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Abstract

A frame is a square uu, where u is an unbordered word. Let F (n) denote the
maximum number of distinct frames in a binary word of length n. We count
this number for small values of n and show that F (n) is at most bn/2c + 8
for all n and greater than 7n/30− ε for any positive ε and infinitely many n.
We also show that Fibonacci words, which are known to contain plenty of
distinct squares, have only a few frames. Moreover, by modifying the Thue-
Morse word, we prove that the minimum number of occurrences of frames in
a word of length n is dn/2e − 2.
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1. Introduction

Since the seminal papers of Thue [1, 2] repetitions have been one of the
main subjects in combinatorics on words. Here we confine ourselves to study-
ing squares, i.e., repetitions of the form uu = u2, where u is a nonempty word.
Both the number of distinct squares and the number of occurrences of squares
(repeated squares) is considered. Let us first recall some earlier results.

Let D(n) denote the maximum number of distinct squares in a word
of length n. Fraenkel and Simpson proved in [3] that D(n) < 2n for all
n > 0. Moreover, they showed that the maximum number P (n) of distinct
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primitively rooted squares in a word of length n satisfies P (n) ≥ n − o(n)
for infinitely many n. A primitively rooted square is a word u2, where u is
primitive. A short proof for the upper bound D(n) < 2n was given by Ilie [4],
who also obtained a better upper bound 2n−Θ(log n) in [5]. However, based
on the numerical evidence [3], the conjectured bound is n.

The minimum number of distinct squares in a binary word was consider
in another paper by Fraenkel and Simpson [6]. Let g(k) denote the length of
a longest binary word containing at most k distinct squares. How does the
sequence {g(k)} behave? It is easy to compute the first values: g(0) = 3,
g(1) = 7 and g(2) = 18. Fraenkel and Simpson proved that g(3) = ∞ by
constructing an infinite word containing only squares 00, 11 and 0101; for
easier proofs, see [7, 8].

Let r(n) denote the minimum number of occurrences of squares in a word
of length n. Kucherov, Ochem and Rao showed that r(n)/n converges to
a constant 0.55080 · · · [9]. Note that the maximum number of occurrences
of squares is obtained by the word 0n, where every even length factor is a
square. This gives n2/4 and (n2− 1)/4 repeated squares for even and odd n,
respectively. Moreover, Crochemore showed that a binary word can contain
Θ(n log n) occurrences of primitively rooted squares [10].

In this paper we consider variants of the above problems by estimating
the number of frames, i.e., squares u2, where u is an unbordered word. Un-
bordered words and factors of words play an important role in combinatorics
on words, for example, in connection with periodicity, coding properties of
sets of words and unavoidability; see, e.g., [11, 12, 13, 14, 15, 16]. Note that
the minimum number of distinct frames in a binary word of length at least 19
is three. This follows directly from the infinite word containing only squares
00, 11 and 0101 constructed by Fraenkel and Simpson [6]. Moreover, the
maximum number of occurrences of frames is again given by the word 0n,
which contains n− 1 frames 00. However, the questions of finding the maxi-
mum number of distinct frames and the minimum number of occurrences of
frames for words of given length are not so straightforward.

First, we consider an interesting example. Despite the fact that a Fi-
bonacci word of length Fn has around 0.7639Fn distinct square factors [17],
it turns out in Section 3 that Fibonacci words contain only a few frames. In
Section 4 we consider an upper bound for the maximum number of distinct
frames F (n) in a binary word of length n. We prove that F (n) is at most
bn/2c + 8. Moreover, using prefixes of the Thue-Morse word we construct
in Section 5 arbitrarily long words attesting to F (n) > 7

30
n− ε for any posi-
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tive ε and infinitely many n. Finally, in Section 6 we prove that the minimum
number of occurrences of frames in a word of length n is exactly dn/2e − 2
for n ≥ 3.

2. Frames

We consider here binary words w ∈ {0, 1}∗. A frame is a square uu,
where u is an unbordered word. A word w is unbordered if w = vu = u′v
for a nonempty v implies v = w. Otherwise, the word w is called bordered
and v 6= w is a border of w. We observe that if w is bordered then it has
a border v of length |v| ≤ |w|/2. For example, a word 00010001 is a frame,
since 0001 is unbordered. The set

S = {00, 11, 0101, 1010, 001001, 110110, 011011, 100100}

consists of all short frames, frames of length at most six. For a word w,

• F (w) is the number of different frames in w. Also, let

F (n) = max{F (w) | |w| = n}.

• M(w) denotes the total number of occurrences of frames in w. Also,
let

M(n) = min{M(w) | |w| = n}.

• S(w) is the number of occurrences of short frames from the set S. Also,
let

S(n) = min{S(w) | |w| = n}.

