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Abstract. Given a morphism h prolongable on a and an integer p, we
present an algorithm that calculates which letters occur infinitely of-
ten in congruent positions modulo p in the infinite word h“(a). As a
corollary, we show that it is decidable whether a morphic word is ulti-
mately p-periodic. Moreover, using our algorithm we can find the smallest
similarity relation such that the morphic word is ultimately relationally
p-periodic. The problem of deciding whether an automatic sequence is
ultimately weakly R-periodic is also shown to be decidable.
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1 Introduction

Periodicity is one of the main concepts in combinatorics on words and an im-
portant subject also from the application point of view [11]. The most famous
periodicity results in word combinatorics are probably the theorem of Fine and
Wilf, the Critical Factorization Theorem, and the theorem of Morse and Hed-
lund. The theorem of Fine and Wilf considers two simultaneously occurring
periods in one word [6], the Critical Factorization Theorem relates the period of
a word with the local repetitions [3, 5], and the theorem of Morse and Hedlund
characterizes ultimately periodic words in terms of subword complexity [9].

It is an interesting and important question how to recognize periodicity and
ultimate periodicity of infinite words. This depends heavily on the way the in-
finite word is generated. For example, in 1986, J. Honkala proved that it is
decidable whether a given automatic sequence is ultimately periodic [10]. Such
a sequence, produced by a finite automaton with output, can also be generated
using a uniform morphism and a coding. Recently, a new method for solving
the ultimate periodicity problem for automatic sequences was given by J.-P. Al-
louche, N. Rampersad and J. Shallit [1]. A more general result showing the
decidability of the ultimate periodicity question for pure morphic words was
given by T. Harju and M. Linna [8] and, independently, by J.-J. Pansiot [12].

* Supported by Finnish Cultural Foundation, Varsinais-Suomi Regional fund.
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However, if we replace pure morphic words of the form h*(a) by general morphic
words of the form g(h“(a)) where g is a coding, then the decidability status of
the ultimate periodicity problem remains unknown.

In this paper, we solve the decision problem of the ultimate p-periodicity
of morphic words. For given integer p and morphism h prolongable on a, i.e.,
h(a) = ax and h"™(z) # € for every n > 0, we present an algorithm that calculates
which letters occur infinitely often in congruent positions modulo p in the given
infinite word h*(a). It follows from this that, for any coding g, it is decidable
whether g(h*(a)) is ultimately p-periodic. We then consider relational periodicity
of morphic words. Relational periods were introduced in [7] as a generalization of
periods in partial words. Using our algorithm we can find the smallest similarity
relation such that the infinite word is ultimately relationally p-periodic. Finally,
we show that given a similarity relation R it is decidable whether an automatic
sequence is ultimately weakly R-periodic.

2 Preliminaries

Let A be a finite alphabet and denote the empty word by €. The free monoid .A*
is the set of finite words over A with the operation of concatenation. The length
of a finite word w is denoted by |w]|. The set of letters occurring in a word w is
denoted by Alph(w). An infinite word over A is a sequence x = (2, )n>0 Where
x, € A for every n > 0. Denote the set of all infinite words over A4 by A“. Let
also A® = A* U A¥. A word v is a factor of w € A if w = xvy for some word
x € A* and y € A*. The factor v is called a prefiz of w if x = ¢ and it is called
a suffir of w if y = €. The set of factors of length n of a word w is denoted
by F,(w).

A mapping h: A* — A* is a morphism if h(uv) = h(u)h(v) for every u,v €
A*. A morphism h on A* is prolongable on a letter a if h(a) = ay and h"(y) # &
for all integers n > 0. In this case, h"™(a) is a prefix of "1 (a) and the following
fixed point of h exists:

h*(a) = lim h"(a) = ayh(y)h*(y)--- .
n—oo
An infinite word of the above form x = h¥(a) is called a pure morphic word. A
morphic word is an image of a pure morphic words by a coding, i.e., it is of the
form g(h*“(a)) for some morphism h prolongable on a and for some coding, i.e.,
a letter-to-letter morphism ¢g: A* — B*.

An infinite word z is ultimately periodic if it is of the form z = wv* =
wvvv - - -, where u and v are finite words. The length |u| is a preperiod and the
length |v] is a period of x. An infinite word z is ultimately p-periodic if |v| = p.
The smallest period of x is called the period of x.

