number of axioms they thought should hold for such a
network of processors.

Al Any two input (output) actions can be combined into one single input (output) action.

A2 For any pair of elements, b € A, there is an input action that changeisito b; the same holds for
output actions.

A3 For any channe(i, j), the order of applying an input action foand an output action tg is
irrevelant.

A fourth axiom stated that every network/graph should have at least three processors. This was to
make sure that no exceptions arose when deriving the most general model that upholds the axioms above;
in the paper of Ehrenfeucht and Rozenberg it turned out that the model of a network of two processors is
more flexible than that of more than two processors. We do not state the axiom, but shall use the model
for more than two processors also for networks of two processors. As an aside, the book by Ehrenfeucht,
Harju and Rozenberg [5] proposes another axiom: every processor can choose to remain inactive. There
is however no need for this axiom: it is implied by the others.

Although each processérwas to have a set afutput actions2; and a set ofnput actionsy;, in
[6] (see also [5]) it was derived that under these axioms the input (output) actions of every vertex are
the same and form a group. Also, the sets of input and output actions coincide, but an action will act
differently on incoming and outgoing edges, as evidenced by the asymmetry in (3) in Section 4. The
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Figure 1. The query and target skew gain graphs respectively

difference is made explicit by an anti-involuti@nwhich is an anti-automorphism of order at most two

on the group of actions. The notion of anti-involution generalizes that of group inversion. The result of
this will be that if a channel between processoasd; is labelled witha, then the channel fromto i

will be labelled withd(a). The model generalizes the gain graphs of [12] and the voltage graphs of [7].

As we shall see later, the graphs labelled with elements from a fixed gxdapd under some fixed
anti-involution of that group), called skew gain graphs in the following, are partitioned into equivalence
classes. These equivalence classes capture the possible outcomes of performing actions in the vertices,
i.e., the states of the system reachable from a certain “initial” state. The transformation from one skew
gain graph to another, is governed by selecting in each vertex an operation, which corresponds to an
element of the group. Although the equivalence classes themselves are usually considered static objects,
it is not hard to see that there is also a notion of change or dynamics: transforming a skew gain graph
yields a new skew gain graph on the same underlying network of processors, but possibly with different
labels. For this reason the equivalence classes were called dynamic labelled 2-structures in [6].

Consider now the problem where we have a (target) skew gain grasiich represents our network,
and a skew gain grapf the query graph, which represents a fragment of a network which to us has a
special meaning. An example can be found in Figure 1 which featuossthe left andh on the right.

Here the intended meaning @&ignifies the existence of a deadlock.

A question to ask is then: is there a way to transfarby applying a selector, such that in the result
we can detect the subgrapf In terms of the example: is there a possible state in the system, derivable
from h, which contains a deadlocked subgraph somewhere. If the embedding firdm/ is known,
then this can be (in many cases) efficiently solved by applying the results of Hage [8]. However, the large
number of possible embeddings @fnto A remains a problem. In fact, we quickly run into the Graph
Isomorphism problem which does not have a known efficient solution. In this paper, we seek to alleviate
this problem by seeing how we might reduce the skew gain ggapla different, simpler graph without
changing the outcome, i.e. if the reduced graph can be embedded, theng(aodrvice versa). As it
turns out, reduction is possible if the cycle rank (or cyclomatic index) of a graph is low. In a nutshell,
our result says that the embedding problem is exponential not in the number of vertices of the graph, but
in a different graph measure, the cycle rank. This may be compared to such measures as treewidth [1],
in which case there exist efficient for NP-complete problems working on graphs of bounded treewidth.
The main advantage of our work is that the cycle rank, and the corresponding decomposition, can be
computed very efficiently. This is not the case for treewidth, for example. On the other hand, the cycle
rank as a measure is also quite a bit more restricted. As far as we know it only applies to the embedding
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problem.

An earlier version of this paper was presented at the 2nd International Conference on Graph Trans-
formations in Rome [4]. The main changes with respect to that paper are that in this paper we start by
considering the special case of undirected graphs, which conveys many of the essential ideas, but tries
to avoid depending on any knowledge of group theory. Even for this simplest of cases, the embedding
problem is NP-complete [3]. Secondly, Section 8 contains additional impossibility results that were not
in the first version, in particular, a result that shows with rather tight bounds where looking for the given
optimizations is certainly not profitable.

As a result, the paper is now structured as follows: after some general preliminaries where we also
explain how to switch (partial) undirected graphs, which we @dlgraphs, we show in Section 3 how
to derive an algorithm for verifying whether such a graph, the query graph, can be embedded in an
undirected graph, the target graph. The resulting complexity depends not on the number of vertices of
the graphs in question, but rather on the number of cycles in the query graph. The crucial ingredient we
use here is the concept of bridging, which is an operation that shortens cycles in the query graph.

Subsequently, we introduce the full mathematical model of switching classes of graphs with skew
gains, and reconsider the embedding problem. We formalize the idea of embedding invariance, and give
(im)possibility results for groups other than, which show in which cases the technique of Section 3
may be applied as well. Most of the results in this part of our work are negative: they show that the
bridging operation does not readily extend to other groups. These negative results are important in that
they show where not to look for savings. In view of the fact that we have nothing significantly better than
exhaustive search to look for optimization, this is certainly good to know.

2. Preliminaries

In this section we introduce some general notation on functions, sets and graphs, and a special form of
undirected graph, th@,1-graph, in which we label the edges of an undirected graph with diten.

We conclude the section with the definition of the switching) dfgraphs and some basic results from

the literature.