For instance, let w = 001100110. Now F (w) = 3 and M(w) = 5 since w
contains the frames 00 (twice), 11 (twice), 00110011 (once). Also, S(w) = 4
since 00 and 11 both occur twice and 00110011 is not in S. For the length
n = 18, one has a unique word w modulo complementing, i.e., interchanging
0 and 1 such that F (w) = F (18). This is the word 011011001011001001
having nine different frames uu, where

u ∈ {0, 1, 01, 011, 110, 001, 100, 101100, 110010}.

In Table 1 we have listed the numbers F (n) and S(n) for small values of n.
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n 6 7 8 9 10 11 12 13 14 15 16
F (n) 3 3 4 4 5 6 6 6 7 8 8
S(n) 1 2 2 3 3 4 4 5 5 6 6

n 17 18 19 20 21 22 23 24 25 26 27
F (n) 8 9 9 9 10 10 10 10 11 11 12
S(n) 7 7 8 8 9 9 10 10 11 11 12

Table 1: The maximum number of frames and the minimum number of short frames.

3. The case of Fibonacci

Let Fn be the nth Fibonacci number, i.e., the length of the nth Fibonacci
word fn. Thus fn = fn−1fn−2 for n ≥ 2 with f0 = 1 and f1 = 0. It
was shown by Fraenkel and Simpson [17] that the nth Fibonacci word has
2(Fn−2 − 1) distinct square factors. Asymptotically this is around 0.7639Fn.
Hence Fibonacci words have a wealth of distinct squares. However, we show
that fn has only a few frames.

A factorization w = uv such that u and v are nonempty and |u| = p is
called critical if the local period at point p is equal to the global period, i.e.,
the minimal period of w. Then p is called a critical point ; see [18, Section
8.2]. For the proof of the following lemma, see [19].

Lemma 1. Let w = uv be a word such that its critical point is positioned at
|u|. Then the conjugate vu is unbordered.

Currie and Saari have proven the following result concerning unbordered
factors of Fibonacci words [20, Lemma 7]. Actually, their lemma and the
word tm is defined for all Sturmian sequences, but in the case of Fibonacci
words we have tm = fm+1. Each primitive binary word w of length |w| ≥ 2
has two Lyndon conjugates. These are the conjugates of w that are minimal
with respect to the lexicographic orders induced by the order 0 < 1 and its
dual order 1 < 0. It is well known that the Fibonacci words are primitive.

Lemma 2. A word w with |w| ≥ 2 is an unbordered factor of a Fibonacci
word if and only if w is one of the two Lyndon words that are conjugates of
a word tm = fm+1 for some m ≥ 1.

The next lemma describes exactly the unbordered conjugates of the Fi-
bonacci words. In the below we adopt the notation

w• = v for w = va where a ∈ {0, 1}.
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Lemma 3. Each Fibonacci word fn for n ≥ 2 has exactly two unbordered
conjugates. These are (1) f̂n = afn−2f

•
n−1, where fn−1 = f •n−1a, and (2)

f̃n = af •n, where fn = f •na. Here a ∈ {0, 1}.

Proof. Using the above notation, fn = fn−1fn−2 = f •n−1afn−2. It was shown
in [21] that fn has a unique critical point positioned after f •n−1 and in this
case the corresponding conjugate afn−2f

•
n−1 is unbordered by Lemma 1.

Consider then the second case. Now fn+1 = fnfn−1 = f •nafn−1 and,
by [21], the unique critical point of fn+1 follows the prefix f •n, and hence the
conjugate afn−1f

•
n is unbordered. Here f •n = fn−1v for a word v of length

|fn−2|−1. Thus if af •n = afn−1v is bordered, let u be its shortest border. Then
|u| ≤ |fn|/2. However, since afn−1f

•
n = afn−1fn−1v is unbordered, we have

|u| > |afn−1| > |fn|/2. This is a contradiction. Hence af •n is unbordered.
Moreover, by Lemma 2, there are at most two, and thus exactly two,

unbordered conjugates of fn.

Next we use the previous lemma to count the exact number of distinct
frames in Fibonacci words. The number of distinct frames in the Fibonacci
word fn for small values of n is given in Table 2.

n 0 1 2 3 4 5 6 7 8 9 10
F (fn) 0 0 0 0 1 3 5 6 8 10 12

Table 2: The number of distinct frames in Fibonacci words.

In the sequel, denote the first unbordered conjugate of fn by f̂n = afn−2f
•
n−1,

where fn−1 = f •n−1a, and the second unbordered conjugate by f̃n = af •n,
where fn = f •na.