A similarity relation R is a relation on finite words induced by a reflexive
and symmetric relation on letters. A word u = uy - - - Uy, is R-similar to a word
v =1V, if n =m and u; Rv; for all letters u;, v; € A. Note that a similarity
relation need not be transitive. For example, if a Re, b Re and (a,b) € R, then
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abba R cbca, but abba and caca are not R-similar since the second letters are not
related.

Three kinds of relational periods with respect to a given similarity relation R
were introduced in [7]. An infinite word x = (2, )n>0 is weakly R-periodic if
x; Rxiqp for every ¢ > 0 and for some integer p > 0, which is called a weak
R-period of x. It is externally R-periodic with an external R-period p > 0 if
there exists a word v = vg - - - vp—1 such that z; Rv; if i = j (mod p). The word
x is strongly R-periodic with a strong R-period p > 0 if i = j (mod p) implies
x; Rx;. It is shown in [7] that all these relational periods are different, and any
strong R-period of x is also a weak and an external R-period. An infinite word
x is ultimately weakly (resp. externally, strongly) R-periodic if = uv where u
is a finite word (a preperiod) and the infinite word v is weakly (resp. externally,
strongly) R-periodic. We say that an infinite word is ultimately relationally p-
periodic if p € N is a weak, external or strong R-period of some suffix of the
word.

Let k > 2 be an integer. An infinite word © = (z,,)n>0 € B¥ is k-automatic if
there exists a finite deterministic automaton with output M = (Q, qo, X, 6, B, T)
such that 7(4(qo,rep,(n))) = z,, for all n > 0. Here rep,(n) denotes the base-
k representation of the integer n, @ is the finite set of states, qg is the initial
state, X, = {0, ...,k — 1} is the input alphabet, ¢ is the transition function and
7: @ — B is the output function. By the result of Cobham [4], an infinite word is
k-automatic if and only if it is of the form g(h“(a)) for a k-uniform morphism h
prolongable on a and a coding g. A morphism h: A* — A* is k-uniform if
|h(b)] = K for all letters b € A.

3 Algorithm on k-sets

Let © = (zn)n>0 be an infinite word over A. Let k € {0,1,...,p — 1}. We say
that a letter a € A belongs to the k-set of x modulo p if there exist infinitely
many integers n such that

zn=a and n=k (mod p).
In this section, we show that given integers k and p, it is decidable whether
a letter a belongs to the k-set of a given purely morphic word x modulo p.

Consequently, we give an algorithm that counts all k-sets of £ modulo p. First,
let us prove the following lemma concerning iteration of morphisms.

Lemma 1. Let h: A* — A* be a morphism, and let p be a positive integer.
There exist integers r and q > 0 such that

[R"(b)] = [h"F4(b)]  (mod p) (1)

for allb € A.
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Proof. If p = 1, then the claim is trivial. Let p > 1. Let M = M (h) be the
incidence matrix of the morphism h on the alphabet A = {a1,a2,...,aq}, i.e.,

M = (m;j)i<ij<d;

where m; ; denotes the number of occurrences of a; in h(a;). Now
n o n, T
| (a;)] = veM (O

for v, = (1,...,1) and v; = (d;j)1<i<d, where §;; = 1 and 6;; = 0 for i # j.
There are only finitely many matrices M™ mod p, where the entries are the
residues modulo p. Hence the infinite sequence (u;n)n>0 of the lengths u,;,, =
|h™(a;)| mod p is ultimately periodic. Denote the preperiod of (u;jn)n>0 by 7;
and the period of (u;,)n>0 by ¢j. Set r = maxr; and ¢ = lem(q,...,qq)- By
the periodicity of the sequences (u;,n)n>0, we conclude that |h"(a;)| = |h"9(a;)]|
(mod p) for any a; € A. O

Using the above lemma, we now prove our main result.

Theorem 1. Let x = (zp)n>0 = h¥(a) € AY for a morphism h prolongable
on a, and let b be a letter in A. Given positive integers k and p, it is decidable
whether there exist infinitely many n such that x, =b and n =k (mod p).

