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Abstract

In the infinite Post Correspondence Problem an instance (h, g) consists
of two morphisms h and g, and the problem is to determine whether or
not there exist an infinite word w such that h(w) = g(w). This problem is
undecidable in the general case, but it is known to be decidable for binary
and marked instances. A morphism is binary, if the domain alphabet
is of size 2, and marked, if each image of a letter begins with different
letter. We prove that the solutions in these decidable cases form a set
PUK®UK™F, where P is a finite set of ultimately periodic words, K is a
finite set of solutions of the PCP, and F' is a finite set of morphic images
of fixed points of DOL systems.

1 Introduction

In the Post Correspondence Problem (PCP, for short), we are given two mor-
phisms h,g: A* — B*, where A and B are finite alphabets, and we are asked
whether or not there exists a nonempty word w € A* such that h(w) = g(w).
The pair (h, g) is called an instance of the PCP and a word w € A" is a solution
of the instance (h, g) if h(w) = g(w). The set of all solutions,

E(h,g) ={w € A" | h(w) = g(w)},

is called the equality set of the instance (h, g).
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The PCP is undecidable in this general form (see Post [13]). The borderline
between decidable and undecidable sets of instances has been investigated in
several occasions by restricting the instances of the PCP. For example, it is an
easy exercise to show that the unary PCP, where the domain alphabet has only
one letter, is decidable. An instance (h,g) of the PCP, where h,g: A* — B*,
is binary if |A| = 2. It was proved in [2] that the PCP is decidable for binary
instances; see also [5] or [6] for a somewhat simpler proof. On the other hand,
the PCP is undecidable for instance with domain alphabets A satisfying |A| > 7
(see [12]).

Another known borderline between decidability and undecidability is pro-
vided by marked and prefiz morphisms. A morphisms h: A* — B* is said to be
marked if the images h(a) and h(b) of any two different letters a,b € A begin
with a different letter. The problem where the instances are pairs of marked
morphisms is called the marked PCP (consisting of marked instances). It was
proved in [8], that the marked PCP is decidable in general. On the other hand,
in [14] it was shown that the PCP is undecidable for instance of prefix mor-
phisms. A morphism is called prefix if no image of a letter is a prefix of an
image of another letter.

Note that the solutions of an instance I = (h,g) of the PCP form the set
E(I) = Epin(I)™, where

Ewmin(I) = E(I) \ B(I)?

consists of the minimal solutions, or the solutions of minimal length, of the
instance. Now, if the instance I is marked, then E,, is a finite set, since
different minimal solutions start with different letters.

In this paper we shall consider infinite solutions of the instances (h, g). Two
(finite) words u and v are said to be comparable, denoted by w < v, if one is a
prefix of the other. Let w = ajas... be an infinite word over A where a; € A
for each index i. We write h(w) = g(w) if the morphisms h and g agree on w,
that is, if g(u) > h(uw) for all finite prefixes u of w. We also say that such an
infinite word w is an infinite solution of the instance I = (h,g). We denote by
E*“(I) the set of all infinite solutions of the instance I.

The problem where it is asked whether a given instance of the PCP has
or does not have an infinite solution is called naturally the infinite PCP. It
was shown in [14] that there is no algorithm to determine whether a general
instance of the PCP has an infinite solution. Indeed, by [14], the infinite PCP
is undecidable for instances where the morphisms are prefix.

In [4] it was proved that the infinite PCP is decidable for marked instances of
the PCP. Later, using the previous result, is was proved in [7] that The infinite
PCP is decidable for the binary instances.

We shall consider the form of the solutions in these two decidable cases. By
studying the proof of decidability of the marked infinite PCP, we establish a
characterization of the solutions.

In order to state our main results, we need some definitions and notations.

Let A be an alphabet. For a set K C A* of finite words, let

KY ={wjwy---|w; € K for all i > 1}

be the set of all infinite concatenation of words from K. For a singleton set
K = {w}, we let w* denote {w}*“. In particular, A“ consists of all (one-way)



infinite words ajas ... over A. An infinite word w € A“ is called wltimately
periodic, if is w = wv® for some finite words v and v.

