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tIn the in�nite Post Corresponden
e Problem an instan
e (h, g) 
onsistsof two morphisms h and g, and the problem is to determine whether ornot there exist an in�nite word ω su
h that h(ω) = g(ω). This problem isunde
idable in the general 
ase, but it is known to be de
idable for binaryand marked instan
es. A morphism is binary, if the domain alphabetis of size 2, and marked, if ea
h image of a letter begins with di�erentletter. We prove that the solutions in these de
idable 
ases form a set
P ∪Kω

∪K∗F , where P is a �nite set of ultimately periodi
 words, K is a�nite set of solutions of the PCP, and F is a �nite set of morphi
 imagesof �xed points of D0L systems.1 Introdu
tionIn the Post Corresponden
e Problem (PCP, for short), we are given two mor-phisms h, g : A∗ → B∗, where A and B are �nite alphabets, and we are askedwhether or not there exists a nonempty word w ∈ A∗ su
h that h(w) = g(w).The pair (h, g) is 
alled an instan
e of the PCP and a word w ∈ A+ is a solutionof the instan
e (h, g) if h(w) = g(w). The set of all solutions,
E(h, g) = {w ∈ A+ | h(w) = g(w)},is 
alled the equality set of the instan
e (h, g).
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The PCP is unde
idable in this general form (see Post [13℄). The borderlinebetween de
idable and unde
idable sets of instan
es has been investigated inseveral o

asions by restri
ting the instan
es of the PCP. For example, it is aneasy exer
ise to show that the unary PCP, where the domain alphabet has onlyone letter, is de
idable. An instan
e (h, g) of the PCP, where h, g : A∗ → B∗,is binary if |A| = 2. It was proved in [2℄ that the PCP is de
idable for binaryinstan
es; see also [5℄ or [6℄ for a somewhat simpler proof. On the other hand,the PCP is unde
idable for instan
e with domain alphabets A satisfying |A| ≥ 7(see [12℄).Another known borderline between de
idability and unde
idability is pro-vided by marked and pre�x morphisms. A morphisms h : A∗ → B∗ is said to bemarked if the images h(a) and h(b) of any two di�erent letters a, b ∈ A beginwith a di�erent letter. The problem where the instan
es are pairs of markedmorphisms is 
alled the marked PCP (
onsisting of marked instan
es). It wasproved in [8℄, that the marked PCP is de
idable in general. On the other hand,in [14℄ it was shown that the PCP is unde
idable for instan
e of pre�x mor-phisms. A morphism is 
alled pre�x if no image of a letter is a pre�x of animage of another letter.Note that the solutions of an instan
e I = (h, g) of the PCP form the set
E(I) = Emin(I)+, where

Emin(I) = E(I) \ E(I)2
onsists of the minimal solutions, or the solutions of minimal length, of theinstan
e. Now, if the instan
e I is marked, then Emin is a �nite set, sin
edi�erent minimal solutions start with di�erent letters.In this paper we shall 
onsider in�nite solutions of the instan
es (h, g). Two(�nite) words u and v are said to be 
omparable, denoted by u ⊲⊳ v, if one is apre�x of the other. Let ω = a1a2 . . . be an in�nite word over A where ai ∈ Afor ea
h index i. We write h(ω) = g(ω) if the morphisms h and g agree on ω,that is, if g(u) ⊲⊳ h(u) for all �nite pre�xes u of ω. We also say that su
h anin�nite word ω is an in�nite solution of the instan
e I = (h, g). We denote by
Eω(I) the set of all in�nite solutions of the instan
e I.The problem where it is asked whether a given instan
e of the PCP hasor does not have an in�nite solution is 
alled naturally the in�nite PCP. Itwas shown in [14℄ that there is no algorithm to determine whether a generalinstan
e of the PCP has an in�nite solution. Indeed, by [14℄, the in�nite PCPis unde
idable for instan
es where the morphisms are pre�x.In [4℄ it was proved that the in�nite PCP is de
idable for marked instan
es ofthe PCP. Later, using the previous result, is was proved in [7℄ that The in�nitePCP is de
idable for the binary instan
es.We shall 
onsider the form of the solutions in these two de
idable 
ases. Bystudying the proof of de
idability of the marked in�nite PCP, we establish a
hara
terization of the solutions.In order to state our main results, we need some de�nitions and notations.Let A be an alphabet. For a set K ⊆ A∗ of �nite words, let