Proof. Let r and g be the integers satisfying (1) for the morphism h and the given
integer p. Consider the directed graph G, = (V, E) where the set of vertices V
is {(a,i) | a € A, 0 < i < p} and there is an edge from (c,7) to (d, j) if there
exist a letter b € A and integers m and m’ such that

h"(b) = y1 - yYn and Y., = ¢ with 1 < m < n, (2)
hi(c) = z1+--2zp and zyy =d with 1 <m' <n/, (3)
j—i=1h"yi- - ym)l+m' —m  (mod p). (4)

By Lemma 1, this means that if ¢ is at position ¢ mod p in x and it is the mth
letter of the image A" (b) for some b in x, then there is d at position j mod p of
and it is the m/th letter of the image h?(c); see Figure 1. Namely, consider the
position of d modulo p. If x; = b, then

i=|h"(zo- - xi—1)|+m—1 (mod p), (5)
J= 0o w)| + (A (Y1 Ym—r)| +m' =1 (mod p). (6)

By (1), we have |h" 9 (xg---21-1)] = | (2o -+ 7—1)| (mod p), which together
with (5) and (6) implies (4).

Recall that h is prolongable on a. We say that a vertex (c,i) € V is an
initial vertex if there exists a letter b = x; such that 0 < < |h"(a)|, ¢ is the
mth letter of h"(b) and ¢ satisfies (5). The set of the initial vertices is denoted
by Vi. Moreover, if there exist infinitely many paths in G}, starting from some
vertex of Vi and ending in v € V', we say that v is a recurrent vertex. The set of
recurrent vertices is denoted by Vg.
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Let (vo,v1,...,v,) be a path from some vertex vy € Vi to vy, where v; =
(bi, ki) for i = 0,...,n. By induction, there exists | < |h"(a)| such that b; occurs
in the image h"*%(x;), and in z there is a position of b; between |h" % (xq - - - 2;_1)|
and |h’“+"q(z0 -+ x1)|+1, which is congruent to k; modulo p. Note that if b; occurs
in the image h"*%(x;), then it occurs in the image h"(z,,) for some letter z,,
occurring in the image of hi(z;). The letter z,, corresponds to b occurring in
(2) in the definition of the graph G},. Note also that, for any position n, we can
find i and | < |h"(a)| such that x, is in a position between |h™ % (xq -+ x;_1)]
and |h" T (zg - - 2;)| + 1. Hence, we conclude that (b, k) is in Vg if and only if
there exist infinitely many n such that x, = b and n = k (mod p). This proves
the claim. O

o Ti—1 X

I R (zo - x1-1) ]l Y1 Ym—1 {ym{ymﬂ'“‘i/';i"'}

pe

h*+@(m0...$171) PRIy Y1) "-lzl...zm,...zr;';-.l h"(ym+1---yn)""'-.
I I I

Fig. 1. Image of ;.

The proof of the previous theorem gives us an algorithm for finding the k-sets
of h*(a) modulo p.

Algorithm. INPUT: morphism h prolongable on a and integer p > 0.

1. Find r and ¢ satisfying (1).

2. Using r and ¢, construct the graph G}, = (V, E) defined in Theorem 1.

3. Find the set of recurrent vertices V.

4. For each letter b and integer k € {0,1,...,p— 1}, set b € Cy, if (b, k) € Vi.

OUTPUT: k-sets Cy, of h*(a) modulo p.

4 Periodicity Results

In this section we show how the algorithm of the previous section can be used for
solving two periodicity problems. First, let us consider a decidability question
on morphic words.



6 Vesa Halava et al.

Theorem 2. Given a positive integer p, it is decidable whether a morphic word
g(h¥(a)) is ultimately p-periodic.

Proof. Consider a morphic word y = (yn)n>0 = g(h¥(a)), where h: A* — A* is
a morphism prolongable on a and g: A* — B* is a coding. Let = (2, )n>0 =
h*(a). By Theorem 1, all k-sets of  modulo p can be found algorithmically. We
claim that the word y is ultimately p-periodic if and only if g(b) = g(c) for all
pairs of letters (b, ¢) such that b and ¢ belong to the same k-set of  modulo p.

First assume that g(b) = g(c) for all pairs (b, ¢) belonging to some k-set of x
modulo p. Consider the subsequence (Zpn+k)n>o0 for some k € {0,1,...,p — 1}.
After a finite prefix the subsequence contains only letters belonging to the k-set
of x modulo p. Now ¢g maps all these letters to a common letter by € B. Since
this holds for every k € {0,1,...,p — 1}, it follows that y = g(z) = uv* where
v=(bg---bp—1)* and u is some finite word.