Theorem 1. Let n ≥ 7. The set of frames of fn is

{f 2
1} ∪ {f̂ 2

i | i = 2, 3, . . . , n− 3} ∪ {f̃ 2
i | i = 2, 3, . . . , n− 4}.

In particular, we have F (fn) = 2(n− 4).

Note that in the above n is circa logφ(Fn), where φ ≈ 1.618 denotes the
golden number.

Proof. It is easy to verify that the statement holds for n = 7. Let n > 7 and
assume that the claim holds for n− 1. We prove that the Fibonacci word fn
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contains exactly two new frames, namely the frames f̂n−3 and f̃n−4, which
do not occur in fn−1. This proves the claim.

(A) Let f̂ denote the first unbordered conjugate of the Fibonacci word fn−3.
We show that the frame f̂ f̂ is a factor of fn, but it is not a factor of fn−1. We
have fn−3 = fn−4fn−5, where fn−4 = f •n−4a for a letter a, and f̂ = afn−5f

•
n−4.

Hence,

fn = fn−1fn−2 = fn−2fn−3fn−3fn−4

= fn−2(fn−4fn−5)(fn−4fn−5)fn−4

= fn−2(f
•
n−4afn−5)(f

•
n−4afn−5)f

•
n−4a

= fn−2f
•
n−4(afn−5f

•
n−4)(afn−5f

•
n−4)a

= fn−2f
•
n−4f̂ f̂a,

and therefore the frame f̂ f̂ is a factor of fn.
Assume now that f̂ 2 is a factor of fn−1. Recall that fn−4 = f •n−4a and

fn−3 = f •n−4afn−5. We have

fn−1 = fn−2fn−3 = fn−3fn−4fn−3

= f •n−4afn−5f
•
n−4afn−3

= f •n−4f̂afn−3.

The word f̂ is unbordered, and hence it does not overlap with itself. It follows
that either (1) f̂ 2 = afn−3 or (2) f̂ is a prefix of afn−3. In Case (1) we have
|fn−3| = 1. Then f̂ 2 = aa is a suffix of fn−1, which is impossible. In Case (2),
we have f̂ = af •n−3 = af •n−4af

•
n−5, where fn−3 = f •n−3b and fn−5 = f •n−5b for

a letter b. Then afn−5f
•
n−4 = f̂ = af •n−4af

•
n−5, We thus have a border af •n−5

in f̂ contradicting the fact that f̂ is unbordered.

(B) Let now f̃ denote the second unbordered conjugate of the Fibonacci
word fn−4. We show that the frame f̃ f̃ is a factor of fn, but it is not a factor
of fn−1. We have fn−4 = f •n−4a = fn−5f

•
n−6a and fn−6 = f •n−6a for a letter a.
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Thus f̃ = af •n−4 = afn−5f
•
n−6. Hence,

fn = fn−1fn−2 = fn−2fn−3fn−3fn−4

= (fn−3fn−4)(fn−4fn−5)(fn−4fn−5)fn−4

= (fn−3f
•
n−4a)(f •n−4afn−5)(fn−5fn−6fn−5)fn−4

= (fn−3f
•
n−4a)(f •n−4afn−5)(fn−6fn−7fn−6fn−5)fn−4

= fn−3f
•
n−4(af

•
n−4)(afn−5f

•
n−6a)fn−7fn−6fn−5fn−4

= fn−3f
•
n−4f̃ f̃afn−7fn−6fn−5fn−4,

and therefore, also in this case, the frame f̃ f̃ is a factor of fn.
Assume now that f̃ 2 is a factor of fn−1. We have

fn−1 = fn−2fn−3 = fn−3fn−4fn−4fn−5

= fn−3f
•
n−4af

•
n−4afn−5

= fn−3f
•
n−4f̃afn−5.

The word fn−3 does not end with a, since the last letters alternate in Fi-
bonacci words (and fn−4 does end with a). The word f̃ is unbordered, and
hence it does not overlap with itself. Therefore f̃ 2 must either (1) occur in
the prefix fn−3f

•
n−4 or (2) we have f̃ = afn−5. The latter case af •n−4 = afn−5

never occurs if n > 7. Consider then case (1). The first occurrence of f̃ must
be inside fn−3 = fn−4fn−5, but |f̃ | > |fn−5| and f̃ = af •n−4 does not overlap
with fn−4 = f •n−4a from the right (as it is unbordered) unless the overlap is
the single letter a. In this case the suffix afn−5 of fn−3 is too short to contain
f̃ if n > 7.