A DOL system H = (h,w) consists of a morphism h: A* — A* and an aziom
w € A*. A DOL system H = (h,w) defines the language Ly = {h’(w) |i > 0}.
An infinite word w is a fized point of the DOL system H = (h,w), if

w= lim A"(w),

that is, if h™(w) is a prefix of h"T!(w) for all n > 0. For further theory of DOL
systems, we refer to [9]. We shall prove

Theorem 1 (Main). Let I = (h,g) be a marked instance of the Post Corre-
spondence Problem. Then the infinite solutions of I form a set
E“(I) = E%,, UE}

min m

in(PUF)a

where P is a finite set of ultimately periodic words, and F is a finite set of
morphic images of fized points of DOL systems.

This characterization holds also for the binary infinite PCP, as we shall see.

We shall now fix some notation. The empty word is denoted by e. The
length of a word w is denoted by |u|. A word u € A* is said to be a prefiz of a
word v € A*, denoted by u < v, if v = uw for some w € A*. Also, if u # ¢ and
w # € in v = ww, then u is a proper prefix of v, and, this is denoted by u < v.
Recall that v and v are comparable, u <1 v, if u < v or v < u. The longest
common prefix of the words u and v is denoted by u Av. If v = uw then we also
write u = vw™! and w = v lo.

A word v is primitive, if v = u™ implies that n = 1, and thus that ©v = v. It is
well known (see [10]) that every word w has a unique primitive root, a primitive
word v such that w = v™ for some n > 1.

A morphism h: A* — B* is said to be periodic, if there exists a word v € B*
such that h(a) € v* for all @ € A. The word v can be assume to be primitive.

2 The algorithm for marked PCP

The basic result on which we build on the results of this paper is the decidability
of the marked instances of the PCP. In order to study the solutions of these
instances, we need to consider in detail the decision algorithm for the infinite
marked PCP. On the other hand, in order to study those details we need to
study the algorithm for deciding the marked PCP. The detailed proofs of the
decidability of marked PCP can be found from [8] or [3].

We begin with the following simpler problem with a simple solution:

Given an instance I = (h,g) of the PCP for h,g: A* — B*, and a
letter a € B. Does there exist words z,y € AT such that h(z) = g(y)
with a < h(z)?

Here we do not look for a solution of the instance (h, g), but for a pair of words
such that h(x) = g(y), where we additionally require that h(z) starts with a
specific letter a. If h(u) = g(v) and h(u') # g(v') for all v’ < v and v/ < v with
(u,v) # (u',v"), then the pair (u,v) is called a block solution to the equation

h(z) = g(y).



Let (h,g) be a marked instance of the PCP. Notice that, for each letter
a, a block solution is unique, if it exists. We shall now give a procedure for
constructing the block solution for a letter a. Define a sequence (x;,y;) €
A* x A*, for i =1,2,..., inductively by the following block procedure BP:

(1) If there are (necessarily unique) letters b,c¢ € A such that a < h(b) and
a < g(c), and h(b) > g(c), then set 1 = b and y; = ¢, and let s; € B* be
such that either h(z1)s1 = g(y1) or g(y1)s1 = h(z1). We call such a word
s1 an overflow of h or g, respectively.

(2) Ifs;—1 = e, then (z;_1, y;—1) is the block solution. Otherwise, if h(z;_1)s; =
g(yi—1) and s;_1 >t h(d) for some d € A, then set x; = 2;_1d and y; = y;—1.
Similarly, if g(y;—1)s = h(z;—1) and s;_1 < g(d) for some d € A, then set
x; = x;_1 and y; = y;_1d. Let then the new overflow be

o = Vo) TR, it g(yi) < (wa),
C hl@) T rely), if h(xi) < g(w).

Since the morphisms are marked and the sequence (z;,y;) is constructed in
BP letter by letter, there are only finitely many different possible overflows.
Therefore eventually we reach one of the following choices:

(C1) The words h(x;) and g(y;) are not comparable.
(C2) The same overflow s of h or of g reappears.
(C3) For one overflow s; = ¢. Then (z;,y;) is the block solution.

Note that in the case (C2) the overflows form an ultimately periodic sequence,
and h(z;) > g(y;) for all i > 1. Although the case (C2) is not important in the
marked PCP, this case needs to be studied when we consider infinite solutions
of the marked instances in Section 3.

The following lemma is immediate from the conditions (C1), (C2) and (C3)

(see [3]).

Lemma 1. Let h,g: A* — B* be marked morphisms. There exists at most one
block solution (u,v) such that a < h(u) and a < g(v). Moreover, such a block
solution for a given letter a can be effectively found.

