
Charaterization of In�nite Solutions of Markedand Binary Post Correspondene ProblemsVesa Halava∗ Tero HarjuJuhani Karhumäki†Department of Mathematis andTUCS - Turku Centre for Computer SieneUniversity of TurkuFIN-20014 TurkuFinlandE-mail: {vehalava,harju}�utu.fikarhumak�s.utu.fi16th February 2004AbstratIn the in�nite Post Correspondene Problem an instane (h, g) onsistsof two morphisms h and g, and the problem is to determine whether ornot there exist an in�nite word ω suh that h(ω) = g(ω). This problem isundeidable in the general ase, but it is known to be deidable for binaryand marked instanes. A morphism is binary, if the domain alphabetis of size 2, and marked, if eah image of a letter begins with di�erentletter. We prove that the solutions in these deidable ases form a set
P ∪Kω

∪K∗F , where P is a �nite set of ultimately periodi words, K is a�nite set of solutions of the PCP, and F is a �nite set of morphi imagesof �xed points of D0L systems.1 IntrodutionIn the Post Correspondene Problem (PCP, for short), we are given two mor-phisms h, g : A∗ → B∗, where A and B are �nite alphabets, and we are askedwhether or not there exists a nonempty word w ∈ A∗ suh that h(w) = g(w).The pair (h, g) is alled an instane of the PCP and a word w ∈ A+ is a solutionof the instane (h, g) if h(w) = g(w). The set of all solutions,
E(h, g) = {w ∈ A+ | h(w) = g(w)},is alled the equality set of the instane (h, g).
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The PCP is undeidable in this general form (see Post [13℄). The borderlinebetween deidable and undeidable sets of instanes has been investigated inseveral oasions by restriting the instanes of the PCP. For example, it is aneasy exerise to show that the unary PCP, where the domain alphabet has onlyone letter, is deidable. An instane (h, g) of the PCP, where h, g : A∗ → B∗,is binary if |A| = 2. It was proved in [2℄ that the PCP is deidable for binaryinstanes; see also [5℄ or [6℄ for a somewhat simpler proof. On the other hand,the PCP is undeidable for instane with domain alphabets A satisfying |A| ≥ 7(see [12℄).Another known borderline between deidability and undeidability is pro-vided by marked and pre�x morphisms. A morphisms h : A∗ → B∗ is said to bemarked if the images h(a) and h(b) of any two di�erent letters a, b ∈ A beginwith a di�erent letter. The problem where the instanes are pairs of markedmorphisms is alled the marked PCP (onsisting of marked instanes). It wasproved in [8℄, that the marked PCP is deidable in general. On the other hand,in [14℄ it was shown that the PCP is undeidable for instane of pre�x mor-phisms. A morphism is alled pre�x if no image of a letter is a pre�x of animage of another letter.Note that the solutions of an instane I = (h, g) of the PCP form the set
E(I) = Emin(I)+, where

Emin(I) = E(I) \ E(I)2onsists of the minimal solutions, or the solutions of minimal length, of theinstane. Now, if the instane I is marked, then Emin is a �nite set, sinedi�erent minimal solutions start with di�erent letters.In this paper we shall onsider in�nite solutions of the instanes (h, g). Two(�nite) words u and v are said to be omparable, denoted by u ⊲⊳ v, if one is apre�x of the other. Let ω = a1a2 . . . be an in�nite word over A where ai ∈ Afor eah index i. We write h(ω) = g(ω) if the morphisms h and g agree on ω,that is, if g(u) ⊲⊳ h(u) for all �nite pre�xes u of ω. We also say that suh anin�nite word ω is an in�nite solution of the instane I = (h, g). We denote by
Eω(I) the set of all in�nite solutions of the instane I.The problem where it is asked whether a given instane of the PCP hasor does not have an in�nite solution is alled naturally the in�nite PCP. Itwas shown in [14℄ that there is no algorithm to determine whether a generalinstane of the PCP has an in�nite solution. Indeed, by [14℄, the in�nite PCPis undeidable for instanes where the morphisms are pre�x.In [4℄ it was proved that the in�nite PCP is deidable for marked instanes ofthe PCP. Later, using the previous result, is was proved in [7℄ that The in�nitePCP is deidable for the binary instanes.We shall onsider the form of the solutions in these two deidable ases. Bystudying the proof of deidability of the marked in�nite PCP, we establish aharaterization of the solutions.In order to state our main results, we need some de�nitions and notations.Let A be an alphabet. For a set K ⊆ A∗ of �nite words, let

