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Abstract. Given a morphism h prolongable on a and an integer p, we
present an algorithm that calculates which letters occur infinitely of-
ten in congruent positions modulo p in the infinite word hω(a). As a
corollary, we show that it is decidable whether a morphic word is ulti-
mately p-periodic. Moreover, using our algorithm we can find the smallest
similarity relation such that the morphic word is ultimately relationally
p-periodic. The problem of deciding whether an automatic sequence is
ultimately weakly R-periodic is also shown to be decidable.
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1 Introduction

Periodicity is one of the main concepts in combinatorics on words and an im-
portant subject also from the application point of view [11]. The most famous
periodicity results in word combinatorics are probably the theorem of Fine and
Wilf, the Critical Factorization Theorem, and the theorem of Morse and Hed-
lund. The theorem of Fine and Wilf considers two simultaneously occurring
periods in one word [6], the Critical Factorization Theorem relates the period of
a word with the local repetitions [3, 5], and the theorem of Morse and Hedlund
characterizes ultimately periodic words in terms of subword complexity [9].

It is an interesting and important question how to recognize periodicity and
ultimate periodicity of infinite words. This depends heavily on the way the in-
finite word is generated. For example, in 1986, J. Honkala proved that it is
decidable whether a given automatic sequence is ultimately periodic [10]. Such
a sequence, produced by a finite automaton with output, can also be generated
using a uniform morphism and a coding. Recently, a new method for solving
the ultimate periodicity problem for automatic sequences was given by J.-P. Al-
louche, N. Rampersad and J. Shallit [1]. A more general result showing the
decidability of the ultimate periodicity question for pure morphic words was
given by T. Harju and M. Linna [8] and, independently, by J.-J. Pansiot [12].

⋆ Supported by Finnish Cultural Foundation, Varsinais-Suomi Regional fund.
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However, if we replace pure morphic words of the form hω(a) by general morphic
words of the form g(hω(a)) where g is a coding, then the decidability status of
the ultimate periodicity problem remains unknown.

In this paper, we solve the decision problem of the ultimate p-periodicity
of morphic words. For given integer p and morphism h prolongable on a, i.e.,
h(a) = ax and hn(x) 6= ε for every n ≥ 0, we present an algorithm that calculates
which letters occur infinitely often in congruent positions modulo p in the given
infinite word hω(a). It follows from this that, for any coding g, it is decidable
whether g(hω(a)) is ultimately p-periodic. We then consider relational periodicity
of morphic words. Relational periods were introduced in [7] as a generalization of
periods in partial words. Using our algorithm we can find the smallest similarity
relation such that the infinite word is ultimately relationally p-periodic. Finally,
we show that given a similarity relation R it is decidable whether an automatic
sequence is ultimately weakly R-periodic.

2 Preliminaries

Let A be a finite alphabet and denote the empty word by ε. The free monoid A∗

is the set of finite words over A with the operation of concatenation. The length
of a finite word w is denoted by |w|. The set of letters occurring in a word w is
denoted by Alph(w). An infinite word over A is a sequence x = (xn)n≥0 where
xn ∈ A for every n ≥ 0. Denote the set of all infinite words over A by Aω . Let
also A∞ = A∗ ∪Aω. A word v is a factor of w ∈ A∞ if w = xvy for some word
x ∈ A∗ and y ∈ A∞. The factor v is called a prefix of w if x = ε and it is called
a suffix of w if y = ε. The set of factors of length n of a word w is denoted
by Fn(w).

A mapping h : A∗ → A∗ is a morphism if h(uv) = h(u)h(v) for every u, v ∈
A∗. A morphism h on A∗ is prolongable on a letter a if h(a) = ay and hn(y) 6= ε

for all integers n ≥ 0. In this case, hn(a) is a prefix of hn+1(a) and the following
fixed point of h exists:

hω(a) = lim
n→∞

hn(a) = ayh(y)h2(y) · · · .

An infinite word of the above form x = hω(a) is called a pure morphic word. A
morphic word is an image of a pure morphic words by a coding, i.e., it is of the
form g(hω(a)) for some morphism h prolongable on a and for some coding, i.e.,
a letter-to-letter morphism g : A∗ → B∗.

An infinite word x is ultimately periodic if it is of the form x = uvω =
uvvv · · · , where u and v are finite words. The length |u| is a preperiod and the
length |v| is a period of x. An infinite word x is ultimately p-periodic if |v| = p.
The smallest period of x is called the period of x.