For marked instance (h,g), if (u,v) is the block solution with a < h(x)
and a < g(y), then (u,v) is called a block for the letter a, and it is denote
by B(a) = (u,v). If no such block solution exists, then ((a) is undefined.
Furthermore, if 3(a) is defined, then a is called a block letter.

Assume that w € A™ is a solution of the marked instance (h, g). Then there
exists a unique block decomposition of w,

W= ULUg * Ul = V1V2 - - Vk, (1)

where (u;,v;) = B(a;) for a; € Afor i =1,..., k. This means that each solution
is a concatenation of blocks.

Let (h,g) be a marked instance with h,g: A* — B*. We can make two
assumptions: first we can assume that A C B and secondly that

a < h(a) forall a € A. (2)



Indeed, both assumptions can be fulfilled by renaming and permuting the letters
of the domain alphabet A.

By using blocks we define for a marked instance I = (h,g) its successor
I'=(k',g’) as follows. The new domain alphabet of I’ is

A" = {a| B(a) exists }
Note that A’ C A C B. Define the morphisms A/, ¢': (A")* — A* by
R(a)=u and ¢'(a) =v, if B(a) = (u,v).

Note that the successor instance I’ is marked, since the morphisms h and g
are marked and for each letter in B, there is at most one block. The following
lemma states a connection between an instance and its successor (see [5] or [4]).

Lemma 2. Let I = (h, g) be a marked instance and I' = (h', g') be its successor.
Then

(i) hh'(z) = gg'(x) for all x € (A')*.

(i1) I has a solution if and only if I' has.
(i) if W' is a solution of I', then w = h'(w') = ¢'(w’) is a solution of I.
(iv) a < h'(a) for each a € A’.

It can be proved that the successor I’ is at least as simple as the original
instance I. Using the construction of the successors inductively we end up in
an instance, for which the existence of a solution can be easily decided. We use
two measures for the hardness of an instance. The first measure is the size of
the domain alphabet. It is immediate that |A’| < |A], since, trivially, there can
be at most |A| block letters.

The second measure is the suffix complexity. For a morphism h: A* — B*,
the suffix complexity o(h) is defined to be the number of different suffixes of
the image words,

o(h) = |[{z | = proper suffix of h(a) for some a € A}|.
For an instance I = (h, g) of the PCP, the suffix complexity is defined as
o(I)=o(h)+o(g).
The next lemma was proved in [8].

Lemma 3. Let I = (h, g) be a marked instance and I' = (h', g') be its successor.
Then o(I') < o(I).

The decision procedure for the marked PCP uses the successors iteratively,
i.e., it generates the successors as long as an instance is obtained where the
decision is easy to make. Therefore we define the successor sequence as follows:
Let Iy = (h, g) be a marked instance for h,g: A5 — B*. We define inductively
I; = (hi,g;) by Lix1 = I]. Moreover, we have that h;,g;: Af — A} | for all
7 > 1. Recall that A C B and therefore A; C B for all 1 > 0.

Now since the size of the alphabet and the suffix complexity do not increase,
one of the following three cases occurs in the successor sequence I;:



(C1) |A;| =1 for some j >0,
(C2) o(I;) =0 for some j > 0,

(C3) the successor sequence enters a cycle, i.e., there exists ng and d > 1 such
that, for all j > ng, I; = Ij1q.

The first two cases of the following lemma are trivial; for the third case (the
cycling case), see [8], [3], or [4].

Lemma 4. In case (C1), the instance is unary. In case (C2), all images of
letters are of length one, and therefore the block solutions are of length one. The
length of each block solution in the case (C3) is one.

We have now the following decidability theorem from [5].

Theorem 2. The marked PCP is decidable for all domain alphabets. Moreover,
the set of minimal solutions of a marked instance can be effectively constructed.

3 Infinite solutions in marked PCP

In this section we present a decision algorithm for infinite solutions of the marked
PCP. The constructions of the previous section for the marked PCP are crucial
in these considerations. For the complete proofs, see [4]. We begin with a
lemma, which follows from Lemma 2(i).

Lemma 5. Let I = (h, g) be a marked instance and I' = (h', g') be its successor.
If x>y, then also h(h'(z)) < g(g'(y)).