Now it remains to show that there are no other new frames in fn. Assume
that u2 is a frame in fn such that |u| ≥ 2. By Lemma 2 and Lemma 3, we
know that u = f̂i or u = f̃i for some i ≥ 2. According to case (B), the
square of the second unbordered conjugate of fn−3 occurs for the first time in
fn+1. Similarly, by the cases above, the squares of the unbordered conjugates
of fn−2 do not yet occur in fn. Moreover, the squares of longer unbordered
conjugates of Fibonacci words are too long to occur in fn, and 11 is never a
factor of a Fibonacci word. This proves the claim.

4. Upper bound for distinct frames

Recall that S(n) denotes the minimum number of occurrences of short
frames (00, 11, 0101, 1010, 001001, 110110, 011011, 100100) that a word of
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length n can contain. Table 1 suggests that S(n) = dn/2e−2. In this section
we prove that the function S(n) will not develop more exotic. For two words
u and v, let u ∧ v denote their longest common prefix.

In this section a word w is called minimal if S(w) = S(|w|). First, let us
show that in a minimal word w there are no short frames of length six.

Lemma 4. Let w be a word containing the minimum number of occurrences
of short frames. If u2 is a short frame in w, then u ∈ {0, 1, 01, 10}.

Proof. First, we show that a minimal word does not contain frames 100100
and 011011. Let w = zuuy where the indicated occurrence of the square uu
is the last one in w such that u = 100 or u = 011. Moreover, let w be a word
such that the prefix z is as long as possible. In other words, if w′ is another
minimal word of length |w|, then the last occurrences of the frames 100100
and 011011 begin before position |z|+ 2.

By symmetry, we can assume that u = 100. The word y is not empty,
since otherwise z100101 would contain fewer short frames than w. Namely,
the short frames 100100 and 00 end at the last position of z100100, but only
one short frame 0101 ends at the last position of z100101. If y = 1x, then
compare w = z1001001x with w′ = z1001101x. After the common prefix
w ∧ w′ = z1001, there are three frames (00, 100100 and 001001) ending in
w but only one frame (11) ending in w′ before x. By the minimality of w,
the word w′ must have at least two more short frames than w that end in
the common suffix x. This implies that the prefix of x is 10. However, in
this case the word w′ has as many short frames as the minimal word w but
011011 occurs at the position |z| + 3. This is a contradiction. Hence, the
suffix y begins with 0.

Now compare w = z100100y with ŵ = z100101yc, where yc is the com-
plement word of y, i.e., obtained by changing 0s and 1s. Since y = 0x for
some x, we have w = z1001000x and ŵ = z1001011xc. Now after the com-
mon prefix w ∧ ŵ = z10010 there are three frames, 00 twice and 100100
once, ending in w before x but only two frames, 0101 and 11, ending in ŵ
before xc. By the minimality of w, there are more short frames ending in the
suffix xc of ŵ than there are short frames ending in the suffix x of w. This
implies that x begins with 100 and (xc begins with 011). No matter how the
suffix x continues, the word ŵ = z1001011xc has as many short frames as
the minimal word w = z1001000x but 011011 occurs at the position |z| + 5
of ŵ. Again, we have obtained a contradiction.
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Hence, we have shown that minimal words do not contain frames 100100
and 011011. Moreover, this implies that there are no frames 001001 and
110110 in a minimal word w, since otherwise 100100 and 011011 would occur
in the reversal wR of w, which is also minimal.

Lemma 5. We have S(n) = dn/2e − 2 for n ≥ 3.

Proof. We show first that S(n) ≥ dn/2e − 2. Note that the claim holds for
n ≤ 8. Let w be a word of length n for n ≥ 8 such that S(w) = S(n). We
prove that for all u with |u| = 2, we have S(wu) > S(w). The inequality
follows from this.

Assume contrary to this that for some u with |u| = 2, we have S(wu) =
S(w). By symmetry, we can assume that w ends in the letter 0. Then
S(w0) > S(w), and therefore we need to consider only the cases where 1 is
a prefix of the extending word u.

Case 1: Let w = v10 for some v. Now wu = v1010 or wu = v1011, and
in both cases at least one new occurrence of a short frame is created, either
1010 or 11.

Case 2: Let w = v00 for some v. Since w is minimal, the word w′ = v01
must contain at least S(w) short frames, and since the last 00 is destroyed
there exists a short frame f at the end of w′. We have two possibilities:
f = 0101 and f = 001001. Since S(w′) is necessarily minimal, the case
f = 001001 is impossible by Lemma 4. This means that w ends with 0100.
Since u begins with 1 and 001001 ∈ S, we must have w = x10100 (and
w′ = x10101) where v = x101. We compare w with the word ŵ = x10110.
Now w ∧ ŵ = x101 of length n− 2, and there are equally many short frames
ending in this portion of the two words. Since there are two short frames
(00 and 1010) ending after w ∧ ŵ in w, the minimality of S(w) implies that
in addition to the frame 11 there must be another short frame ending after
w ∧ ŵ in ŵ. The only possibility is that ŵ = y110110 where x = y1. Since
S(ŵ) = S(w) is again minimal, this contradicts with Lemma 4.