For a (finite) sef/, let |V'| be thecardinality of V. We shall often identify a subset C V' with
its characteristic functionl : V' — Z,, whereZ, = {0, 1} is the cyclic group of order two. We use the
convention that for € V, A(x) = 1 ifand only if - € A. The restriction of a functiorf : V' — W to
a subsetd C V is denoted byf|4. We denote set difference by — B. It contains the elements iA
which are notinB. If B is a singleton{b}, then we may writed — b for brevity.

The setE(V) = {{z,y} | z,y € V,  # y} denotes the set of all unordered pairs of distinct
elements ofl”. We write zy or yx for the unordered paifz,y}. The graphs of this paper will be
finite, undirected and simple, i.e., they contain no loops or multiple edges. WE(dspandV (G) to
denote the set of edgds and the set of verticel, respectively, andll’| and|E| are called therder,
respectivelysizeof G. Analogously to sets, a gragh = (V, E) will be identified with the characteristic
functionG : E(V) — Z, of its set of edges so thét(xy) = 1 for zy € E, andG(zy) = 0 for zy ¢ E.
Later we shall use both notatiors,= (V, E') andG : E(V') — Z,, for graphs.

Before we go on to introduce thel-graphs which are in fact our focus of investigation, we first
introduce some rather standard notation for graphs.

LetG = (V, E) be a graph. A vertex € V isadjacenttoy € V if zy € E. Thedegreeof z in
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G, denotedi; (), is the number of vertices it is adjacent to. Treghbourf « in G, denotedV¢ (u),
or N(u) if G is clear from the context, is the set of vertices adjacent o G. A vertex which is not
adjacent to any other vertex in a graph is calldated aleafhas degree one,chain vertexdegree two,
and all other vertices are calleéénse vertices

For a graphG = (V, E) and X C V, let G|x denote thesubgraphof G inducedby X. Hence,
G’X : E(X) — ZQ.

A sequence of vertices = (v1,...,v;), k > 0, is apathin G if v; is adjacent taw;;; for i =
1,...,k — 1 and all vertices are distinct. B§¥(p) we denote the set of edgé&vi, v2), . . ., (vg_1,vk)}-
Additionally, p is called achainif all verticeswvs, . .., v,_1 are chain vertices. The chairis maximal in
G if the endpoints); andvy, are not chain vertices. A cycle, . .., vy) is different from a path in that
v1 = vi. We naturally extend all notation for paths to cycles.

A cut edgdn a graph is an edge which is not on any cycle.

Now we may continue and introduce thd -graphs which are in fact slight generalizations of the
graphs given above. These graphs will be used in Section 3. Afterwards, we shall generalize the graphs
to our full model for this paper. From a gragh= (V, E), we can obtain &,1-graphg by labelling its
edges with eithed or 1: e € E(G) ifand only if g(e) = 0V g(e) = 1. Such &5 is called theunderlying
graphof ¢g. For a graphG, we usel ¢ to denote the set df, 1-graphs with underlying grapfi.

A tricky aspect of this definition is the following: every graghhas a natural counterparihich is
a0,1-graph: taking the complete graptyy ) as the underlying graph we add labels as follows:

g(e) = 1if e € E(G) and0 otherwise

Such a0,1-graph will be referred to astatal 0,1-graph.

Hence, eveny,1-graph on a complete underlying graph has two graphs associated with it its un-
derlying graph which is a complete graph, and the graph with which it is associated through its chosen
labelling. In order not to confuse the reader in the following, simple undirected graphs shall only arise
in the role of underlying graph.

Now, letg € L andh € L i for some graphé’ and H. An injections : V(G) — V(H) embeds
g, thequerygraph, intoh, thetargetgraph, (denoted — h) if

g(uv) = h(yp(u)y(v)) for all uv € E(G)

A useful intuition behind),1-graphs is that the absence of an edge in the underlying graghnodéans
that we do not care what the corresponding edgeisflabelled with.

The question whether a given simple undirected graph can be embedded in another, entails mapping
both graphs t®,1-graphs with the underlying graph a complete graph, and applying the definition above.
As we shall see later, this situation cannot be improved using our results. It is the case when the query
graph is relatively sparse (in a sense to be made precise later on), that something can be gained.

With a pathp = (v1,...,vx) in g € Lg we can associate the sequence of labels

Ap) = (9(v1v2), ..., g(vg-1vk)) -

Now, p is ana-path if every value im\(p) is equal toa. Secondlyp is ab-summing path for some if
g(v1v2) + g(veus) + ... + g(vk_1vx) equalsh modulo 2. We often denote this fact by writig@p) = b.
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We now move on to the definition of switching. Let€ L. Afunctiono : V(G) — {0,1} is called
aselector For each selectar we associate witly a 0,1-graphg” on G = (V, E) by letting, for each
uv € F,
9% (w) = o(u) + g(uv) + o (v) . 1)
where+ is addition modul®. Theswitching class generated lpyis then[g] = {¢” | o a selector. In
Section where we introduce switching more generally, we shall prove that switching classes are equival-
ence classes of graphs.

Example 2.1. Below we have depicted a typical example of a switch. In the first graph, the vertices are
labelled with their name, in the second graph we have labelled them with the value selected for the given
vertex by the selector, asinu) = 0 ando(v) = 1. Note that the patlu, v, w, z, u) is 0-summing both

in g andg®.

T 1 w 1 0 0

The fact that the cycléu, v, w, z, u) gave the same sum jnandg? turns out not to be a coincidence.
A crucial property used in this paper is the Cyclic Sum Invariance (cf. [11], [9]), the proof of which is
part of folklore of the theory of switching classes:

Theorem 2.1. (Cyclic Sum Invariance)
For every cycle: in a0,1-graphg, and selectos on g, g(c) = g%(c).