Assume that w is an infinite solution of a marked instance I = (h,g). We
say that w has a block decomposition, if

W =UuUjUg -+ = V1V - ,

where (u;,v;) = B(a;) for letters a; with ¢ > 1.
All the solutions of I are either of the form

(S1) w € E¥(I), that is, w = uyug - - - for some u; € Fnyin(I).
or of the form

(S2) W' = ww, where v € E(I) and w is an infinite solution of I that does not
have a prefix from E(I).

In (S2), there are two possible cases for w:
(S2a) w has a block decomposition.
(S2b) w does not have any block decomposition.

Note that there are only finitely many infinite solutions w of types (S2a) and
(82b), since each such solution begins with a different letter.

The cases where the suffix complexity is zero or the domain alphabet is unary
are easy to determine.



Lemma 6. Let I be a unary instance or a marked instance with o(I) = 0. Then
all solutions of I are of type (S1), that is, the set of infinite solutions is exactly

Bmin(1)*.

Proof. The infinite solutions of unary instances are, trivially, of the form w = a*
for the only letter a of the domain alphabet, and therefore the claim holds for
these cases.

Assume then that o(I) = 0. Then the images of the letters have length one
(see Lemma 4). Hence, there exists an infinite solution w = ajas ... if and only
if h(a;) = a; = g(a;) for all a;. Therefore the solutions are of type (S1), and
thus in Fyin(I)¥. Of course, all words in E;,(I)“ are infinite solutions of the
instance I. |

Now we consider the form of the solutions (S2b).

Theorem 3. Let I = (h,g) be a marked instance of the PCP. The infinite
solutions of type (S2b) of I are ultimately periodic.

Proof. Consider an infinite solution w of type (S2b). Then
W =ULU2 " UpwWl = V102 - - UpW2,

where (u;,v;) = B(a;) for some letters a;, 1 < i < n, and wy,wy are infinite
words, which do not have a block as a prefix. Note that also n = 0 is possible.
It is clear that h(w1) = g(wa), since h(u;) = g(v;) for all i. Let b be the first
letter of h(wy). Thus, there are no blocks for b in I, and therefore, in the block
procedure BP for b after some step the overflows appear periodically, that is,

wy =ux® and wo =uvy¥
for some words u, x, v and y with |h(z)| = |g(y)|. Hence, the infinite solutions
are ultimately periodic in this case. [l

For type (S2a), we modify first a result from [4].

Lemma 7. Let I = (h,g) be a marked instance. If an infinite word w of type
(S2a) is a solution of I, then o' defined by h'(w') = w is an infinite solution of
type (S2a) or (S2b) of the successor I' = (R, g’). Here w and w' begin with the
same letter.

Proof. Let w be an infinite solution of type (S2a) of I. Then it has two factor-
izations,
W=UgUz - ="V102 """, (3)

where (u;,v;) = B(a;) for the letters a;. Now, w’ = ajas---, and (W) =w =
g’ (W) by the definition of S’. Clearly, h(a1) > g(a1) and k' (a1) = uy <1 ¢'(a1) =
v1. By assumption, a; < h(a1), and hence both sides begin with a;. It remains
to observe that w’ is not in E(I")*. Indeed, if x = ajas---a, € E(h/,g’), for
some n > 1, then, by Lemma 2, h'(z) = ujug - - up = v1v2--- v, = ¢'(x), is in
E(h, g) contradicting the assumption that w is of type (S2a). O

By Lemma 7, instead of considering infinite solutions of type (S2a) of I, we
can consider the simpler instance I’. The difficulty here is that we do not know
in advance, whether a possible solution of I’ is of type (S2a) or (S2b).



For type (S2a) solutions we need to study the successor sequence. We shall
first prove a simple case, where all instance of the entire successor sequence have
an infinite solution of type (S2a).

Also the following lemma was proved in [4]. We give the proof of this result,
since it will be used in the following.

Lemma 8. There exists an infinite solution of type (S2a) for all I; starting
with a letter b if and only if h;(b) > g;(b) for all i > 0.

Proof. Tt is clear that the existence of type (S2a) solution implies the latter
condition of the claim. For the converse, assume that h;(b) > g;(b) for all i. By
Lemma 5, the words

i =hy---hi—1hi(b) and y;=g1---gi—19:(b) (4)

are comparable and they both begin with b by the assumption. Let z; = z; Ay;,
the longest common prefix of x; and y;. Obviously, z; is either x; or y;. Since b <
h;(b), we have h;(b) = bx; for a word x;, and hence h;_1h;(b) = h;—1(b)h;—1(z;),
and so h;—1(b) < h;—1h;(b). Therefore, z; < z;41 for all i. Now the word
w = lim;_,», 2; is an infinite solution of I starting with b, since, by Lemma 5,
hohy -+ hi(b) and gogy - - - gi(b) are comparable for all . The claim now follows
inductively for all + > 0. O

We prove our main result for the remaining case (S2a).