Kω = {w1w2 · · · | wi ∈ K for all i ≥ 1}be the set of all in�nite onatenation of words from K. For a singleton set
K = {w}, we let wω denote {w}ω. In partiular, Aω onsists of all (one-way)2



in�nite words a1a2 . . . over A. An in�nite word ω ∈ Aω is alled ultimatelyperiodi, if is ω = uvω for some �nite words u and v.A D0L system H = (h, w) onsists of a morphism h : A∗ → A∗ and an axiom
w ∈ A∗. A D0L system H = (h, w) de�nes the language LH =

{

hi(w) | i ≥ 0
}.An in�nite word ω is a �xed point of the D0L system H = (h, w), if

ω = lim
n→∞

hn(w),that is, if hn(w) is a pre�x of hn+1(w) for all n ≥ 0. For further theory of D0Lsystems, we refer to [9℄. We shall proveTheorem 1 (Main). Let I = (h, g) be a marked instane of the Post Corre-spondene Problem. Then the in�nite solutions of I form a set
Eω(I) = Eω

min ∪ E∗
min (P ∪ F ) ,where P is a �nite set of ultimately periodi words, and F is a �nite set ofmorphi images of �xed points of D0L systems.This haraterization holds also for the binary in�nite PCP, as we shall see.We shall now �x some notation. The empty word is denoted by ε. Thelength of a word u is denoted by |u|. A word u ∈ A∗ is said to be a pre�x of aword v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗. Also, if u 6= ε and

w 6= ε in v = uw, then u is a proper pre�x of v, and, this is denoted by u < v.Reall that u and v are omparable, u ⊲⊳ v, if u ≤ v or v ≤ u. The longestommon pre�x of the words u and v is denoted by u∧v. If v = uw then we alsowrite u = vw−1 and w = u−1v.A word v is primitive, if v = un implies that n = 1, and thus that u = v. It iswell known (see [10℄) that every word w has a unique primitive root, a primitiveword v suh that w = vn for some n ≥ 1.A morphism h : A∗ → B∗ is said to be periodi, if there exists a word v ∈ B∗suh that h(a) ∈ v∗ for all a ∈ A. The word v an be assume to be primitive.2 The algorithm for marked PCPThe basi result on whih we build on the results of this paper is the deidabilityof the marked instanes of the PCP. In order to study the solutions of theseinstanes, we need to onsider in detail the deision algorithm for the in�nitemarked PCP. On the other hand, in order to study those details we need tostudy the algorithm for deiding the marked PCP. The detailed proofs of thedeidability of marked PCP an be found from [8℄ or [3℄.We begin with the following simpler problem with a simple solution:Given an instane I = (h, g) of the PCP for h, g : A∗ → B∗, and aletter a ∈ B. Does there exist words x, y ∈ A+ suh that h(x) = g(y)with a ≤ h(x)?Here we do not look for a solution of the instane (h, g), but for a pair of wordssuh that h(x) = g(y), where we additionally require that h(x) starts with aspei� letter a. If h(u) = g(v) and h(u′) 6= g(v′) for all u′ ≤ u and v′ ≤ v with
(u, v) 6= (u′, v′), then the pair (u, v) is alled a blok solution to the equation
h(x) = g(y). 3



Let (h, g) be a marked instane of the PCP. Notie that, for eah letter
a, a blok solution is unique, if it exists. We shall now give a proedure foronstruting the blok solution for a letter a. De�ne a sequene (xi, yi) ∈
A∗ × A∗, for i = 1, 2, . . . , indutively by the following blok proedure BP:(1) If there are (neessarily unique) letters b, c ∈ A suh that a ≤ h(b) and