A stronger version of this theorem can be formulated, since it turns out that the cyclic sums of
triangles which involve any given vertexuniquely determines the switching class.
Related to this result is the Forest Forcing Lemma (cf. Hage [9]):

Lemma 2.1. (Forest Forcing Lemma)

Let g € L for some graptG = (V, E), and letT be any acyclic subgraph @f. For everyt € L,
there exists & € [g], such that for alk € E(T') : h(e) = t(e). If the acyclic subgrapHi’ is a spanning
subgraph of7, then there is exactly one sugh

We shall now extend the embedding problem for graphs in a natural way to switching classes:
g — [h] if there exists &’ € [h] such thay — A’ .
Obviously,g — [h] if and only if g% < [h].
The Forest Forcing Lemma has the following consequence for the embedding of acixgiaphs:

Corollary 2.1.
For every acyclic grapfi’, and everyt € L, t can be embedded in agywhich has a (non-induced)
subgraph isomorphic t&.

In other words, if the query graph is acyclic, the labels do not matter. The fact that it seems easier to
embed structures with few cycles, indeed holds true as we shall show in the next section.
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3. An efficient embedding algorithm for 0,1-graphs

In this section we show how to derive a rather efficient algorithnd,@rgraphs which decideg — [h]

for the case that is a total0,1-graph. In addition to the Cyclic Sum Invariance and the Forest Forcing
Lemma, the result is based on two more ingredients: the first of these is the following graph theoretical
argument which shows that if we consider graphs that do not have any isolated vertex or leaves, and
every chain has bounded length, then the number of vertices in the graph can be bounded by a constant
multiple of the cycle rank of the graph. Tlogcle rankof a graphG is defined as the size of its cycle

base, and equats-n+k, wheren = |V (G)|, e = |E(G)| andk is the number of connected components

of G (see Harary [10] for more details).

Lemma 3.1.
Let G = (V, E) be a connected graph without leaves and at least one dense vertex. If every maximal
chain inG has at most > 0 chain vertices, thefV/(G)| < 2¢¢, where is the cycle rank of5.

Proof:

We first make an estimation for graphs which only contain dense vertices. Note that in this case we
can choose = 1. Then, by the handshaking lemma of graph theRey= > ;- dg(v) > 3n, since

da(v) > 3forallv. Hence =e—n+1>3n/2—n+1=mn/2+ 1, sothatn < 2¢ as required. Now,

any edge between two dense vertices can be replaced by a chain of achast vertices, which adds

to n ande in equal amounts, so that< 2¢¢£. Additionally, we may introduce chains between two such
dense vertices, increasingwith at moste, and¢ by one, which keeps the invariant intact. O

Before making use of the previous lemma, we have to prove that if we consider the underlying graph
of a certain0,1-graph and find chains of at least a certain length, that we can replace these by shorter
ones. In the case of1-graph this 'certain’ length turns out to e

Lemma 3.2.
Let g be a0,1-graph on the domaif0, 1, ...,5} such that the pattD, 1,...,5) is zero-labelled. Then
whatever the labels on the other edges,ithere is always 8-summing path of length from 0 to 5.

Proof:
Consider the following graph, where a solid line indicates a laligland all other edges are labelled by
something thus far unknown.

Now, if (0, 3) = 0, thenb(0, 3,4,5) = 0. The same reasoning applies(®y5). In the other cases,
b(0,3) =1 = b(2,5) andb(0, 3,2,5) = 0. O

The above result also holds in the other direction:
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Lemma 3.3.
Let g be a0,1-graph on the domaif0, 1, ...,5} such that the patf0, 1,2, 3) is zero-labelled. Then
whatever the labels on the other edges,ithere is always 8-summing path of length from 0 to 5.

Proof:
We depend here on a computer program to try all cases. O

Based on this we can show that bridging is a sound operation, in that it does not change the ability to
embed:

Lemma 3.4.

Let g, g € Lg be0,1-graphs which only differ in the following wayy has a0-labelled chainp =
(ug, u1,ug, us, ug, us) Which is part of a cycle ii7, whereg’ has a)-labelled chair(ug, u1, u2, us), and
uz anduy are isolated vertices. Thenembeds ir%] if and only if ¢' embeds ifh], whereh is a total
0,1-graph.

Proof:
Let h; € [h] be such that it has a subgraph isomorphigitoWe show that there is a switch &f
which has a subgraph isomorphic4o Consider the vertice8” = {wg,...,vs} in hy corresponding
toU = {uo,...,us}. Lemma 3.2 says that whatevey is like, the subgrapth, |y has at least one
pathp’ = (vo,z,y,vs) which sums to0. Theng’ is isomorphic to a subgraph @f] by switching
an appropriater C {z, y} to turn the non-zero values fropd in h; into actual zeroes. Such a switch
however does not endanger the embedding ofto 47, because andy are the images of chain vertices
in ¢’, and because of the Cyclic Sum Invariance it is guaranteed not to harm the sums along any of the
cycles, including the one of which the pathis a part. The vertices; andu, can simply be mapped to
the two still unused vertices .

The same reasoning can be applied in the reverse direction, this time using Lemma 3.3. O

It is worth noting that we have two degrees of freedom here: we can take another switch to embed
in, and we can change our embedding. We did both in this case.

Lemma 3.5.
Letg € L and leté be the cycle rank of. Then, there exists @ embedding equivalent with such
that ni(¢’) < 6¢, where nig’) is the number of non-isolated verticesgf

Proof:

Remove first fromy all cut edges and then use repeatedly switching and Lemma 3.4 as many times as
possible to change to ¢’. A switching is performed to force paths of 6 vertices toOblabelled, and

then Lemma 3.4 is applied to the result. Thgmas no vertices of degrdeand every edge belongs to a
cycle. Moreover, iny’ no chain has more than 3 chain vertices.