Conversely, assume that b and ¢ belong to some k-set of x modulo p and
g(b) # g(c). Thus, there exist two increasing sequences (in)p>1 and (jn)n>1
such that x;, = b, z;, = c and i, = k = j, (mod p). This means that, for
any N, there are positions 4, j > N such that y; # y; and ¢ = j (mod p). Hence,
y is not ultimately p-periodic. O

Another application of Theorem 1 is the following results concerning rela-
tional periods.

Theorem 3. Given a positive integer p, a morphic word y and a similarity rela-
tion R, it is decidable whether y is ultimately strongly (resp. externally, weakly)
R-periodic with period p.

Proof. Let y = (yn)n>0 = g(h*(a)), where h: A* — A* is a morphism pro-
longable on @ and g: A* — B* is a coding. Denote z = (2 )n>0 = h*(a). By
Theorem 1, all k-sets of  modulo p can be found algorithmically.

Similarly to the proof of the previous theorem, we can show that y is ulti-
mately strongly R-periodic with period p if and only if g(b) R g(c) for all pairs
of letters (b, ¢) belonging to some k-set of  modulo p.

The case of external R-periodicity is a little bit different. We claim that y
is ultimately externally R-periodic with period p if and only if for each k €
{0,1,...,p— 1} there exists a letter by € B such that by R g(c) for every letter ¢
in the k-set of £ modulo p.

First assume that such letters by can be found. Then b;, is related to all letters
occurring infinitely many times in the subsequence (Ypn+tk)n>0 = (9(Zpn+k))n>o0-
Hence, (Ypn+k)n>0 is ultimately externally R-periodic with period 1. Since this
holds for every k € {0,1,...,p — 1}, we conclude that after a finite prefix the
morphic word y is R-similar to (b ...b,—1)%, i.e., y is ultimately externally R-
periodic with period p.

Assume next that y is ultimately externally R-periodic with period p. Then
for each k € {0,1,...,p — 1}, there exists a letter vy such that y; Rvy if i = k
(mod p) and ¢ > N for some integer N large enough. Take a letter ¢ from the
k-set of  modulo p. By definition, there are infinitely many positions 4 such that
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x; = cand i = k (mod p). Hence, there are infinitely many position i such that
yi = g(c) and ¢ = k (mod p). By assumption, we have g(¢) Rv, and the claim
holds.

Finally, consider the weak R-periodicity of y. Here it suffices to find out all
words of length p + 1 that occur infinitely often in y. Denote the set of these
factors by Wp41. The word y is ultimately weakly R-periodic with period p if
and only if the first and the last letter of every w € Wy, are R-similar. The
set W11 can be constructed effectively. By the result of Cobham [2, Theorem
7.5.1], we may assume that h is non-erasing.

First, we find the set of all factors of x of length at most p + 1. Set

p+1

Un = | F;(h"(a))

j=1

for n > 0. Since h"(a) is a prefix of h"T1(a) and z = h*(a), we have U, C
Upnt1 C U?Ii F;(x) for every n > 0. Since there are only finitely many factors of
length at most p+ 1, there must be an integer N such that Uy = Un41. Since h
is non-erasing, a factor v of x of length at most p+ 1 is a factor of h(u) for some
word u € Fj(z) with j < p+ 1. This implies that U,, = Un for every n > N and,
consequently,

Fp+1 - UN N AZH’I.

Let Vp+1 be the set of factors of x of length p + 1 that occur infinitely often
in z. To find the subset V},41 of Fj,;1 we suggest a graph construction similar to
that in Theorem 1. Let G = (V, E)) be a directed graph, where V' = F,;; and
there is an edge from u to v if v is a factor of A(u). By the definition of the graph,
a word v belongs to V), if and only if there exist a vertex u such that there are
infinitely long paths from u to v. The existence of such u can be easily verified.
Hence, we can construct the set V,,41 and, clearly, we have W11 = g(Vp41). O

For a relation R on the alphabet A, let
sz(R) = [{(a,b) | a Rb}|.

A relation R is smaller than a relation S if sz(R) < sz(S). We can measure the
degree of periodicity of an infinite word = € A“ by considering the smallest sim-
ilarity relation R, , such that x is ultimately strongly (resp. externally, weakly)
R, p-periodic with period p. It is clear that such a relation is unique. We have
the following obvious corollary of Theorem 3.