A similarity relation R is a relation on finite words induced by a reflexive
and symmetric relation on letters. A word u = u1 · · ·um is R-similar to a word
v = v1 · · · vn if n = m and ui R vi for all letters ui, vi ∈ A. Note that a similarity
relation need not be transitive. For example, if a R c, b R c and (a, b) 6∈ R, then
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abba Rcbca, but abba and caca are not R-similar since the second letters are not
related.

Three kinds of relational periods with respect to a given similarity relation R

were introduced in [7]. An infinite word x = (xn)n≥0 is weakly R-periodic if
xi R xi+p for every i ≥ 0 and for some integer p > 0, which is called a weak
R-period of x. It is externally R-periodic with an external R-period p > 0 if
there exists a word v = v0 · · · vp−1 such that xi R vj if i ≡ j (mod p). The word
x is strongly R-periodic with a strong R-period p > 0 if i ≡ j (mod p) implies
xi R xj . It is shown in [7] that all these relational periods are different, and any
strong R-period of x is also a weak and an external R-period. An infinite word
x is ultimately weakly (resp. externally, strongly) R-periodic if x = uv where u

is a finite word (a preperiod) and the infinite word v is weakly (resp. externally,
strongly) R-periodic. We say that an infinite word is ultimately relationally p-
periodic if p ∈ N is a weak, external or strong R-period of some suffix of the
word.

Let k ≥ 2 be an integer. An infinite word x = (xn)n≥0 ∈ Bω is k-automatic if
there exists a finite deterministic automaton with output M = (Q, q0, Σk, δ,B, τ)
such that τ(δ(q0, repk(n))) = xn for all n ≥ 0. Here repk(n) denotes the base-
k representation of the integer n, Q is the finite set of states, q0 is the initial
state, Σk = {0, . . . , k− 1} is the input alphabet, δ is the transition function and
τ : Q → B is the output function. By the result of Cobham [4], an infinite word is
k-automatic if and only if it is of the form g(hω(a)) for a k-uniform morphism h

prolongable on a and a coding g. A morphism h : A∗ → A∗ is k-uniform if
|h(b)| = k for all letters b ∈ A.

3 Algorithm on k-sets

Let x = (xn)n≥0 be an infinite word over A. Let k ∈ {0, 1, . . . , p − 1}. We say
that a letter a ∈ A belongs to the k-set of x modulo p if there exist infinitely
many integers n such that

xn = a and n ≡ k (mod p).

In this section, we show that given integers k and p, it is decidable whether
a letter a belongs to the k-set of a given purely morphic word x modulo p.
Consequently, we give an algorithm that counts all k-sets of x modulo p. First,
let us prove the following lemma concerning iteration of morphisms.

Lemma 1. Let h : A∗ → A∗ be a morphism, and let p be a positive integer.
There exist integers r and q > 0 such that

|hr(b)| ≡ |hr+q(b)| (mod p) (1)

for all b ∈ A.
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Proof. If p = 1, then the claim is trivial. Let p > 1. Let M = M(h) be the
incidence matrix of the morphism h on the alphabet A = {a1, a2, . . . , ad}, i.e.,

M = (mi,j)1≤i,j≤d,

where mi,j denotes the number of occurrences of ai in h(aj). Now

|hn(aj)| = vtM
nvT

j ,

for vt = (1, . . . , 1) and vj = (δij)1≤i≤d, where δjj = 1 and δij = 0 for i 6= j.
There are only finitely many matrices Mn mod p, where the entries are the
residues modulo p. Hence the infinite sequence (uj,n)n≥0 of the lengths uj,n =
|hn(aj)| mod p is ultimately periodic. Denote the preperiod of (uj,n)n≥0 by rj

and the period of (uj,n)n≥0 by qj . Set r = max rj and q = lcm(q1, . . . , qd). By
the periodicity of the sequences (uj,n)n≥0, we conclude that |hr(aj)| ≡ |hr+q(aj)|
(mod p) for any aj ∈ A. ⊓⊔

Using the above lemma, we now prove our main result.

Theorem 1. Let x = (xn)n≥0 = hω(a) ∈ Aω for a morphism h prolongable
on a, and let b be a letter in A. Given positive integers k and p, it is decidable
whether there exist infinitely many n such that xn = b and n ≡ k (mod p).