Finally we show that there is an equality in S(n) = dn/2e− 2. The proof
of this uses the same kind of case analysis as that for the inequality. Again,
let w be a word of length n such that S(w) = S(n). By Lemma 4, no two
short frames are suffixes of w. Hence, it suffices to show that the last and
the second last positions of w cannot both end in a short frame.

Assume to the contrary that if w = va for a ∈ {0, 1} then both w and v
have a suffix from the set S. By Lemma 4, we need to consider two cases.
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(a) Let w = x000. Thus both of the short frames are 00. Compare w
with w′ = x001 which must end in the small frame 001001 by the choice of
w. Now w′ contains as many frames as w. Thus, S(w′) is minimal. Since
001001 is a factor of w′, this contradicts with Lemma 4.

(b) Let w = x01010. In this case w has a suffix 1010 and the second
to last position ends necessarily in 0101. Compare w with w′ = x01101.
Here w ∧ w′ = x01, after which w ends by two short frames, and hence
also w′ must end by at least two short frames. The frame 11 ends after
the prefix x01 and another frame ending in w′ after the common prefix is
necessarily 110110. Then we have w = y1101010, where x = y11. Compare
w with ŵ = y1100110. Now w ∧ ŵ = y110 after which w has an ending of
three short frames (twice 1010 and once 0101) while ŵ has an ending of only
two short frames (00 and 11). This is again a contradiction.

The cases are exhausted, and hence S(n) = dn/2e − 2.

Note that, despite Lemma 4, the frames of length six are needed in the
definition of the set S in order to obtain Lemma 5. Namely, the word (100)n

of length 3n contains only n occurrences of short frames of length at most
four (more precisely, n frames 00). However, we have S((100)n) = 3(n− 1),
which is far from the minimal value S(3n) = d3n/2e − 2 of occurrences of
short frames.

Theorem 2. A binary word w of length n can have at most bn/2c+8 different
frames.

Proof. Given i = 2, 3, . . . , n − 1, there can be at most one frame with the
midpoint positioned at i. Indeed, if there are two squares uu and vv aligned
after the first occurrences of u and v, then the shorter is a border of the
larger. Hence there can be at most n − 2 frames in w. By Lemma 5, there
are at least dn/2e − 2 occurrences of short frames, and a short frame can be
counted only once. There are eight elements in S, and thus there are at most
n− 2− (dn/2e − 2− 8) = bn/2c+ 8 different frames.

5. Lower bound for distinct frames

Consider the Thue–Morse words obtained by iterating the morphism
µ : {0, 1}∗ → {0, 1}∗ defined by µ(0) = 01 and µ(1) = 10. Let τi = µi(0)
for i ≥ 0. Hence |τi| = 2i, and, e.g., τ0 = 0, τ1 = 01, τ2 = 0110, and
τ3 = 01101001. Always, τi is a prefix of τi+1. Hence, there exists the infinite
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Thue-Morse word τ = limi→∞ τi = limi→∞ µ
i(0). Now τi is a prefix of length

2i of τ . Moreover, for i > 0, let τ̂i = µi−1(011), i.e., the prefix of length
3 · 2i−1 of τ .

The Thue–Morse words are overlap-free, see [22], and they have only a
few frames. Indeed, the following result has been proven by Pansiot [23] and
Brlek [24].

Lemma 6. The squares of τ are all of the form µk(00), µk(11), or µk(010010),
µk(101101) for some k.

In particular, we have

Lemma 7. The frames in τ are among the words 00, 11, 0101 and 1010.

However, it was shown by Harju and Nowotka [25], that every other
conjugate of τi and τ̂i is unbordered.

Lemma 8. The word τi has 2i−1 unbordered conjugates and τ̂i has 3 · 2i−2
unbordered conjugates.

Let ζ : {0, 1}+ → {0, 1}+ be a mapping such that

ζ(w) = waa,

where a is the last letter of w. We show that also ζ(τi) and ζ(τ̂i) have plenty
of unbordered conjugates.

Lemma 9. The word ζ(τi) has 2i−1 unbordered conjugates and ζ(τ̂i) has
3 · 2i−2 unbordered conjugates.

Proof. Let w be one of the words τi or τ̂i ending with a ∈ {0, 1}. Consider
a bordered conjugate of ζ(w) with minimal border u. In other words, the
conjugate is of the form u1xu2, where u1 = u2 = u and x is some word.
We show that this conjugate is either awa, aaw or a conjugate such that by
deleting the two new letters a added by the mapping ζ we obtain a bordered
conjugate of w. In the sequel these new letters are written in boldface.