Corollary 1. Given a positive integer p and a morphic word x, we can effec-
tively find the smallest similarity relation Ry, such that x is ultimately strongly
(resp. externally, weakly) Ry p-periodic with period p.

Unfortunately, the general ultimate periodicity problem (without specifying
the period p) for morphic words remains unsolved. Note that this very difficult
and challenging problem is a special case of the wltimate relational periodicity
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problem:

Given a pure morphic word x and a similarity relation R, decide whether
x is ultimately strongly (resp. externally, weakly) R-periodic.

The ultimate periodicity problem for a morphic word g(h“(a)) is the above
problem where the relation R is defined by the coding g as follows: a Rb if an
only if g(a) = g(b). Note that in this case R is an equivalence relation and the
definitions of strong, weak and external periods coincide.

However, using the method from [1] we can solve the ultimate relational pe-
riodicity problem restricted to automatic sequences and weak relational periods.
The proof of Theorem 4 is similar to corresponding result in [1]. For completeness
sake, we give the proof.

Theorem 4. Given a k-automatic sequence x over A and a similarity relation R
on A, it is decidable whether x is ultimately weakly R-periodic.

Proof. Let x = (z,)n>0 be an infinite k-automatic sequence. The sequence x is
ultimately weakly R-periodic if there exists P > 1, N > 0 such that x; Rz;yp
for all « > N.

First, construct a nondeterministic finite automaton (NFA) that on input
(P, N) successively “guesses” the base-k digits of I starting with the least signif-
icant digit and accepts if I > N and (x7,z14p) € R. Let M = (Q, qo, Xk, 3, B, T)
be the finite automaton with output that generates the sequence z, i.e., x, =
7(0(qo, repy(n))) for all n > 0. Then define My = (Q’, ¢}, Xx X X, 0’, F'), where

Q/:{<7:7>} X {0,1} XQ XQ;
Q6 = [:a07q0aQO]a
F' ={[b,0,q,7] | b€ {>,=} and (7(q),7(r)) € R}.

Here F” is the set of accepting states, and the input is actually a sequence of

pairs

(po; m0)(p1,11) (P2, n2) - - - (D), 15),
where p;p;_1---po is a base-k representation of P and n;n;_;---ng is a base-k
representation of NV, either one or both padded with leading zeros to ensure that
their lengths are equal.

In order to verify that I > N, we have a flag {<, =, >} that tells us how the
digits of the guessed I seen so far are in relation to the digits of the input IV
read so far. Let ¢’ be the next guessed digit of I and let n’ be the next read digit
of N. We update the flag as follows:

<, if i <n';
u(<,i',n') = T
(<#n) {>,1fz’>n’;
<, if i <n';
u(=,i,n') =< = ifi' =n';
> if i’ >n';

) <, if i <n';
w(>,i',n) = i ’
(>7',n) {>,1fz’2n’.
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In a state [b, ¢, q,r] € Q' the component b is the flag, ¢ is the carry bit in the
computation I 4+ P, q is the state in M reached by the digits of I guessed so far,
and 7 is the state in M reached by the digits of I + P calculated so far. Hence,
the transitions &' : Q' x (X x X)) — 29 are defined by

8 ([bye,q,r](p',n')) =

)
(ot | 2] s -7+ ey oo < < ).

We must ensure that the acceptance of (P, N) does not depend on the num-
ber of leading zeros and that the calculation is correct in the case where the
guessed [ is longer than the input. Hence, we modify the accepting states of M;
by constructing a new NFA M, = (Q,q, Xr x X, 8, F) where a state [b, ¢, ¢, 7]
belongs to F' if there exists j > 0 such that 8 ([b, ¢, q,7],(0,0)7) contains a state
in F'.

Then convert M; to a deterministic finite automaton (DFA) Mj using the
subset construction. By interchanging accepting and non-accepting states we
obtain a DFA M3 that accepts (P, N) if and only if 2y Rzy4p for all I > N.
Now x is ultimately weakly R-periodic if and only if M3 accepts some input
(P,N) with P > 1. This can be checked by creating a DFA M, that accepts
2 Ze \{0}) X x X} and forming the direct product DFA M;5 that accepts
exactly the words accepted by both M3 and M. Thus, the word z is ultimately
weakly R-periodic if and only if the language accepted by Mj5 is not empty. This
can be easily checked. O
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