Proof. Let r and q be the integers satisfying (1) for the morphism h and the given
integer p. Consider the directed graph Gh = (V, E) where the set of vertices V

is {(a, i) | a ∈ A, 0 ≤ i < p} and there is an edge from (c, i) to (d, j) if there
exist a letter b ∈ A and integers m and m′ such that

hr(b) = y1 · · · yn and ym = c with 1 ≤ m ≤ n, (2)

hq(c) = z1 · · · zn′ and zm′ = d with 1 ≤ m′ ≤ n′, (3)

j − i ≡ |hq(y1 · · · ym−1)| + m′ − m (mod p). (4)

By Lemma 1, this means that if c is at position i mod p in x and it is the mth
letter of the image hr(b) for some b in x, then there is d at position j mod p of x

and it is the m′th letter of the image hq(c); see Figure 1. Namely, consider the
position of d modulo p. If xl = b, then

i ≡ |hr(x0 · · ·xl−1)| + m − 1 (mod p), (5)

j ≡ |hr+q(x0 · · ·xl−1)| + |hq(y1 · · · ym−1)| + m′ − 1 (mod p). (6)

By (1), we have |hr+q(x0 · · ·xl−1)| ≡ |hr(x0 · · ·xl−1)| (mod p), which together
with (5) and (6) implies (4).

Recall that h is prolongable on a. We say that a vertex (c, i) ∈ V is an
initial vertex if there exists a letter b = xl such that 0 ≤ l < |hr(a)|, c is the
mth letter of hr(b) and i satisfies (5). The set of the initial vertices is denoted
by VI . Moreover, if there exist infinitely many paths in Gh starting from some
vertex of VI and ending in v ∈ V , we say that v is a recurrent vertex. The set of
recurrent vertices is denoted by VR.
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Let (v0, v1, . . . , vn) be a path from some vertex v0 ∈ VI to vn, where vi =
(bi, ki) for i = 0, . . . , n. By induction, there exists l < |hr(a)| such that bi occurs
in the image hr+iq(xl), and in x there is a position of bi between |hr+iq(x0 · · ·xl−1)|
and |hr+iq(x0 · · ·xl)|+1, which is congruent to ki modulo p. Note that if bi occurs
in the image hr+iq(xl), then it occurs in the image hr(xm) for some letter xm

occurring in the image of hiq(xl). The letter xm corresponds to b occurring in
(2) in the definition of the graph Gh. Note also that, for any position n, we can
find i and l < |hr(a)| such that xn is in a position between |hr+iq(x0 · · ·xl−1)|
and |hr+iq(x0 · · ·xl)| + 1. Hence, we conclude that (b, k) is in VR if and only if
there exist infinitely many n such that xn = b and n ≡ k (mod p). This proves
the claim. ⊓⊔

hr+q(x0 · · ·xl−1) hq(y1 · · · ym−1) z1 · · · zm′ · · · zn′ hq(ym+1 · · · yn)

hq

hr(x0 · · ·xl−1) y1 · · · ym−1 ym ym+1 · · · yn

hr

x0 · · ·xl−1 xl

Fig. 1. Image of xl.

The proof of the previous theorem gives us an algorithm for finding the k-sets
of hω(a) modulo p.

Algorithm. INPUT: morphism h prolongable on a and integer p > 0.

1. Find r and q satisfying (1).
2. Using r and q, construct the graph Gh = (V, E) defined in Theorem 1.
3. Find the set of recurrent vertices VR.
4. For each letter b and integer k ∈ {0, 1, . . . , p − 1}, set b ∈ Ck if (b, k) ∈ VR.

OUTPUT: k-sets Ck of hω(a) modulo p.

4 Periodicity Results

In this section we show how the algorithm of the previous section can be used for
solving two periodicity problems. First, let us consider a decidability question
on morphic words.
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Theorem 2. Given a positive integer p, it is decidable whether a morphic word
g(hω(a)) is ultimately p-periodic.

Proof. Consider a morphic word y = (yn)n≥0 = g(hω(a)), where h : A∗ → A∗ is
a morphism prolongable on a and g : A∗ → B∗ is a coding. Let x = (xn)n≥0 =
hω(a). By Theorem 1, all k-sets of x modulo p can be found algorithmically. We
claim that the word y is ultimately p-periodic if and only if g(b) = g(c) for all
pairs of letters (b, c) such that b and c belong to the same k-set of x modulo p.

First assume that g(b) = g(c) for all pairs (b, c) belonging to some k-set of x

modulo p. Consider the subsequence (xpn+k)n≥0 for some k ∈ {0, 1, . . . , p − 1}.
After a finite prefix the subsequence contains only letters belonging to the k-set
of x modulo p. Now g maps all these letters to a common letter bk ∈ B. Since
this holds for every k ∈ {0, 1, . . . , p − 1}, it follows that y = g(x) = uvω where
v = (b0 · · · bp−1)

ω and u is some finite word.
Conversely, assume that b and c belong to some k-set of x modulo p and

g(b) 6= g(c). Thus, there exist two increasing sequences (in)n≥1 and (jn)n≥1

such that xin
= b, xjn

= c and in ≡ k ≡ jn (mod p). This means that, for
any N , there are positions i, j > N such that yi 6= yj and i ≡ j (mod p). Hence,
y is not ultimately p-periodic. ⊓⊔

Another application of Theorem 1 is the following results concerning rela-
tional periods.