The minimal border u of the conjugates awa and aaw is clearly a. More-
over, if the two new letters a added by the mapping ζ occur in x, then we
may delete these letters and obtain one of the bordered conjugates of w. The
same holds if x ends with aa and u2 starts with a. Also, observe that aaa is
not a factor of the border u. Namely, no conjugate of ζ(w) can contain two
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non-overlapping factors aaa, since w is overlap-free and it begins and ends
with two distinct letters. Hence, let us assume that at least one a is a factor
of the border u and aaa is not. It remains two cases to consider.

First, assume that u1 ends with aa and, consequently, u2 ends with aa
and u = u1 = u2 begins with b 6= a. Note that |u| = 2 is impossible.
This implies that ζ(w) = x′u2u1a = x′(bu′aa)(bu′aa)a for some words x′ and
u′. Since w consists of blocks 01 and 10, we conclude that x′(bu′aa) must
have odd length. Since w = x′(bu′aa)bu′a has even length, the length of
u = u1 = u2 must be even. Hence, the words u1 and u2 start inside a block
ab and w = x′′a(bu′aa)bu′a = x′′vv, where v = abu′a. This is impossible,
since no square is a suffix of w by Lemma 6.

Next, consider the case where u2 begins with aa. Then u1 begins with
aa and u = u1 = u2 ends with b. Note that |u| = 2 is here impossible. Since
u1 begins with aa, the last letter of u2 and the first letter of u1 must form a
block ba in the word ζ(w). Hence, the length of u must be odd. Therefore, by
considering the block structure of w, we conclude that u1 must end with the
block ab, which implies that u2 ends with bab and, consequently, u1 ends with
abab. Hence, we have ζ(w) = u′ababu1xaa for some word u′. Since u1 begins
with a, the word w has a factor ababa contradicting the overlap-freeness of w.

Hence, we have proved that the number of unbordered conjugates of ζ(w)
is exactly the number of unbordered conjugates of w. By Lemma 8, this
means that in ζ(τi) of length 2i + 2 there are 2i−1 unbordered conjugates,
and in ζ(τ̂i) of length 3 ·2i−1 + 2 there are 3 ·2i−2 unbordered conjugates.

Using Lemma 9 we obtain a lower bound for F (n).

Theorem 3. We have F (n) > 7
30
n − ε for any positive ε and infinitely

many n.

Proof. Consider first the word

uk = τ̂ 21 τ
2
2 τ̂

2
2 · · · τ 2k−1τ̂ 2k−1τ 2k τk

of length

|uk| = 2
k−1∑
i=1

3 · 2i−1 + 2
k∑
i=2

2i + 2k

= 2k+3 − 14.

12



Now τ̂1 = 011 has two unbordered conjugates, but otherwise τ̂i has 3 · 2i−2
unbordered conjugates by Lemma 8. Similarly, the Thue-Morse word τi has
2i−1 unbordered conjugates. Also, when k ≥ 4, uk has the four short frames
00, 11 and 0101, 1010. Therefore,

F (uk) ≥ 4 + 2 +
k−1∑
i=2

3 · 2i−2 +
k∑
i=2

2i−1

= 7 · 2k−2 + 1.

Consider next the word

vk = ζ(τ̂1)
2ζ(τ2)

2ζ(τ̂2)
2 · · · ζ(τk−1)

2ζ(τ̂k−1)
2ζ(τk)

2τk

of length |uk| + 8(k − 1) = 2k+3 + 8k − 22. By Lemma 9, we have at least
the same number of frames in vk as in uk, i.e., F (vk) ≥ 7 · 2k−2 + 1.

Now let us combine these two words. Notice that the reversal (vk)
R of

the word vk has the same length and contains the same number of frames as
vk. Moreover, the Thue-Morse word τi is a palindrome for even values of i.
Hence, we have

(v2k)
R = τR2k(ζ(τ̂1)

2ζ(τ2)
2ζ(τ̂2)

2 · · · ζ(τ2k−1)
2ζ(τ̂2k−1)

2ζ(τ2k)
2)R

= τ2k(ζ(τ̂1)
2ζ(τ2)

2ζ(τ̂2)
2 · · · ζ(τ2k−1)

2ζ(τ̂2k−1)
2ζ(τ2k)

2)R

Consider now the word

wk = u2k(ζ(τ̂1)
2ζ(τ2)

2ζ(τ̂2)
2 · · · ζ(τ2k−1)

2ζ(τ̂2k−1)
2ζ(τ2k)

2)R

= τ̂ 21 τ
2
2 · · · τ̂ 22k−1τ 22kτ2k(ζ(τ̂1)

2ζ(τ2)
2 · · · ζ(τ̂2k−1)

2ζ(τ2k)
2)R.