Theorem 4. Let I be a marked instance of the PCP. Type (S2a) solutions of I
are either ultimately periodic or of the form f(w), where f is a morphism and
w is a fized point of the DOL system with a single letter axiom.

Proof. Let I; be the successor sequence for the marked instance (hg, go), where
I = Iy and I; = (hy,g:) for hy,g;: A — A ;. Assume that the instance
I = (ho, go) has an infinite solution wy beginning with a letter a and having a
block decomposition as in type (S2a).

By the construction of the successor sequence, see Lemma 2, we have a
sequence w;, ¢ > 0, where w; is an infinite solution of the instance I; such that
wi—1 = hi(w;) for all © > 1. As at the end of the proof of Lemma 7, we can
show that if w; € E(hi,gi)w, then also w;_1 € E(hi_l,gi_l)w. By Lemma 6, it
follows that the successor sequence is cycling, that is, satisfies (C3).

Assume that ng and d > 1 are such that I; = I;1q for all j > nog.

We have two cases according to whether the letter a disappears or remains
in the successor sequence. Note that if there exists an infinite solution starting
with a, then h;(a) < g;(a) as long as the letter appears in the successor sequence.

Assume first that a disappears from the successor sequence after the in-
stance I;, that is, there is a block for a in I; but not in I;;;. By Lemma 7,
there is an instance I;, with ¢ < j, that has a solution of type (S2b) beginning
with a. Hence the type changes from (S2b) to (S2a) at some step of the se-
quence. By Theorem 3, the instance I; has an ultimately periodic solution w’
(starting with a). Therefore, by Lemma 5, the word

w = hlhg tee hi(w’)

is an infinite solution of I and it is ultimately periodic, since it is a morphic
image of an ultimately periodic word.



Assume then that the letter a remains in the successor sequence. Since
there is an infinite solution of I beginning with a, we have h(a) > g(a) and,
since a < h(a) and also a < g(a), we obtain that h;(a) > g;(a) for all ¢ > 0.
Therefore, by Lemma, 8, there exists an infinite solution of type (S2a) beginning
with a for all instances in the successor sequence.

Assume that the sequence is such that I; = (h;,¢;) andfor alli > n, I; = I; 14
as in the above. As in the proof of Lemma 8, we may determine an infinite
solution of I by

h1h2 te hn—l(hnhn+1 toe hn-‘rd—l)z(a)a

where i tends to infinity. Define then
f = hlhg s hn—l and h = hnhn+1 s hn+d—1-

Now, f is a morphism, and (h,a) is a DOL system with a fixed point w’ =
lim,,—, h"(a). Hence w = f(w’), and this proves the claim. O

By the previous theorems, we have immediately our main theorem for marked
instances.

Theorem 1. Let I = (h,g) be a marked instance of the Post Correspondence
Problem. Then the infinite solutions of I form a set

E“(I)=E%, UE:, (P UF),

min min

where P is a finite set of ultimately periodic words, and F is a finite set of
morphic images of fized points of DOL systems.

Example 1. Let Iy = (ho, go), where ho, go: {a,b,c,d}" — {a,b,c,d}", defined
in the following table:

| a b c d

h| a baa c dd
g | baa aa caa ddd

Now, there is an infinite solution beginning with d, namely d“. The successor
morphisms are all listed in the following table.

a b c d
hi |aa b caa ddd
g1 | b a c dd
ha | a b c dd
ga | b a cbb ddd
hs3 | a bb cbb ddd
gs | b a c dd
hs | a b c dd
g4 b aa caa ddd

In this example, we have I = I;. We see that there are infinite solutions of
type (S2a) beginning with ¢ and with d. These can be defined by DOL systems,
but the solution for d is periodic: d“.

The infinite solution starting with ¢ is the fixed point of the DOL system
(h,c), where h = hihohshy is defined by



| a b c d
h|aa bb caabh d'?

Now one can see that the fixed point is
caabbaaaabbbbaaaaaaaabbbbbbbb - - - = ca’b?a*b*a®b® - - - |

i.e., a sequence counting powers of two. This sequence is clearly nonregular in
the language theoretic sense.