Theorem 3. Given a positive integer p, a morphic word y and a similarity rela-
tion R, it is decidable whether y is ultimately strongly (resp. externally, weakly)
R-periodic with period p.

Proof. Let y = (yn)n≥0 = g(hω(a)), where h : A∗ → A∗ is a morphism pro-
longable on a and g : A∗ → B∗ is a coding. Denote x = (xn)n≥0 = hω(a). By
Theorem 1, all k-sets of x modulo p can be found algorithmically.

Similarly to the proof of the previous theorem, we can show that y is ulti-
mately strongly R-periodic with period p if and only if g(b)R g(c) for all pairs
of letters (b, c) belonging to some k-set of x modulo p.

The case of external R-periodicity is a little bit different. We claim that y

is ultimately externally R-periodic with period p if and only if for each k ∈
{0, 1, . . . , p− 1} there exists a letter bk ∈ B such that bk R g(c) for every letter c

in the k-set of x modulo p.
First assume that such letters bk can be found. Then bk is related to all letters

occurring infinitely many times in the subsequence (ypn+k)n≥0 = (g(xpn+k))n≥0.
Hence, (ypn+k)n≥0 is ultimately externally R-periodic with period 1. Since this
holds for every k ∈ {0, 1, . . . , p − 1}, we conclude that after a finite prefix the
morphic word y is R-similar to (b0 . . . bp−1)

ω , i.e., y is ultimately externally R-
periodic with period p.

Assume next that y is ultimately externally R-periodic with period p. Then
for each k ∈ {0, 1, . . . , p − 1}, there exists a letter vk such that yi R vk if i ≡ k

(mod p) and i > N for some integer N large enough. Take a letter c from the
k-set of x modulo p. By definition, there are infinitely many positions i such that
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xi = c and i ≡ k (mod p). Hence, there are infinitely many position i such that
yi = g(c) and i ≡ k (mod p). By assumption, we have g(c)R vk and the claim
holds.

Finally, consider the weak R-periodicity of y. Here it suffices to find out all
words of length p + 1 that occur infinitely often in y. Denote the set of these
factors by Wp+1. The word y is ultimately weakly R-periodic with period p if
and only if the first and the last letter of every w ∈ Wp+1 are R-similar. The
set Wp+1 can be constructed effectively. By the result of Cobham [2, Theorem
7.5.1], we may assume that h is non-erasing.

First, we find the set of all factors of x of length at most p + 1. Set

Un =

p+1
⋃

j=1

Fj(h
n(a))

for n ≥ 0. Since hn(a) is a prefix of hn+1(a) and x = hω(a), we have Un ⊆
Un+1 ⊆ ∪p+1

j=1Fj(x) for every n ≥ 0. Since there are only finitely many factors of
length at most p+1, there must be an integer N such that UN = UN+1. Since h

is non-erasing, a factor v of x of length at most p+1 is a factor of h(u) for some
word u ∈ Fj(x) with j ≤ p+1. This implies that Un = UN for every n ≥ N and,
consequently,

Fp+1 = UN ∩Ap+1.

Let Vp+1 be the set of factors of x of length p + 1 that occur infinitely often
in x. To find the subset Vp+1 of Fp+1 we suggest a graph construction similar to
that in Theorem 1. Let G = (V, E) be a directed graph, where V = Fp+1 and
there is an edge from u to v if v is a factor of h(u). By the definition of the graph,
a word v belongs to Vp+1 if and only if there exist a vertex u such that there are
infinitely long paths from u to v. The existence of such u can be easily verified.
Hence, we can construct the set Vp+1 and, clearly, we have Wp+1 = g(Vp+1). ⊓⊔

For a relation R on the alphabet A, let

sz(R) = |{(a, b) | a R b}|.

A relation R is smaller than a relation S if sz(R) < sz(S). We can measure the
degree of periodicity of an infinite word x ∈ Aω by considering the smallest sim-
ilarity relation Rx,p such that x is ultimately strongly (resp. externally, weakly)
Rx,p-periodic with period p. It is clear that such a relation is unique. We have
the following obvious corollary of Theorem 3.

Corollary 1. Given a positive integer p and a morphic word x, we can effec-
tively find the smallest similarity relation Rx,p such that x is ultimately strongly
(resp. externally, weakly) Rx,p-periodic with period p.