This word contains all frames of u2k and (v2k)
R. Note that 00, 11, 0101 and

1010 are common to both words. However, frame uu, where u is a conjugate
of τi or τ̂i differs from vv, where v is a conjugate of ζ(τi) or ζ(τ̂i), since
|v|0 6= |v|1 but |u|0 = |u|1. Hence, we have

F (wk) ≥ 14 · 22k−2 − 2.

The length of w2k is

|wk| = |u2k|+ |v2k| − 22k

= (22k+3 − 14) + (22k+3 + 8 · 2k − 22)− 22k

= 15 · 22k + 16k − 36.

13



Therefore
F (wk)

|wk|
≥ 14 · 22k−2 − 2

15 · 22k + 16k − 36
.

Since

lim
k→∞

14 · 22k−2 − 2

15 · 22k + 16k − 36
=

14

15 · 4
=

7

30
,

this proves the claim.

6. Minimum number of occurrences of frames

Recall that M(w) is the number of occurrences of frames in a binary
word w and M(n) = min{M(w) | |w| = n}. In this section we are interested
in finding words of given length having as few frames as possible. Note
that maximizing the value M(w) for words of given length n is easy. For
example, the word w = 0n contains n− 1 frames 00 and gives the maximum
M(w) = n− 1.

As in the previous section, consider the Thue–Morse word τ and its pre-
fixes τi. Now we may count the number of occurrences of frames in a prefix
of even length of the Thue-Morse word.

Lemma 10. Let w be a prefix of the Thue-Morse word τ of even length
n > 2. Then

M(w) =
|w|
2
− 1.

Proof. For k ≥ 2, we have τk+1 = µk(0)µk(1), where M(µk(0)) = M(µk(1)),
and the only new frame created between the parts µk(0) and µk(1) is either
11 or 1010. Indeed, µk(1) begins with 1001 and if k is odd, µk(0) ends in
1001 and if k is even, µk(0) ends in 0110. Hence M(τk+1) = 2M(τk) + 1.
Since M(τ2) = 1, this gives us

M(τk) = 2k−1 − 1 = |τk|/2− 1 (1)

for all k ≥ 2. The prefixes w of even length of τk are of the form

w ∈ {u0110, u0101, u1001, u1010},

and in these cases M(u01) = M(w)−1 and M(u10) = M(w)−1 by Lemma 7.
Hence, the claim follows from (1).
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Next we modify the prefixes of the Thue-Morse word to obtain a word of
length n that has the minimum number of occurrences of frames. We show
that M(n) = S(n), where S(n) is the minimum number of occurrences of
short frames defined in Section 2. Note that our words w satisfying M(w) =
M(n) contain only short frames 00, 11, 0101 and 1010. Occasionally, we
write a dot (u.v) to emphasize a decomposition of the word.

Theorem 4. For n ≥ 3, we have

M(n) =
⌈n

2

⌉
− 2. (2)

Proof. It is clear that M(n) ≥ S(n) =
⌈
n
2

⌉
− 2, since each word of length n

has at least S(n) short frames. As in Section 3 we denote w• = v for w = va
where a ∈ {0, 1}. Moreover, if v is a prefix of τ of length m, then we denote

τ = vτ (m).

We say that a word w is fit if it satisfies (2) for n = |w|. The words 0101
and 1010 are called flips in the Thue-Morse word. A flip word is a word that
ends with a flip. We note that if w is a prefix of τ such that |w| ≡ 6 (mod 8)
then w is a flip word. (There are also other flips in τ , but we do not use
them.) We have by Lemma 7 that if w is a flip word then

M(w•) = M(w)− 1. (3)

We reduce the claim to the even cases of Lemma 10 in four steps by which
we obtain fit words.

(A) Let α = 1τ , i.e.,
α = 1.0110.1001.1001. . . .

If w is a prefix of τ of even length, then 1w is fit. For this one needs only to
show that there are no frames as a prefix of α.

Assuming the opposite, we conclude that 1w begins with the frame (101101z00)2,
where z is some word. This implies that w, which is a prefix of τ , begins with
the the square (01101z001)2. However, by Lemma 6, no square is a prefix of
the Thue-Morse word.

Hence, if |w| = n is even, then by Lemma 10, we have

M(1w) =
n

2
− 1 =

n+ 2

2
− 2 =

⌈
|1w|

2

⌉
− 2.
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Thus, for all odd lengths, there exists a fit word. Also, by the above, if
|1w| ≡ 7 (mod 8) then 1w is a flip word. Hence, by (3), we have fit words
1w• of all lengths n ≡ 6 (mod 8).