Kω = {w1w2 · · · | wi ∈ K for all i ≥ 1}be the set of all in�nite 
on
atenation of words from K. For a singleton set
K = {w}, we let wω denote {w}ω. In parti
ular, Aω 
onsists of all (one-way)2



in�nite words a1a2 . . . over A. An in�nite word ω ∈ Aω is 
alled ultimatelyperiodi
, if is ω = uvω for some �nite words u and v.A D0L system H = (h, w) 
onsists of a morphism h : A∗ → A∗ and an axiom
w ∈ A∗. A D0L system H = (h, w) de�nes the language LH =

{

hi(w) | i ≥ 0
}.An in�nite word ω is a �xed point of the D0L system H = (h, w), if

ω = lim
n→∞

hn(w),that is, if hn(w) is a pre�x of hn+1(w) for all n ≥ 0. For further theory of D0Lsystems, we refer to [9℄. We shall proveTheorem 1 (Main). Let I = (h, g) be a marked instan
e of the Post Corre-sponden
e Problem. Then the in�nite solutions of I form a set
Eω(I) = Eω

min ∪ E∗
min (P ∪ F ) ,where P is a �nite set of ultimately periodi
 words, and F is a �nite set ofmorphi
 images of �xed points of D0L systems.This 
hara
terization holds also for the binary in�nite PCP, as we shall see.We shall now �x some notation. The empty word is denoted by ε. Thelength of a word u is denoted by |u|. A word u ∈ A∗ is said to be a pre�x of aword v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗. Also, if u 6= ε and

w 6= ε in v = uw, then u is a proper pre�x of v, and, this is denoted by u < v.Re
all that u and v are 
omparable, u ⊲⊳ v, if u ≤ v or v ≤ u. The longest
ommon pre�x of the words u and v is denoted by u∧v. If v = uw then we alsowrite u = vw−1 and w = u−1v.A word v is primitive, if v = un implies that n = 1, and thus that u = v. It iswell known (see [10℄) that every word w has a unique primitive root, a primitiveword v su
h that w = vn for some n ≥ 1.A morphism h : A∗ → B∗ is said to be periodi
, if there exists a word v ∈ B∗su
h that h(a) ∈ v∗ for all a ∈ A. The word v 
an be assume to be primitive.2 The algorithm for marked PCPThe basi
 result on whi
h we build on the results of this paper is the de
idabilityof the marked instan
es of the PCP. In order to study the solutions of theseinstan
es, we need to 
onsider in detail the de
ision algorithm for the in�nitemarked PCP. On the other hand, in order to study those details we need tostudy the algorithm for de
iding the marked PCP. The detailed proofs of thede
idability of marked PCP 
an be found from [8℄ or [3℄.We begin with the following simpler problem with a simple solution:Given an instan
e I = (h, g) of the PCP for h, g : A∗ → B∗, and aletter a ∈ B. Does there exist words x, y ∈ A+ su
h that h(x) = g(y)with a ≤ h(x)?Here we do not look for a solution of the instan
e (h, g), but for a pair of wordssu
h that h(x) = g(y), where we additionally require that h(x) starts with aspe
i�
 letter a. If h(u) = g(v) and h(u′) 6= g(v′) for all u′ ≤ u and v′ ≤ v with
(u, v) 6= (u′, v′), then the pair (u, v) is 
alled a blo
k solution to the equation
h(x) = g(y). 3