a ≤ g(c), and h(b) ⊲⊳ g(c), then set x1 = b and y1 = c, and let s1 ∈ B∗ besuh that either h(x1)s1 = g(y1) or g(y1)s1 = h(x1). We all suh a word
s1 an over�ow of h or g, respetively.(2) If si−1 = ε, then (xi−1, yi−1) is the blok solution. Otherwise, if h(xi−1)si =
g(yi−1) and si−1 ⊲⊳ h(d) for some d ∈ A, then set xi = xi−1d and yi = yi−1.Similarly, if g(yi−1)s = h(xi−1) and si−1 ⊲⊳ g(d) for some d ∈ A, then set
xi = xi−1 and yi = yi−1d. Let then the new over�ow be

si =

{

g(yi)
−1h(xi), if g(yi) ≤ h(xi),

h(xi)
−1g(yi), if h(xi) ≤ g(yi).Sine the morphisms are marked and the sequene (xi, yi) is onstruted inBP letter by letter, there are only �nitely many di�erent possible over�ows.Therefore eventually we reah one of the following hoies:(C1) The words h(xi) and g(yi) are not omparable.(C2) The same over�ow s of h or of g reappears.(C3) For one over�ow si = ε. Then (xi, yi) is the blok solution.Note that in the ase (C2) the over�ows form an ultimately periodi sequene,and h(xi) ⊲⊳ g(yi) for all i ≥ 1. Although the ase (C2) is not important in themarked PCP, this ase needs to be studied when we onsider in�nite solutionsof the marked instanes in Setion 3.The following lemma is immediate from the onditions (C1), (C2) and (C3)(see [5℄).Lemma 1. Let h, g : A∗ → B∗ be marked morphisms. There exists at most oneblok solution (u, v) suh that a ≤ h(u) and a ≤ g(v). Moreover, suh a bloksolution for a given letter a an be e�etively found.For marked instane (h, g), if (u, v) is the blok solution with a ≤ h(x)and a ≤ g(y), then (u, v) is alled a blok for the letter a, and it is denoteby β(a) = (u, v). If no suh blok solution exists, then β(a) is unde�ned.Furthermore, if β(a) is de�ned, then a is alled a blok letter.Assume that w ∈ A+ is a solution of the marked instane (h, g). Then thereexists a unique blok deomposition of w,

w = u1u2 · · ·uk = v1v2 · · · vk, (1)where (ui, vi) = β(ai) for ai ∈ A for i = 1, . . . , k. This means that eah solutionis a onatenation of bloks.Let (h, g) be a marked instane with h, g : A∗ → B∗. We an make twoassumptions: �rst we an assume that A ⊂ B and seondly that
a ≤ h(a) for all a ∈ A. (2)4



Indeed, both assumptions an be ful�lled by renaming and permuting the lettersof the domain alphabet A.By using bloks we de�ne for a marked instane I = (h, g) its suessor
I ′ = (h′, g′) as follows. The new domain alphabet of I ′ is

A′ = {a | β(a) exists }Note that A′ ⊆ A ⊆ B. De�ne the morphisms h′, g′ : (A′)∗ → A∗ by
h′(a) = u and g′(a) = v, if β(a) = (u, v).Note that the suessor instane I ′ is marked, sine the morphisms h and gare marked and for eah letter in B, there is at most one blok. The followinglemma states a onnetion between an instane and its suessor (see [5℄ or [4℄).Lemma 2. Let I = (h, g) be a marked instane and I ′ = (h′, g′) be its suessor.Then(i) hh′(x) = gg′(x) for all x ∈ (A′)∗.(ii) I has a solution if and only if I ′ has.(iii) if w′ is a solution of I ′, then w = h′(w′) = g′(w′) is a solution of I.(iv) a ≤ h′(a) for eah a ∈ A′.It an be proved that the suessor I ′ is at least as simple as the originalinstane I. Using the onstrution of the suessors indutively we end up inan instane, for whih the existene of a solution an be easily deided. We usetwo measures for the hardness of an instane. The �rst measure is the size ofthe domain alphabet. It is immediate that |A′| ≤ |A|, sine, trivially, there anbe at most |A| blok letters.The seond measure is the su�x omplexity. For a morphism h : A∗ → B∗,the su�x omplexity σ(h) is de�ned to be the number of di�erent su�xes ofthe image words,