Now we can apply Lemma 3.1 to each of the components of the graph (the cycle rank of a disconnec-
ted graph equals the sum of the cycle rank of its components) to obtain the given bound for the number
of chain and dense vertices. We omit in this reasoning components which are simple cycles: connected
graphs which have only chain vertices. These, however, can all be reduced to cycles of length at most six,
again using Lemma 3.4, after turning all, except maybe one, label into zero by an appropriate switch.
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Finally, we can formulate a bound on the time complexity of the embedding proble;fais
follows:

Theorem 3.1.
Let g, h be0,1-graphs withh a total onen = |V (k)| and¢ is the cycle rank of the underlying graph of
g. It can be decided i (n5¢+2) time whethery — [h].

Proof:

After checking thatV (¢)| < n, we can find an embedding equivalgnsuch that nig’) < 6¢ through

Lemma 3.5. Now, we actually remove the isolated vertices fganThe number of possible injections

from ¢’ into h is bounded by:5¢, for each of which we have to do at mastn?) work to see if under

the injection, we can switch so that it containg’ (using the results of [8]). The preprocessinggof

which consists of removing leaves, isolated vertices and shortening chains, can easily be done in time
O(n?). 0

The above result has obvious links with the basic idea behind treewidth [1], which is a well-known
measure of graphs. Essentially, many graph theoretic NP-complete problems are feasible for graphs of
bounded treewidth. The same is shown here for the embedding problem of switching classes with query
graph of bounded cycle rank.

A difference with our situation is that, because we deal with switching classes, which gives us an
added flexibility, the measure itself, which is the cycle rank, is a much easier notion than that of treewidth.
Moreover, the cycle rank of a graph is easy to compute efficiently, something which is not the case for
treewidth. On the down side of course, the use of the cycle rank measure is restricted to the embedding
problem for switching classes (at least, as far as we can tell).

4. Switching classes of graphs with skew gains

In this section, we introduce the general model for switching classes based on the axioms listed in the
introduction. It generalizes the model from the first part of this paper in that the labels are now taken
from an arbitrary group, and the label on the edge from vertexvertexw, is related to the label on the
edge fromw to « by an anti-involution, i.e. anti-automorphism, of order at most two. This, instead of
simply being identical.

For a groupl” we denote its identity element ly-. LetI" be a group. A functiod : I' — I" is an
anti-involution if it is an anti-automorphism of order at most two, thatdds a bijection and for all
z,y € T, §(xy) = §(y)é(z) ands?(x) = x. We write (T, §) for a groupl’ with a given anti-involution
J.

Since our underlying graphs now become directed graphs to allow different labels between two ver-
tices depending on the direction of the edge,redefineEs (V) = {(u,v) | u,v € V,u # v}, the set
of nonreflexive, directed edges oviér We continue to write.wv for the edggw, v), but in this and later
sectionsuv # vu. For an edge = uv, thereverseof e ise™! = vu.

We consider graph§ = (V, E') where the set of edgds C F, (1) satisfies the followingymmetry
condition

if e € Ethenalsee™! € E.
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1, 2 1, 2
— 0 — 0
2/ 1 0 2! 3 0
4 0 3 4 0 3
(a) (b)

Figure 2. Two elements df(Z4,id)

Such graphs can be viewed as undirected graphs where the edges have been given a two-way orientation.
Let G = (V,FE) be a graph andl',§) a group with anti-involution. A paif{G, g) whereg is a

mappingg : £ — (T, ¢) into the groupl is called a(T', 0)-gain graph(on G) (or agraph with skew

gainsor askew gain grapj if ¢ satisfies the followingeversibility condition

gle™h) =6(g(e)) forallec E . (2)

In the future we will refer to a skew gain grapé¥, g) simply by g unless confusion arises. We adopt in
a natural way some of the terminology of graph theory for graphs with skew gains. For instance, every
path inG is also a path irg, and we can usé&'(g) to denote the set of edges of the underlying gr&ph

The class ofT", 4)-gain graphs o7 will be denoted by (T", 4) or simply byL . More importantly,
L(T,6) = U{Lg(T,d) | G isagraph}. A gain graphis a(T', ~!)-gain graph; these are also called
inversiveskew gain graphs.

The notion ofb-summing path extends naturally to arbitrary groups: a path (vq,...,v;) IS a
b-summing path for somé € T if g(vive) - g(vevs) - - - g(vk—1vx) €qualsh. (We often denote this fact
by writing g(p) = b.) In other words, evaluating the product of values found alpnging the group
operation of T" evaluates to the group elemént

Furthermore, ley € Li(T',6). AsetX C V(G) is ana-cliqueif for all z,y € X: x # y implies
g(z,y) = a. Also, for X, Y C V(G), X is said to bei-connectedo Y, if X N Y = () andg(z,y) = a
forallz € X,y €Y.

Afunctiono : V — T'is called aselector For each selecter we associate with a(T", §)-gain graph
g° onG = (V, E) by letting, for eachw € E,

9% (uv) = o(u)g(uv)é(a(v)) . 3)

Example 4.1.