Let (h, g) be a marked instan
e of the PCP. Noti
e that, for ea
h letter
a, a blo
k solution is unique, if it exists. We shall now give a pro
edure for
onstru
ting the blo
k solution for a letter a. De�ne a sequen
e (xi, yi) ∈
A∗ × A∗, for i = 1, 2, . . . , indu
tively by the following blo
k pro
edure BP:(1) If there are (ne
essarily unique) letters b, c ∈ A su
h that a ≤ h(b) and

a ≤ g(c), and h(b) ⊲⊳ g(c), then set x1 = b and y1 = c, and let s1 ∈ B∗ besu
h that either h(x1)s1 = g(y1) or g(y1)s1 = h(x1). We 
all su
h a word
s1 an over�ow of h or g, respe
tively.(2) If si−1 = ε, then (xi−1, yi−1) is the blo
k solution. Otherwise, if h(xi−1)si =
g(yi−1) and si−1 ⊲⊳ h(d) for some d ∈ A, then set xi = xi−1d and yi = yi−1.Similarly, if g(yi−1)s = h(xi−1) and si−1 ⊲⊳ g(d) for some d ∈ A, then set
xi = xi−1 and yi = yi−1d. Let then the new over�ow be

si =

{

g(yi)
−1h(xi), if g(yi) ≤ h(xi),

h(xi)
−1g(yi), if h(xi) ≤ g(yi).Sin
e the morphisms are marked and the sequen
e (xi, yi) is 
onstru
ted inBP letter by letter, there are only �nitely many di�erent possible over�ows.Therefore eventually we rea
h one of the following 
hoi
es:(C1) The words h(xi) and g(yi) are not 
omparable.(C2) The same over�ow s of h or of g reappears.(C3) For one over�ow si = ε. Then (xi, yi) is the blo
k solution.Note that in the 
ase (C2) the over�ows form an ultimately periodi
 sequen
e,and h(xi) ⊲⊳ g(yi) for all i ≥ 1. Although the 
ase (C2) is not important in themarked PCP, this 
ase needs to be studied when we 
onsider in�nite solutionsof the marked instan
es in Se
tion 3.The following lemma is immediate from the 
onditions (C1), (C2) and (C3)(see [5℄).Lemma 1. Let h, g : A∗ → B∗ be marked morphisms. There exists at most oneblo
k solution (u, v) su
h that a ≤ h(u) and a ≤ g(v). Moreover, su
h a blo
ksolution for a given letter a 
an be e�e
tively found.For marked instan
e (h, g), if (u, v) is the blo
k solution with a ≤ h(x)and a ≤ g(y), then (u, v) is 
alled a blo
k for the letter a, and it is denoteby β(a) = (u, v). If no su
h blo
k solution exists, then β(a) is unde�ned.Furthermore, if β(a) is de�ned, then a is 
alled a blo
k letter.Assume that w ∈ A+ is a solution of the marked instan
e (h, g). Then thereexists a unique blo
k de
omposition of w,

w = u1u2 · · ·uk = v1v2 · · · vk, (1)where (ui, vi) = β(ai) for ai ∈ A for i = 1, . . . , k. This means that ea
h solutionis a 
on
atenation of blo
ks.Let (h, g) be a marked instan
e with h, g : A∗ → B∗. We 
an make twoassumptions: �rst we 
an assume that A ⊂ B and se
ondly that
a ≤ h(a) for all a ∈ A. (2)4



Indeed, both assumptions 
an be ful�lled by renaming and permuting the lettersof the domain alphabet A.By using blo
ks we de�ne for a marked instan
e I = (h, g) its su

essor
I ′ = (h′, g′) as follows. The new domain alphabet of I ′ is

A′ = {a | β(a) exists }Note that A′ ⊆ A ⊆ B. De�ne the morphisms h′, g′ : (A′)∗ → A∗ by
h′(a) = u and g′(a) = v, if β(a) = (u, v).Note that the su

essor instan
e I ′ is marked, sin
e the morphisms h and gare marked and for ea
h letter in B, there is at most one blo
k. The followinglemma states a 
onne
tion between an instan
e and its su

essor (see [5℄ or [4℄).Lemma 2. Let I = (h, g) be a marked instan
e and I ′ = (h′, g′) be its su