σ(h) = |{x | x proper su�x of h(a) for some a ∈ A}| .For an instane I = (h, g) of the PCP, the su�x omplexity is de�ned as
σ(I) = σ(h) + σ(g).The next lemma was proved in [8℄.Lemma 3. Let I = (h, g) be a marked instane and I ′ = (h′, g′) be its suessor.Then σ(I ′) ≤ σ(I).The deision proedure for the marked PCP uses the suessors iteratively,i.e., it generates the suessors as long as an instane is obtained where thedeision is easy to make. Therefore we de�ne the suessor sequene as follows:Let I0 = (h, g) be a marked instane for h, g : A∗

0 → B∗. We de�ne indutively
Ii = (hi, gi) by Ii+1 = I ′i. Moreover, we have that hi, gi : A∗

i → A∗
i−1 for all

i ≥ 1. Reall that A ⊆ B and therefore Ai ⊆ B for all i ≥ 0.Now sine the size of the alphabet and the su�x omplexity do not inrease,one of the following three ases ours in the suessor sequene Ii:5



(C1) |Aj | = 1 for some j ≥ 0,(C2) σ(Ij) = 0 for some j ≥ 0,(C3) the suessor sequene enters a yle, i.e., there exists n0 and d ≥ 1 suhthat, for all j ≥ n0, Ij = Ij+d.The �rst two ases of the following lemma are trivial; for the third ase (theyling ase), see [8℄, [3℄, or [4℄.Lemma 4. In ase (C1), the instane is unary. In ase (C2), all images ofletters are of length one, and therefore the blok solutions are of length one. Thelength of eah blok solution in the ase (C3) is one.We have now the following deidability theorem from [5℄.Theorem 2. The marked PCP is deidable for all domain alphabets. Moreover,the set of minimal solutions of a marked instane an be e�etively onstruted.3 In�nite solutions in marked PCPIn this setion we present a deision algorithm for in�nite solutions of the markedPCP. The onstrutions of the previous setion for the marked PCP are ruialin these onsiderations. For the omplete proofs, see [4℄. We begin with alemma, whih follows from Lemma 2(i).Lemma 5. Let I = (h, g) be a marked instane and I ′ = (h′, g′) be its suessor.If x ⊲⊳ y, then also h(h′(x)) ⊲⊳ g(g′(y)).Assume that ω is an in�nite solution of a marked instane I = (h, g). Wesay that ω has a blok deomposition, if
ω = u1u2 · · · = v1v2 · · · ,where (ui, vi) = β(ai) for letters ai with i ≥ 1.All the solutions of I are either of the form(S1) ω ∈ Eω(I), that is, ω = u1u2 · · · for some ui ∈ Emin(I).or of the form(S2) ω′ = vω, where v ∈ E(I) and ω is an in�nite solution of I that does nothave a pre�x from E(I).In (S2), there are two possible ases for ω:(S2a) ω has a blok deomposition.(S2b) ω does not have any blok deomposition.Note that there are only �nitely many in�nite solutions ω of types (S2a) and(S2b), sine eah suh solution begins with a di�erent letter.The ases where the su�x omplexity is zero or the domain alphabet is unaryare easy to determine. 6



Lemma 6. Let I be a unary instane or a marked instane with σ(I) = 0. Thenall solutions of I are of type (S1), that is, the set of in�nite solutions is exatly
Emin(I)ω.Proof. The in�nite solutions of unary instanes are, trivially, of the form ω = aωfor the only letter a of the domain alphabet, and therefore the laim holds forthese ases.Assume then that σ(I) = 0. Then the images of the letters have length one(see Lemma 4). Hene, there exists an in�nite solution ω = a1a2 . . . if and onlyif h(ai) = ai = g(ai) for all ai. Therefore the solutions are of type (S1), andthus in Emin(I)ω. Of ourse, all words in Emin(I)ω are in�nite solutions of theinstane I.Now we onsider the form of the solutions (S2b).Theorem 3. Let I = (h, g) be a marked instane of the PCP. The in�nitesolutions of type (S2b) of I are ultimately periodi.Proof. Consider an in�nite solution ω of type (S2b). Then