To illustrate switching, consider andgs, the (Z4,id)-gain graphs of Figure 2(a) and (b) respectively
(the groupZ, is the group of addition modulo 4; the anti-involution is the identity function giving rise
to a symmetric graph). The second of thegecan be obtained frony by applying the selectar that
maps bothl and3 to 3, and both2 and4 to 1. For example, the label of the edgg 3) is computed

as follows: g2(1,3) = ¢7(1,3) = 0(1)91(1,3)0(c(3)) =3+ 1+0(3) =3+ 1+ 3 = 3, where+

is addition modulo 4. The patfi, 2, 3,4) is a0-path in bothg; andg,. The cyclec = (1,3,4,1) is
3-summing ing; (hereA(c) equals(1,0,2)) and1-summing ing, (here)(c) equals(3, 0, 2)).
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Note that this is an example where the Cyclic Sum Invariance fails. The reason is that the anti-
involution is not the group inversion in this case. Therefore we shall later consider only abelian groups
with anti-involution equal to the group inversion.

The clasdg] C L(T, ) defined by

gl ={9" |o:V =T}

is called theswitching clasgienerated by.
It is not difficult to prove that a switching class is an equivalence class of skew gain graphs. The
underlying equivalence relation an;(T', ) is that forg, ¢’ € L(T, 9)

g=g ifandonlyif 30 : V(G) — T such thay’ = ¢°. 4)

Obviouslyg = g and if g1 = g2 then alsay, = g1, becausg{ = g» if and only if g; = gg_l, where the
o~ 1is suchthat—!(v) = o(v) ' forallv e V.

Closure under composition of selectors is something that we would expect in our model: it is a
consequence of Axiom Al of the introduction. If we define the composition of two selectmdr to
beor(v) = o(v)7(v), then we can prove that for eaghe L (T, ) and selectors, 7, ¢°" = (¢7)°.

Indeed, letuv € E(G). Then

(97)7(wv) = o(u)7(u)g(uv)d(r(v))é(o(v))
o (u)7 (u)g(uv)d (o (v)7 (v))

= (o7)(w)g(w)d((a7)(v)) = ¢°" (uv) .

If the groupI is the cyclic group of orde?, Z,, then by necessity the anti-involution is the identity
function and the skew gain graphs are exactlydthiegraphs of the first part of the paper. Directed graphs
are obtained by choosiig= Z, and we take the anti-involutiohto be the group inversion.

5. The general approach

As we hinted in the first part of the paper, we now introduce a general framework in which operations
like bridging (in the sense of Lemma 3.4) and switching can be modelled as operations which preserve
the ability to embed.

In the following letl’ be a fixed, but arbitrary abelian group anfla fixed, but arbitrary anti-
involution ofT".

Letg € Lg(T',d) andh € Ly(T', §) be skew gain graphs. An injectioh: V(G) — V(H) embeds

g into h, denoted byy i h, if
g(uv) = h(¢p(u)y(v)) for all uv € E(G).

If we do not care what is, we writeg — h instead. Note that in some definitions of embedding there is
also an injection on the labels, but since our application attaches meaning to the labels, we do not allow
that here.

-1
The embedding) is anisomorphismfrom g to h if g &, h andh o g. We denote this fact by

—1

¥ . )
g = h, or, equivalentlyh = g.
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The definition of embedding can be extended to switching classes in a natural way:
g — [h] if and only if there exist&’ € [h] such thaly — £’

In this and the following sections, the central problem is to decide whethejuitigy skew gain graph
g € Lg(T,d) can be embedded in a switch of ttaegetskew gain grapth € L (T, 9).

We assume for the remainder of the paper that the target skew gain graghlisneaning that
H = (V, E»(V)) for some set of verticeE.

We now come to the definitions central to this paper. We are interested in establishing for a certain
query graphy into which other skew gain gragfiit may be transformed so that the ability of embedding
g into h is preserved and reflected ingd  More formally, we defineR - 5) as the set oembedding
equivalentpairs(g, ¢’) € L(T',d) x L(T, ) such that

Vh:g— [h] < ¢ — [h].

Note that in our definition we have left the embedding itself unspecified, meaning that in general we do
not care whethey andg’ are embedded “in the same place”. It also implies thand ¢’ may have
different underlying graphs.

Although we have just defined the largest possible (equivalence) relation relating skew gain graphs
from L (T, 0) to each other, it does not give us any concrete information which pairs are actually in the
relation for a given group and anti-involution. In the remainder of this paper we shall establish a number
of results which either show that some pairs are definitely in this relation, or that some pairs can never
be.

Let R be any equivalence relation &I, §). R is anembedding invariant relation (emiif) (¢, ¢’) €
Rimplies(g,9") € Rr,s)-

We now give some examples of emirs that occur in the literature. The following easy lemma shows
that for embedding the identities of the vertices of the query graph are unimportant.

Lemma 5.1.
For two isomorphic(T, §)-gain graphsy and ¢’ (with isomorphism¢ from ¢ to ¢'): if g &, h, then

A1
AN
The second example, one that we already glanced at for the cagegraphs, is that embedding a

query graply is the same as embedding one of its switches:

Lemma 5.2.
If g &, [h], then alsgy” L, [h] for any selector : V(g) — I

Note that Lemma 5.1 implies the existence of an eRJi: (g,¢') € Rr ifand only if g = ¢'.
Lemma 5.2 shows that as defined in (4) is also an emir.

We shall now give a slightly more complicated example.

Define Rpcr such that g, ¢') € Rpcr if ¢’ can be obtained from by removing any number of cut
edges ofy. The symmetric closure of this relatioRcg, is an equivalence relation @i, 4)-gain graphs.
So any twog andg’ are related if and only if they have exactly the same cycles and the same domain.
The Forest Forcing Lemma extended to arbitrary switching classes proves that this relation is in fact an
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emir (see for instance [9]). Note that by removing edges we do not change the size of the domain of the
(T", §)-gain graph; this is necessary for establishing embedding invariance.