essor.Then(i) hh′(x) = gg′(x) for all x ∈ (A′)∗.(ii) I has a solution if and only if I ′ has.(iii) if w′ is a solution of I ′, then w = h′(w′) = g′(w′) is a solution of I.(iv) a ≤ h′(a) for ea
h a ∈ A′.It 
an be proved that the su

essor I ′ is at least as simple as the originalinstan
e I. Using the 
onstru
tion of the su

essors indu
tively we end up inan instan
e, for whi
h the existen
e of a solution 
an be easily de
ided. We usetwo measures for the hardness of an instan
e. The �rst measure is the size ofthe domain alphabet. It is immediate that |A′| ≤ |A|, sin
e, trivially, there 
anbe at most |A| blo
k letters.The se
ond measure is the su�x 
omplexity. For a morphism h : A∗ → B∗,the su�x 
omplexity σ(h) is de�ned to be the number of di�erent su�xes ofthe image words,

σ(h) = |{x | x proper su�x of h(a) for some a ∈ A}| .For an instan
e I = (h, g) of the PCP, the su�x 
omplexity is de�ned as
σ(I) = σ(h) + σ(g).The next lemma was proved in [8℄.Lemma 3. Let I = (h, g) be a marked instan
e and I ′ = (h′, g′) be its su

essor.Then σ(I ′) ≤ σ(I).The de
ision pro
edure for the marked PCP uses the su

essors iteratively,i.e., it generates the su

essors as long as an instan
e is obtained where thede
ision is easy to make. Therefore we de�ne the su

essor sequen
e as follows:Let I0 = (h, g) be a marked instan
e for h, g : A∗

0 → B∗. We de�ne indu
tively
Ii = (hi, gi) by Ii+1 = I ′i. Moreover, we have that hi, gi : A∗

i → A∗
i−1 for all

i ≥ 1. Re
all that A ⊆ B and therefore Ai ⊆ B for all i ≥ 0.Now sin
e the size of the alphabet and the su�x 
omplexity do not in
rease,one of the following three 
ases o

urs in the su

essor sequen
e Ii:5



(C1) |Aj | = 1 for some j ≥ 0,(C2) σ(Ij) = 0 for some j ≥ 0,(C3) the su

essor sequen
e enters a 
y
le, i.e., there exists n0 and d ≥ 1 su
hthat, for all j ≥ n0, Ij = Ij+d.The �rst two 
ases of the following lemma are trivial; for the third 
ase (the
y
ling 
ase), see [8℄, [3℄, or [4℄.Lemma 4. In 
ase (C1), the instan
e is unary. In 
ase (C2), all images ofletters are of length one, and therefore the blo
k solutions are of length one. Thelength of ea
h blo
k solution in the 
ase (C3) is one.We have now the following de
idability theorem from [5℄.Theorem 2. The marked PCP is de
idable for all domain alphabets. Moreover,the set of minimal solutions of a marked instan
e 
an be e�e
tively 
onstru
ted.3 In�nite solutions in marked PCPIn this se
tion we present a de
ision algorithm for in�nite solutions of the markedPCP. The 
onstru
tions of the previous se
tion for the marked PCP are 
ru
ialin these 
onsiderations. For the 
omplete proofs, see [4℄. We begin with alemma, whi
h follows from Lemma 2(i).Lemma 5. Let I = (h, g) be a marked instan
e and I ′ = (h′, g′) be its su

essor.If x ⊲⊳ y, then also h(h′(x)) ⊲⊳ g(g′(y)).Assume that ω is an in�nite solution of a marked instan
e I = (h, g). Wesay that ω has a blo
k de
omposition, if
ω = u1u2 · · · = v1v2 · · · ,where (ui, vi) = β(ai) for letters ai with i ≥ 1.All the solutions of I are either of the form(S1) ω ∈ Eω(I), that is, ω = u1u2 · · · for some ui ∈ Emin(I).or of the form(S2) ω′ = vω, where v ∈ E(I) and ω is an in�nite solution of I that does nothave a pre�x from E(I).In (S2), there are two possible 
ases for ω:(S2a) ω has a blo
k de
omposition.(S2b) ω does not have any blo
k de
omposition.Note that there are only �nitely many in�nite solutions ω of types (S2a) and(S2b), sin
e ea
h su
h solution begins with a di�erent letter.The 
ases where the su�x 
omplexity is zero or the domain alphabet is unaryare easy to determine. 6