ω = u1u2 · · ·unω1 = v1v2 · · · vnω2,where (ui, vi) = β(ai) for some letters ai, 1 ≤ i ≤ n, and ω1, ω2 are in�nitewords, whih do not have a blok as a pre�x. Note that also n = 0 is possible.It is lear that h(ω1) = g(ω2), sine h(ui) = g(vi) for all i. Let b be the �rstletter of h(ω1). Thus, there are no bloks for b in I, and therefore, in the blokproedure BP for b after some step the over�ows appear periodially, that is,
ω1 = uxω and ω2 = vyωfor some words u, x, v and y with |h(x)| = |g(y)|. Hene, the in�nite solutionsare ultimately periodi in this ase.For type (S2a), we modify �rst a result from [4℄.Lemma 7. Let I = (h, g) be a marked instane. If an in�nite word ω of type(S2a) is a solution of I, then ω′ de�ned by h′(ω′) = ω is an in�nite solution oftype (S2a) or (S2b) of the suessor I ′ = (h′, g′). Here ω and ω′ begin with thesame letter.Proof. Let ω be an in�nite solution of type (S2a) of I. Then it has two fator-izations,

ω = u1u2 · · · = v1v2 · · · , (3)where (ui, vi) = β(ai) for the letters ai. Now, ω′ = a1a2 · · · , and h′(ω′) = ω =
g′(ω′) by the de�nition of S′. Clearly, h(a1) ⊲⊳ g(a1) and h′(a1) = u1 ⊲⊳ g′(a1) =
v1. By assumption, a1 ≤ h(a1), and hene both sides begin with a1. It remainsto observe that ω′ is not in E(I ′)ω . Indeed, if x = a1a2 · · · an ∈ E(h′, g′), forsome n ≥ 1, then, by Lemma 2, h′(x) = u1u2 · · ·un = v1v2 · · · vn = g′(x), is in
E(h, g) ontraditing the assumption that ω is of type (S2a).By Lemma 7, instead of onsidering in�nite solutions of type (S2a) of I, wean onsider the simpler instane I ′. The di�ulty here is that we do not knowin advane, whether a possible solution of I ′ is of type (S2a) or (S2b).7



For type (S2a) solutions we need to study the suessor sequene. We shall�rst prove a simple ase, where all instane of the entire suessor sequene havean in�nite solution of type (S2a).Also the following lemma was proved in [4℄. We give the proof of this result,sine it will be used in the following.Lemma 8. There exists an in�nite solution of type (S2a) for all Ii startingwith a letter b if and only if hi(b) ⊲⊳ gi(b) for all i ≥ 0.Proof. It is lear that the existene of type (S2a) solution implies the latterondition of the laim. For the onverse, assume that hi(b) ⊲⊳ gi(b) for all i. ByLemma 5, the words
xi = h1 · · ·hi−1hi(b) and yi = g1 · · · gi−1gi(b) (4)are omparable and they both begin with b by the assumption. Let zi = xi ∧yi,the longest ommon pre�x of xi and yi. Obviously, zi is either xi or yi. Sine b ≤

hi(b), we have hi(b) = bxi for a word xi, and hene hi−1hi(b) = hi−1(b)hi−1(xi),and so hi−1(b) ≤ hi−1hi(b). Therefore, zi ≤ zi+1 for all i. Now the word
ω = limi→∞ zi is an in�nite solution of I0 starting with b, sine, by Lemma 5,
h0h1 · · ·hi(b) and g0g1 · · · gi(b) are omparable for all i. The laim now followsindutively for all i ≥ 0.We prove our main result for the remaining ase (S2a).Theorem 4. Let I be a marked instane of the PCP. Type (S2a) solutions of Iare either ultimately periodi or of the form f(ω), where f is a morphism and
ω is a �xed point of the D0L system with a single letter axiom.Proof. Let Ii be the suessor sequene for the marked instane (h0, g0), where
I = I0 and Ii = (hi, gi) for hi, gi : A∗

i → A∗
i−1. Assume that the instane

I = (h0, g0) has an in�nite solution ω0 beginning with a letter a and having ablok deomposition as in type (S2a).By the onstrution of the suessor sequene, see Lemma 2, we have asequene ωi, i ≥ 0, where ωi is an in�nite solution of the instane Ii suh that
ωi−1 = hi(ωi) for all i ≥ 1. As at the end of the proof of Lemma 7, we anshow that if ωi ∈ E(hi, gi)