Unfortunately, the general ultimate periodicity problem (without specifying
the period p) for morphic words remains unsolved. Note that this very difficult
and challenging problem is a special case of the ultimate relational periodicity
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problem:

Given a pure morphic word x and a similarity relation R, decide whether
x is ultimately strongly (resp. externally, weakly) R-periodic.

The ultimate periodicity problem for a morphic word g(hω(a)) is the above
problem where the relation R is defined by the coding g as follows: a R b if an
only if g(a) = g(b). Note that in this case R is an equivalence relation and the
definitions of strong, weak and external periods coincide.

However, using the method from [1] we can solve the ultimate relational pe-
riodicity problem restricted to automatic sequences and weak relational periods.
The proof of Theorem 4 is similar to corresponding result in [1]. For completeness
sake, we give the proof.

Theorem 4. Given a k-automatic sequence x over A and a similarity relation R

on A, it is decidable whether x is ultimately weakly R-periodic.

Proof. Let x = (xn)n≥0 be an infinite k-automatic sequence. The sequence x is
ultimately weakly R-periodic if there exists P ≥ 1, N ≥ 0 such that xi R xi+P

for all i ≥ N .
First, construct a nondeterministic finite automaton (NFA) that on input

(P, N) successively “guesses” the base-k digits of I starting with the least signif-
icant digit and accepts if I ≥ N and (xI , xI+P ) 6∈ R. Let M = (Q, q0, Σk, δ,B, τ)
be the finite automaton with output that generates the sequence x, i.e., xn =
τ(δ(q0, repk(n))) for all n ≥ 0. Then define M1 = (Q′, q′0, Σk ×Σk, δ

′, F ′), where

Q′ = {<, =, >} × {0, 1} × Q × Q,

q′0 = [=, 0, q0, q0],

F ′ = {[b, 0, q, r] | b ∈ {>, =} and (τ(q), τ(r)) 6∈ R}.

Here F ′ is the set of accepting states, and the input is actually a sequence of
pairs

(p0, n0)(p1, n1)(p2, n2) · · · (pj , nj),

where pjpj−1 · · · p0 is a base-k representation of P and njnj−1 · · ·n0 is a base-k
representation of N , either one or both padded with leading zeros to ensure that
their lengths are equal.

In order to verify that I ≥ N , we have a flag {<, =, >} that tells us how the
digits of the guessed I seen so far are in relation to the digits of the input N

read so far. Let i′ be the next guessed digit of I and let n′ be the next read digit
of N . We update the flag as follows:

u(<, i′, n′) =

{

<, if i′ ≤ n′ ;
>, if i′ > n′ ;

u(=, i′, n′) =







<, if i′ < n′ ;
=, if i′ = n′ ;
>, if i′ > n′ ;

u(>, i′, n′) =

{

<, if i′ < n′ ;
>, if i′ ≥ n′ .
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In a state [b, c, q, r] ∈ Q′ the component b is the flag, c is the carry bit in the
computation I +P , q is the state in M reached by the digits of I guessed so far,
and r is the state in M reached by the digits of I + P calculated so far. Hence,
the transitions δ′ : Q′ × (Σk × Σk) → 2Q′

are defined by

δ′([b, c, q, r](p′, n′)) =
{[

u(b, i′, n′),

⌊

i′ + p′ + c

k

⌋

, δ(q, i′), δ(r, (i′ + p′ + c) mod k)

]∣

∣

∣

∣

0 ≤ i′ < k

}

.

We must ensure that the acceptance of (P, N) does not depend on the num-
ber of leading zeros and that the calculation is correct in the case where the
guessed I is longer than the input. Hence, we modify the accepting states of M1

by constructing a new NFA M̂1 = (Q′, q′0, Σk ×Σk, δ′, F̂ ) where a state [b, c, q, r]
belongs to F̂ if there exists j ≥ 0 such that δ′([b, c, q, r], (0, 0)j) contains a state
in F ′.

Then convert M̂1 to a deterministic finite automaton (DFA) M2 using the
subset construction. By interchanging accepting and non-accepting states we
obtain a DFA M3 that accepts (P, N) if and only if xI R xI+P for all I ≥ N .
Now x is ultimately weakly R-periodic if and only if M3 accepts some input
(P, N) with P ≥ 1. This can be checked by creating a DFA M4 that accepts
Σ∗

k(Σk \ {0})Σ∗
k × Σ∗

k and forming the direct product DFA M5 that accepts
exactly the words accepted by both M3 and M4. Thus, the word x is ultimately
weakly R-periodic if and only if the language accepted by M5 is not empty. This
can be easily checked. ⊓⊔
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