(B) Let β = τ (3), i.e.,
β = 0.1001.1001. . . .

Now, τ = 011τ (3). If w is a prefix of β of odd length, then it is fit. Indeed,
011w is an even length prefix of τ , which contains (|w|+ 3)/2− 1 frames by
Lemma 10. Since the first two frames 11 and 1010 of τ do not occur in w,
we have by Lemma 7 that M(w) = M(011w)− 2 = d|w|/2e − 2.

Therefore, by the above, if |w| ≡ 3 (mod 8) then w is a flip word. Hence,
we have fit words w• of all lengths n ≡ 2 (mod 8).

(C) Let γ = 1τ (6), i.e.,
γ = 101.1001.0110. . . .

Now, τ = 011010τ (6). If w is a prefix of τ (6) of even length, then 1w is fit.
Namely, there are no frames in the beginning of 1w. Otherwise, the frame
would be of the form (1011z00)2. By the structure of the Thue-Morse word,
this implies that the square (011z001)2 is a prefix of w and therefore a square
in the Thue-Morse word τ . Since it begins with zero, it must be of the form
µk(00) or µk(010010) by Lemma 6. We notice that µk(00) and µk(010010) are
not prefixes of τ (6) for k = 0, 1, 2. Moreover, τ (6) = 011001 · · · , but µk(00)
and µk(010010) begin with 011010 for k ≥ 3. Hence, adding 1 in front of
w does not increase the number of frames. By Lemma 7, we know that the
three first frames of τ = 011010τ (6) are 11, 1010 and 00. Subtracting these
occurrences, we conclude by Lemma 10 that

M(1w) = M(011010w)− 3 =
|w|+ 6

2
− 4 =

⌈
|1w|

2

⌉
− 2.

Therefore, by the above, if |1w| ≡ 1 (mod 8) then 1w is a flip word.
Hence we have fit words 1w• of all lengths n ≡ 0 (mod 8).

(D) Let δ = 010τ (12), i.e.,

δ = 010.0110.1001. . . .
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Now, τ = 011010011001τ (12). If w is a prefix of τ (12) of even length, then
010w is fit. In order to prove this, we show that M(010w) = M(w).

First, we notice that 00 is the only frame in the beginning of 0w. As in
the previous cases, if there is a longer frame in the beginning of 0w, then it
is of the form (001z1)2. Since τ (12) consists of blocks 01 and 10, we conclude
that 001z1 must have even length and, consequently, τ (12) begins with the
square (01z10)2. By Lemma 6, this square is either µk(00) or µk(010010)
for some k. For 0 ≤ k ≤ 3, we can easily check that the squares µk(00) or
µk(010010) are not prefixes of τ (12). Moreover, for k ≥ 4, the words µk(00)
or µk(010010) begin with 0110.1001.1, whereas τ (12) begins with 0110.1001.0.
Hence, we have proved that M(0w) = M(w) + 1.

Assume next that 10w begins with a frame. This frame must be of the
form (1001z00)2. Hence, 00100 becomes a factor of the Thue-Morse word,
which is clearly impossible. Thus, we have M(10w) = M(0w) = M(w) + 1.

Similarly, if 010w begins with a frame, this frame is of the form (010.0110.10z)2.
Now 010011010 must occur in τ ∈ {0110, 1001}∗, which is a contradiction.
This gives us M(010w) = M(10w) = M(w) + 1.

By Lemma 7, we find out that M(w) = M(0110.1001.1001w) − 6. By
Lemma 10, this gives us

M(010w) = M(w) + 1 =
|w|+ 12

2
− 6 =

|w|+ 4

2
− 2 =

⌈
|010w|

2

⌉
− 2.

If |w| ≡ 2 (mod 8), then 0110.1001.1001w is a prefix of τ of length 8k+6.
Thus, |010w| ≡ 5 (mod 8) and 010w is a flip word. Hence we have fit words
010w• of all lengths n ≡ 4 (mod 8). This proves the claim.

7. Conclusions

We have shown that the minimum number of occurrences of frames in a
binary word of length n is M(n) =

⌈
n
2

⌉
− 2 and the maximum number F (n)

of different frames is at most bn/2c+ 8. On the other hand, F (n) > 7
30
n− ε

for any positive ε and infinitely many n. Moreover, for words of length n, the
maximum number of occurrences of frames is trivially n−1 and the minimum
number of distinct frames is three for n > 18. It will be a challenging task
to minimize the gap between the upper bound and the lower bound of F (n).
We conjecture that F (n) = n/4 for n large enough.
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