ω, then also ωi−1 ∈ E(hi−1, gi−1)
ω . By Lemma 6, itfollows that the suessor sequene is yling, that is, satis�es (C3).Assume that n0 and d ≥ 1 are suh that Ij = Ij+d for all j ≥ n0.We have two ases aording to whether the letter a disappears or remainsin the suessor sequene. Note that if there exists an in�nite solution startingwith a, then hi(a) ⊲⊳ gi(a) as long as the letter appears in the suessor sequene.Assume �rst that a disappears from the suessor sequene after the in-stane Ij , that is, there is a blok for a in Ij but not in Ij+1. By Lemma 7,there is an instane Ii, with i ≤ j, that has a solution of type (S2b) beginningwith a. Hene the type hanges from (S2b) to (S2a) at some step of the se-quene. By Theorem 3, the instane Ii has an ultimately periodi solution ω′(starting with a). Therefore, by Lemma 5, the word

ω = h1h2 · · ·hi(ω
′)is an in�nite solution of I and it is ultimately periodi, sine it is a morphiimage of an ultimately periodi word. 8



Assume then that the letter a remains in the suessor sequene. Sinethere is an in�nite solution of I beginning with a, we have h(a) ⊲⊳ g(a) and,sine a ≤ h(a) and also a ≤ g(a), we obtain that hi(a) ⊲⊳ gi(a) for all i ≥ 0.Therefore, by Lemma 8, there exists an in�nite solution of type (S2a) beginningwith a for all instanes in the suessor sequene.Assume that the sequene is suh that Ii = (hi, gi) and for all i ≥ n, Ii = Ii+das in the above. As in the proof of Lemma 8, we may determine an in�nitesolution of I by
h1h2 · · ·hn−1(hnhn+1 · · ·hn+d−1)

i(a),where i tends to in�nity. De�ne then
f = h1h2 · · ·hn−1 and h = hnhn+1 · · ·hn+d−1.Now, f is a morphism, and (h, a) is a D0L system with a �xed point ω′ =

limn→∞ hn(a). Hene ω = f(ω′), and this proves the laim.By the previous theorems, we have immediately our main theorem for markedinstanes.Theorem 1. Let I = (h, g) be a marked instane of the Post CorrespondeneProblem. Then the in�nite solutions of I form a set
Eω(I) = Eω

min ∪ E∗
min (P ∪ F ) ,where P is a �nite set of ultimately periodi words, and F is a �nite set ofmorphi images of �xed points of D0L systems.Example 1. Let I0 = (h0, g0), where h0, g0 : {a, b, c, d}

∗
→ {a, b, c, d}

∗, de�nedin the following table:
a b c d

h a baa c dd

g baa aa caa dddNow, there is an in�nite solution beginning with d, namely dω . The suessormorphisms are all listed in the following table.
a b c d

h1 aa b caa ddd

g1 b a c dd

h2 a b c dd

g2 bb a cbb ddd

h3 a bb cbb ddd

g3 b a c dd

h4 a b c dd

g4 b aa caa dddIn this example, we have I5 = I1. We see that there are in�nite solutions oftype (S2a) beginning with c and with d. These an be de�ned by D0L systems,but the solution for d is periodi: dω.The in�nite solution starting with c is the �xed point of the D0L system
(h, c), where h = h1h2h3h4 is de�ned by9



a b c d

h aa bb caabb d12Now one an see that the �xed point is
caabbaaaabbbbaaaaaaaabbbbbbbb · · ·= ca2b2a4b4a8b8 · · · ,i.e., a sequene ounting powers of two. This sequene is learly nonregular inthe language theoreti sense.4 Binary in�nite PCPIt was proved in [7℄ that the existene of an in�nite solution is deidable forthe binary instanes. We state the redution introdued in [7℄, where a given(nonperiodi) binary instane I is transformed to an equivalent instane of themarked PCP with three letters. Therefore, also the form of the solution of thebinary in�nite PCP follows from the study in the previous setion.In this setion we assume that the domains and the ranges of the morphismsequal to the binary set {0, 1}. Therefore the instanes are of the form I = (h, g)suh that h, g : {0, 1}