Lemma 6. Let I be a unary instan
e or a marked instan
e with σ(I) = 0. Thenall solutions of I are of type (S1), that is, the set of in�nite solutions is exa
tly
Emin(I)ω.Proof. The in�nite solutions of unary instan
es are, trivially, of the form ω = aωfor the only letter a of the domain alphabet, and therefore the 
laim holds forthese 
ases.Assume then that σ(I) = 0. Then the images of the letters have length one(see Lemma 4). Hen
e, there exists an in�nite solution ω = a1a2 . . . if and onlyif h(ai) = ai = g(ai) for all ai. Therefore the solutions are of type (S1), andthus in Emin(I)ω. Of 
ourse, all words in Emin(I)ω are in�nite solutions of theinstan
e I.Now we 
onsider the form of the solutions (S2b).Theorem 3. Let I = (h, g) be a marked instan
e of the PCP. The in�nitesolutions of type (S2b) of I are ultimately periodi
.Proof. Consider an in�nite solution ω of type (S2b). Then

ω = u1u2 · · ·unω1 = v1v2 · · · vnω2,where (ui, vi) = β(ai) for some letters ai, 1 ≤ i ≤ n, and ω1, ω2 are in�nitewords, whi
h do not have a blo
k as a pre�x. Note that also n = 0 is possible.It is 
lear that h(ω1) = g(ω2), sin
e h(ui) = g(vi) for all i. Let b be the �rstletter of h(ω1). Thus, there are no blo
ks for b in I, and therefore, in the blo
kpro
edure BP for b after some step the over�ows appear periodi
ally, that is,
ω1 = uxω and ω2 = vyωfor some words u, x, v and y with |h(x)| = |g(y)|. Hen
e, the in�nite solutionsare ultimately periodi
 in this 
ase.For type (S2a), we modify �rst a result from [4℄.Lemma 7. Let I = (h, g) be a marked instan
e. If an in�nite word ω of type(S2a) is a solution of I, then ω′ de�ned by h′(ω′) = ω is an in�nite solution oftype (S2a) or (S2b) of the su

essor I ′ = (h′, g′). Here ω and ω′ begin with thesame letter.Proof. Let ω be an in�nite solution of type (S2a) of I. Then it has two fa
tor-izations,

ω = u1u2 · · · = v1v2 · · · , (3)where (ui, vi) = β(ai) for the letters ai. Now, ω′ = a1a2 · · · , and h′(ω′) = ω =
g′(ω′) by the de�nition of S′. Clearly, h(a1) ⊲⊳ g(a1) and h′(a1) = u1 ⊲⊳ g′(a1) =
v1. By assumption, a1 ≤ h(a1), and hen
e both sides begin with a1. It remainsto observe that ω′ is not in E(I ′)ω . Indeed, if x = a1a2 · · · an ∈ E(h′, g′), forsome n ≥ 1, then, by Lemma 2, h′(x) = u1u2 · · ·un = v1v2 · · · vn = g′(x), is in
E(h, g) 
ontradi
ting the assumption that ω is of type (S2a).By Lemma 7, instead of 
onsidering in�nite solutions of type (S2a) of I, we
an 
onsider the simpler instan
e I ′. The di�
ulty here is that we do not knowin advan
e, whether a possible solution of I ′ is of type (S2a) or (S2b).7