To combine two emirs into one we can use the join operation: for two efhasd R’ on (T, ), the
join of R and R/, denoted by v R/, is the smallest equivalence relation including b&tand R’.

Lemma 5.3.
If R andR’ are emirs, then the join dt andR’ is an emir.

The join can be used to combine various emirs into a larger one. For instance, joining an emir such
as Rpcr With Rjr yields an emir that “incorporates” removing cut edges and taking isomorphisms. In
such a way we can define various emirs and compose these to come as close as possible to the largest of
emirs,R(m).

6. The general approach to bridging

In Section 3 we considered the possibilities for bridging srand its consequences. In this section define
bridging more generally, followed by some general results. We follow up in later sections by considering
the case of the groups, and give some limits of possibility results, which show in which cases bridging
are not possible at all.

In the case o3 we can use the same approach as in Section 3 to obtain an efficient algorithm for
embedding (although the constant in the exponent will be a somewhat larger).

In this and the coming sections we assume that the grdambelian and that the anti-involutions
the group inversior!; we will denote the identity of the group simply By This is necessary since the
bridging operation depends on the Cyclic Sum Invariance and the Forest Forcing Lemma. We refer the
reader to the formulation in Section 2, which hold as formulated there also for arbitrary abelian groups
with the anti-involution set to the group inversion.

Letg,g’ € L(T',0) be such thay contains a&-chainp = (xo, ..., zx). Then, for integerg and/
with k > ¢, ¢’ is a(k, ¢)-bridging of g, denotedy B} ¢/, if ¢’ is a(I', §)-gain graph ori/ (g) with

E(g') = (E(g) — E(p)) UE(®Y') forp’ = (o, ..., x¢—1, k)
and

0, otherwise

J(e) = { 9(e), if e € E(g) = E(p)

We additionally defineB? to be equal tdB) " for k < ¢.
For the following two (T, §)-gain graphsy (left) and ¢’ (right) it holds thatgB3g’. In this case
p= (1'0,...,:(}5):
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Note that we can assume that the chain is labelled with zeroes, since if it does not we can always
switch it so that it does.

In what follows we are interested in determining for which groups we can always (i.e., for any
(T",)-gain graphy € L(T", §)) change chains of lengthto chains of lengtlf. For this we introduce the
following relation Rr € N x N, where(k, ¢) € Rr if and only if Bf is an emir orL (T", §). Obviously,
for any groupl it holds that(k, k) € Rr wherek > 0.

The following lemma couples the concept of bridging to something we can more easily verify. Im-
plicitly we allow the embedding only to be changed on the chain vertices that occur on the bridge.

A (T, 0)-gain graph o0, ..., n} for somen is an(n, k)-bridge structuref it has a0-path(0, . . ., k).

The following lemma shows that to decide whether we can reduce chains of length we can
look at total skew gain graphs which have-tabelled path0, . . ., k) and show that whatever labels are
on the other edges, we can always find a 0-summing path@rtm# of length/. It is essentially a more
general version of Lemma 3.4.

Lemma6.1.
Let k£ and/ be natural numbers, and let= max(k, ¢). It holds that(k, ¢) € Rr if and only if for every
(n, k)-bridge structuré there is @-summing pattp in b of length? from 0 to k.

Proof:
By definition (k, £) € Ry if and only if for all gB}¢', for all h, g — [h] if and only if g’ — [A].

For the if-part the proof is a repeat of that of Lemma 3.4 which shows the validity of replacing a path
of lengthk in g by one of lengtl¥ without changing the ability to embed.

The only-if-part follows from the fact that if we cannot replace the path of lendtly a path of the
same sum of length, then we change the cyclic sum along at least one cycle, which contradicts the
Cyclic Sum Invariance. It is possible that changing the embedding completely compensates this fact in
some cases, but this cannot work uniformly. O

Theorem 6.1.
For natural numbers; > 1 andky > 2: (k1,1) ¢ Rr and(k2,2) ¢ Rr, if I is not the trivial group,

{0}.

Proof:

Leta € I' with a # 0. Let gy be a(T', §)-gain graph or{0, ..., k2} such that forl < i < ky — 1,
92(0,3) = 0, g2(i, k2) = a. Hence for alli, g2(0,14, k2) = a # 0. The same kind of reasoning can be
applied to the other case. O

Example 6.1.

If we know that(5,3) € Rr, then itis easy to see thét, k — (5 — 3)) = (k,k — 2) € Rr aslong as

k —2 > 3:if g contains a chain of length greater thigrihen we can take any part of this chain of length
5 and reduce it t@ and thereby reduce the length of the entire chain fkaimk — 2. We can repeat this
process until the chain is not sufficiently long anymore. We conclude that if we provéti3ate Rp
then(k, k—2) € Ry for k > 5and ever(k, k —2¢) for k—2¢ > 3. Using similar reasoning we conclude
that(3,5) € Rr implies that(k, k + 2¢) for k > 3. o

In general we have
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Lemma 6.2.
If (kl,gl) € Rr then(kg,fg) € Rr wherefy = kg — (k?l — El)m, m > 1and{ly > /.

If ' = I'1 x I'y then(k,¢) € Rr implies (k,¢) € Rr,(i = 1,2), but not vice versa, not even if
I'y = I's (see Theorem 8.1). The positive result is easy, because the idenkitsnaps to the identities
of the direct factors. Hence the 0-summing paths stay 0-summing in the projection. The following result
says that if a bridging is not possible for a given group, it automatically precludes bridging in groups of
which it is a direct factor.