∗
→ {0, 1}

∗.Theorem 5. Let I = (h, g) be a binary instane of the PCP that has at leastone in�nite solution.(i) If both h and g are periodi, then the set of in�nite solutions of I is {0, 1}
ω.(ii) If exatly one of the morphisms h or g is periodi, then I has a uniquesolution that is ultimately periodi.Proof. Let I = (h, g) be suh that h(0), h(1) ∈ v∗ for a primitive word v ∈

{0, 1}
+. Clearly, ω ∈ {0, 1}

ω is an in�nite solution of the instane I if and onlyif g(ω) = vω.(i) Assume �rst that also g is periodi, say g(0), g(1) ∈ u∗ for a primitiveword u ∈ {0, 1}
+. Now, there exists an in�nite solution of I if and only if

vω = uω, whih means that u|v| = v|u| and thus u = v, sine eah word has aunique primitive root. Therefore, the set of in�nite solutions is exatly {0, 1}
ω.(ii) Assume then that g is nonperiodi, and therefore also nonerasing. Weprove that there is exatly one in�nite solution. Assume on the ontrary thatthere are two di�erent in�nite solutions ω′

1 and ω′
2. Let u = ω′

1 ∧ ω′
2 so that

ω′
1 = uω1 and ω′

2 = uω2. Hene we have g(ω1) = vω = g(ω2). By the defettheorem for in�nite words, see, e.g., [1, Theorem 6.2.4℄, g(0) and g(1) are powersof a ommon word; a ontradition.We still need to prove that the unique solution is ultimately periodi. Assumethat ω is a solution. Sine h(ω) = vω, there are pre�xes u and uv of ω suhthat g(u) = vrx and g(uv) = vsx for some r < s and a word x. In this ase,
g(v) = yvix for some i ≥ 0 and a word y with v = xy. It follows that ω = uvωand thus it is ultimately periodi.Next we onsider the nonperiodi ases. Note that in the binary ase, non-periodi morphisms are nonerasing.Let h : {0, 1}∗ → {0, 1}∗ be a nonperiodi morphism. Denote h(0) = h. Fora word w, denote by wi the pre�x of w of length i. De�ne a morphisms h(i) in10



a following way: For a letter x ∈ {0, 1}, let j be suh that j ≡ i (mod |h(x)|)with 0 ≤ j < |h(x)|, and let
h(i)(x) = (h(x)j)

−1
(

h(x)h(x)j

)

.In other words, the morphisms h(i) are yli shifts of the original morphism h.Denote by zh = h(01) ∧ h(10) the longest ommon pre�x of the images of 01and 10.The following lemma is a ombined from the results in [2℄ and [7℄. (In [7℄,see Lemma 4 and its proof.) In this lemma # is a new letter.Lemma 9. Let m = |zh| and n = |zg| and assume m ≥ n. Then the morphisms
h(m) and g(n) are marked and the instane (h, g) of the binary PCP has anin�nite solution ω if and only if the marked instane (h′, g′) has the in�nitesolution #ω, where

h′(#) = #z−1
g zh , h′(a) = h(m)(a),

g′(#) = # , g′(a) = g(n)(a).for both a ∈ {0, 1}.Note that we an have that zg = zh in whih ase in the new instane (h′, g′)we an safely remove the speial symbol #.By Lemma 9 and the results in the previous setion, we haveCorollary 1. Let I be a binary instane of the PCP that has an in�nite solution.Then there is a �nite set K of words suh that eah in�nite solution ω is either(i) ultimately periodi, or (ii) ω ∈ K∗ω′, where ω′ is a morphi images of the�xed points of D0L systems, or (iii) ω ∈ Kω, where Kω is a set of in�nitesolutions.Next example shows that the D0L ase is possible also for binary instanes.Example 2. Consider the binary instane (h, g) de�ned by
a b

h a baa

g aab aaNow, zh = ε and zg = aa. By Lemma 9, the instane (h, g) has an in�nitesolution if and only if the instane (h′, g′) has a solution beginning with #,where
a b #

h′ a baa #
g′ baa aa #aaNote that (h′, g′) is the same instane as in Example 1, if we replae c with #and omit the useless letter d. Therefore, by Example 1, (h, g) has an in�nitesolution a2b2a4b4a8b8 · · · . 11
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