4 Binary infinite PCP

It was proved in [7] that the existence of an infinite solution is decidable for
the binary instances. We state the reduction introduced in [7], where a given
(nonperiodic) binary instance I is transformed to an equivalent instance of the
marked PCP with three letters. Therefore, also the form of the solution of the
binary infinite PCP follows from the study in the previous section.

In this section we assume that the domains and the ranges of the morphisms
equal to the binary set {0,1}. Therefore the instances are of the form I = (h, g)
such that h,g: {0,1}" — {0,1}".

Theorem 5. Let I = (h,g) be a binary instance of the PCP that has at least
one infinite solution.

(i) If both h and g are periodic, then the set of infinite solutions of I is {0,1}".

(i1) If exactly one of the morphisms h or g is periodic, then I has a unique
solution that is ultimately periodic.

Proof. Let I = (h,g) be such that h(0),h(1) € v* for a primitive word v €
{0,1}*. Clearly, w € {0,1}* is an infinite solution of the instance I if and only
if g(w) = v¥.

(i) Assume first that also g is periodic, say ¢(0),g(1) € u* for a primitive
word u € {0, 1}+. Now, there exists an infinite solution of [ if and only if
v¥ = u¥, which means that u/’! = v/l and thus u = v, since each word has a
unique primitive root. Therefore, the set of infinite solutions is exactly {0,1}".

(ii) Assume then that g is nonperiodic, and therefore also nonerasing. We
prove that there is exactly one infinite solution. Assume on the contrary that
there are two different infinite solutions wj and w). Let v = w] A W} so that
w] = uwy and w) = uwse. Hence we have g(w1) = v* = g(wz). By the defect
theorem for infinite words, see, e.g., [1, Theorem 6.2.4], g(0) and g(1) are powers
of a common word; a contradiction.

We still need to prove that the unique solution is ultimately periodic. Assume
that w is a solution. Since h(w) = v¥, there are prefixes v and uwv of w such
that g(u) = v"z and g(uv) = v®x for some r < s and a word x. In this case,
g(v) = yv'x for some i > 0 and a word y with v = zy. It follows that w = uv®
and thus it is ultimately periodic. O

Next we consider the nonperiodic cases. Note that in the binary case, non-
periodic morphisms are nonerasing.

Let h: {0,1}* — {0,1}" be a nonperiodic morphism. Denote h(®) = h. For
a word w, denote by w; the prefix of w of length i. Define a morphisms h(? in
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a following way: For a letter z € {0,1}, let j be such that j =4 (mod |h(x)]|)
with 0 < j < |h(z)|, and let

hO(@) = (h();) 7 (h(@)h();)-

In other words, the morphisms A(") are cyclic shifts of the original morphism h.
Denote by z, = h(01) A h(10) the longest common prefix of the images of 01
and 10.

The following lemma is a combined from the results in [2] and [7]. (In [7],
see Lemma 4 and its proof.) In this lemma # is a new letter.

Lemma 9. Let m = |z,| and n = |z4| and assume m > n. Then the morphisms
R and g™ are marked and the instance (h,g) of the binary PCP has an
infinite solution w if and only if the marked instance (h',g’) has the infinite
solution #w, where

n'(a) = h'™(a),
g (#) =#, g'(a) = g™ (a).

=
I
S—
I
I
N
Q
N
>

for both a € {0,1}.

Note that we can have that z, = zj, in which case in the new instance (h’, g’)
we can safely remove the special symbol #.
By Lemma 9 and the results in the previous section, we have

Corollary 1. Let I be a binary instance of the PCP that has an infinite solution.
Then there is a finite set K of words such that each infinite solution w is either
(i) ultimately periodic, or (ii) w € K*w', where W' is a morphic images of the
fized points of DOL systems, or (iii) w € K*, where K is a set of infinite
solutions.

Next example shows that the DOL case is possible also for binary instances.

Example 2. Consider the binary instance (h, g) defined by

Now, z;, = € and 2z, = aa. By Lemma 9, the instance (h,g) has an infinite
solution if and only if the instance (h',¢’) has a solution beginning with #,
where

| a b #
K| a baa #

g | baa aa #aa

Note that (h’,g") is the same instance as in Example 1, if we replace ¢ with #
and omit the useless letter d. Therefore, by Example 1, (h,g) has an infinite
solution a?b2a*v*adt8 - - -.
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