Lemma 6.3.
If " is a group such thdt, ¢) ¢ Rr, then this also holds for all groups of whi¢his a direct factor.

In terms of the notation just introduced we have the following resulZformvhich is in fact a restate-
ment of Lemma 3.3.

Lemma 6.4.
(5,3) € R22

We can go even further and show that this is the best bridging possilig for

Lemma 6.5.
(k. 0) ¢ Ry, if k and{ are of opposite parity.

Proof:
Let £ and/ be of opposite parity. We may assumé > 3, because of Theorem 6.1.

Let n = max(k, (), b be a(n, k)-bridge structure andf = V'(b). By Lemma 6.1, we only need to
exhibit one such structure which has no path of lerfgttom 0 to £ which sums td@. For that, choosé
such that the set8” C V andV — K are0-connected -cliques. HereK = {z | 0 < =z < k, z evert.
Note that there is 8-path(0, 1, ..., k).

We are interested in paths of lendtiwhich go from0 to £ and sum td. If & is even, therf is odd,
and the path is one that starts & and ends ink. Since we must switch fronk to V' — K an even
number of times, we traverse an odd number of edges within eithendl” — K. Since these edges
each contributé to the sum, and they are the only edges which contribute, the sum along the path equals
1. If k is odd and hence the path startdirand ends i/ — K similar reasoning leads to a sumiof O

Theorem 6.1 and Lemmas 6.2, 6.4 and 6.5 lead to the following.

Corollary 6.1.
If & > ¢ > 2then(k,{) € Rz, if and only if £ and¢ have the same parity. Als¢k, () € Rz, for
1<¢<2ifandonlyifk = ¢.

7. Bridgingin Z;

ForZs, it turns out that there is a result similar to the onedgywhich as a result allows us to find an op-
timized embedding algorithm for what might be called, 2-graphs (of a kind). Again, the embedding
problem is restricted to embedding in tofall, 2-graphs.

The following result was quite a surprise.
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Lemma7.1.
(6,4) € Rz, and(6,5) € Rz, but(5,4) ¢ Rz_.

Proof:
The positive results have been obtained by a computer check of all paths of demudl, respectively,
from0to 6 in a(6,6)-bridge structure.

The counterexample fai5, 4) is given in the following figure, where the solid edges are labelled
with 0 and the dashed edges (in the direction of the arrow) Withhe reader may verify that indeed no
path from0 to 5 of length4 sums ta). Therefore Lemma 6.1 gives the claim.

O

In other words, in general the best we can do is to shorten chains to a lengthhach yields the
following result

Theorem 7.1. Let g, h € L(Z3, ~1) with h total,n = |V ()| and¢ is the cycle rank of the underlying
graph ofg. It can be decided i®(n'%+2) time whethery — [].

Proof:
Analogous to the approach of Theorem 3.1, this time however the bound is somewhat higher, because at
worst, we have: = 5 in Lemma 3.1. O

8. Impossibility results

In the first part of this section we are interested in determining, given a natural ndmioerwhich

finitely generated abelian grodjt it holds for everyk > ¢, that(k, ¢) ¢ Rr. In Theorem 6.1 we found

two such exampled,= 1 and/ = 2, in which case impossibility was obtained for all groups. Since we
have already treated the casesfat 2, we assumé > 3, and hencé > 3. From Lemma 6.3 and the
Fundamental Result On Finitely Generated Abelian Groups, it follows that we can restrict ourselves to
solving this question for the cyclic groups (of order a prime power)zand

Since we are interested in proving the impossibility of bridging, we have to show that we can always
find (k, k)-bridging structures in which there is no 0-summing path of ledigtbm 0 to k.

First we investigate which edges in the bridge structorastbe labelled with a non-identity element.
These are exactly the edges that are on a path of lehigtim 0 to & which traverse only edges on the
path(0, ..., k), except for one edge which has an undetermined label. We observe that these edges are
those of the form

(i,i+(k—¢+1)), i=0,...,0—1. (5)

1We continue to insist that the anti-involution is the group inversion; bridging can only be applied if that is the case, anyway.
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We shall next prove that the only bridgirg, 3) for £ > 3 occurs if the group is trivial or the group
is Zo. The main technigue used here is to generate a family of skew gain graphs, depenklimgharh
contains a larg®-clique X, and only relatively few other edges. Parts of the pathXicontribute
nothing to the sum along a path, so only the values on the other edges really matter. To simplify the
proof, any vertex outsid&’ is connected in a uniform way to all verticeshand (by reversibility) the
other way around. In 2-structures jargon, such aXseét called aclan (see [5]). The next theorem is a
typical example of this kind and can be viewed as an illustration of the proof technique.

Theorem 8.1.
If for £ > 3, (k,3) € Ry for afinitely generated abelian group, thiés eitherZ or the trivial group.

Proof:
Like in Lemma 6.1 the idea is to find(&, k)-bridge structure which does not exhibit a 0-summing path
of length? = 3 from 0 to k. Because of Lemma 6.3 and the Fundamental Theorem On Finitely Generated
Abelian Groups, we start by considering the cyclic groups of order larger than two and theZgadup
integer addition.

Consider the following graph in which all edges whose value is as yet unknown are labelled with a
variable labeh; for somei, and the verteXX represents a-clique onk — ¢ vertices.

By (5), ag, a1 andas should be labelled by values different framlt is easily seen that alsg, # 0 (for
paths throughX). We also find that, # —a4, because of the patld, k — 2, z, k) wherez € X. In fact
if we setas = 0, ag, az anday to the generator of the group, anda; to —1 there is no path of length
¢ = 3 which sums td@. It is important to note that since the group has order at least thege; 1.

Since a(k, 3) bridging existed forZ,, we should also show that such a bridging is not possible
for Zo x Zy. Taking the same graph as our starting point, we chagstne identity (0,0) and set
ap = a1 = az = (0,1) andas = (1,0). Again, the reader can verify (there are only a finite number of
cases), that no path of lengidtfrom 0 to £ sums to(0, 0). O

In the second part of this section, we turn the question around. Bridgings, saynftonk, are
discovered by taking a group, generating(all n)-bridge structures and verifying for each that there is
a 0-summing path frond to n of lengthk. For large groups there are many such structures, so it would
be interesting to know which groups we can omit from our search. The following results give a large
part of the answer, capturing the intuition that the larger the group, the more likely are we to encounter
an(n, n)-bridge structure which does not have the property we are looking for.

Lemma 8.1.

For any givem, (n, k) ¢ Rr for all k£ < n for all groupsl’ =Z,,, x...xZ where eacly; > 2.

Pn—11
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Proof:

Consider any combination, k¥ with £ < n, andT" as defined in the theorem. Letbe (n,n)-bridge
structure with the following additional properties: for every vertexve define the labels on the edges
to all verticesv > u + 1 uniformly: g(uv) = (0,...,0,1,0,...,0), where the only non-zero element is
in thew position, and in fact equal to the generataf the groupZ,,,. Because we only look at the case
that the anti-involution is the group inversion, we havyeu) = g(uv) .

Consider now any path of lengthk < n, leading from0 to n. Sincek < n, we must traverse at
least one edgewv of which the endpoints are not neighbours on the path, . .., n). In fact, we assume
thatuv is the earliest such pair, meaning thais of the formp = (0,1, ..., u,v) for someu > 0 and
v > u + 1. We know thatu < v, so that to the sum along the value(0,...,0,1,0...,0) is added
(thel in theuth position). However, since we have now both arrived end left it again, we may never
return, since otherwisg is not a valid path. But this means that tlilh component of the sum along
p will continue to be non-zero, since the only edge label which may cancel it is the label on the edges
going intow from verticesv > u + 1. O

Lemma 8.2. For alln, (n, k) ¢ Rr wherel’ = Z, the group of integers under addition.

Proof:

Similar to the previous proof, now taking the labels franto v > u + 1 equal to2* (and—2" for the

reverse edge). The independence between the various values in the sum comes from the fact that we use
different powers of two, which in fact simulates the use of tuples of the previous lemma. O

Lemma 6.3, Lemma 8.1, Lemma 8.2, and the Fundamental Theorem On Finitely Generated Abelian
Groups give the following:

Corollary 8.1.
Let n be a fixed natural number. For every grdophat has at least — 1 non-trivial direct factors, it
holds that(n, k) ¢ Ry forall k < n.

The usefulness of these results is that they limit the number of finitely generated abelian groups we
have to look at, when we take a certain fixed valy@nd are interested in finding a bridgifwg, &) for
somek. Our current set-up is to simply generate(all n)-bridge structures and show that each of them
has a0-summing path of lengttk. Hence, this saves us from looking for a long time in a number of
certifiably wrong places.

A little bit more thought allows us to derive the following improved result:

Theorem 8.2.
For every groufd” that has at least non-trivial direct factors, it holds thadt, k) ¢ Ry for alln > k.

Proof:

The proof is very similar to that of Lemma 8.1, except that edges outgoing friany > 7 + 1 are

labelled with0 if ¢ > k. In other words, only the verticésto £ — 1 actually have non-zero elements on

the edges to their successors. The reason why the result continues to hold, is that we can be sure that the
first non-zero edgev (from the proof of Lemma 8.1) leaves a verteX{in ...,k — 1}. And that edge

is all we need to obtain a non-zero sum. O
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By Corollary 8.1 and Theorem 8.2 we obtain the following.

Theorem 8.3.
Let I" be a group withp (non-trivial) direct factors in its decomposition (according to the Fundamental
Theorem Of Finitely Generated Abelian Groups). Tltenk) ¢ Ry foralln > k,n > pandk > p—1.

As a result, for every group we only have to check a finitely number of combinatiomsaod .

9. Conclusions and future work

Taking the model of Ehrenfeucht and Rozenberg as our starting point, we have considered the embedding
problem in detail. We have set up a framework to establish results about reducing query skew gain graphs
to smaller ones and proved some general results in this matter. Then we concentrated on bridging, which,
for Z, andZs at least, results in an algorithm for the embedding problem which is dominated not by
the size of the query graph, but by its cycle rank, corresponding to the general intuition in switching
classes that cycles make life harder. The measure we need for switching classes is rather straightforward,
compared to measures like cliquewidth and treewidth which are in use for graphs. On the other hand, we
have only investigated the embedding problem, and not other infeasible problems for switching classes.
This is certainly an area worthy of investigation.

We have not completed a full investigation of all possible bridgings for all possible finitely generated
abelian groups, although we have the full picture ZgrandZ; and many cases in which bridging is
certainly not possible. Note by the way, that bridging is just one possible reduction strategy and others
might exist. In that sense, the research in this area is still very much open, especially for non-abelian
groups or abelian groups with arbitrary anti-involutions where bridging is not even an option.

A different way of approaching the problem, is to investigate embedding preservation and not em-
bedding invariance. In that case we look for pdifsg’) such thaty’ < [h] impliesg — [h], but not
necessarily vice versa. Another aspect is that in all the cases described above, we can also reconstruct
the embedding for the larger structure from the embedding for the smaller structure. Maybe if all we
want to know is whether embedding is possible, but not where exactly, we may get more possibilities for
optimization.
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