For type (S2a) solutions we need to study the su

essor sequen
e. We shall�rst prove a simple 
ase, where all instan
e of the entire su

essor sequen
e havean in�nite solution of type (S2a).Also the following lemma was proved in [4℄. We give the proof of this result,sin
e it will be used in the following.Lemma 8. There exists an in�nite solution of type (S2a) for all Ii startingwith a letter b if and only if hi(b) ⊲⊳ gi(b) for all i ≥ 0.Proof. It is 
lear that the existen
e of type (S2a) solution implies the latter
ondition of the 
laim. For the 
onverse, assume that hi(b) ⊲⊳ gi(b) for all i. ByLemma 5, the words
xi = h1 · · ·hi−1hi(b) and yi = g1 · · · gi−1gi(b) (4)are 
omparable and they both begin with b by the assumption. Let zi = xi ∧yi,the longest 
ommon pre�x of xi and yi. Obviously, zi is either xi or yi. Sin
e b ≤

hi(b), we have hi(b) = bxi for a word xi, and hen
e hi−1hi(b) = hi−1(b)hi−1(xi),and so hi−1(b) ≤ hi−1hi(b). Therefore, zi ≤ zi+1 for all i. Now the word
ω = limi→∞ zi is an in�nite solution of I0 starting with b, sin
e, by Lemma 5,
h0h1 · · ·hi(b) and g0g1 · · · gi(b) are 
omparable for all i. The 
laim now followsindu
tively for all i ≥ 0.We prove our main result for the remaining 
ase (S2a).Theorem 4. Let I be a marked instan
e of the PCP. Type (S2a) solutions of Iare either ultimately periodi
 or of the form f(ω), where f is a morphism and
ω is a �xed point of the D0L system with a single letter axiom.Proof. Let Ii be the su

essor sequen
e for the marked instan
e (h0, g0), where
I = I0 and Ii = (hi, gi) for hi, gi : A∗

i → A∗
i−1. Assume that the instan
e

I = (h0, g0) has an in�nite solution ω0 beginning with a letter a and having ablo
k de
omposition as in type (S2a).By the 
onstru
tion of the su

essor sequen
e, see Lemma 2, we have asequen
e ωi, i ≥ 0, where ωi is an in�nite solution of the instan
e Ii su
h that
ωi−1 = hi(ωi) for all i ≥ 1. As at the end of the proof of Lemma 7, we 
anshow that if ωi ∈ E(hi, gi)

ω, then also ωi−1 ∈ E(hi−1, gi−1)
ω . By Lemma 6, itfollows that the su

essor sequen
e is 
y
ling, that is, satis�es (C3).Assume that n0 and d ≥ 1 are su
h that Ij = Ij+d for all j ≥ n0.We have two 
ases a

ording to whether the letter a disappears or remainsin the su

essor sequen
e. Note that if there exists an in�nite solution startingwith a, then hi(a) ⊲⊳ gi(a) as long as the letter appears in the su

essor sequen
e.Assume �rst that a disappears from the su

essor sequen
e after the in-stan
e Ij , that is, there is a blo
k for a in Ij but not in Ij+1. By Lemma 7,there is an instan
e Ii, with i ≤ j, that has a solution of type (S2b) beginningwith a. Hen
e the type 
hanges from (S2b) to (S2a) at some step of the se-quen
e. By Theorem 3, the instan
e Ii has an ultimately periodi
 solution ω′(starting with a). Therefore, by Lemma 5, the word

ω = h1h2 · · ·hi(ω
′)is an in�nite solution of I and it is ultimately periodi
, sin
e it is a morphi
image of an ultimately periodi
 word. 8



Assume then that the letter a remains in the su

essor sequen
e. Sin
ethere is an in�nite solution of I beginning with a, we have h(a) ⊲⊳ g(a) and,sin
e a ≤ h(a) and also a ≤ g(a), we obtain that hi(a) ⊲⊳ gi(a) for all i ≥ 0.Therefore, by Lemma 8, there exists an in�nite solution of type (S2a) beginningwith a for all instan
es in the su

essor sequen
e.Assume that the sequen
e is su
h that Ii = (hi, gi) and for all i ≥ n, Ii = Ii+das in the above. As in the proof of Lemma 8, we may determine an in�nitesolution of I by
h1h2 · · ·hn−1(hnhn+1 · · ·hn+d−1)

i(a),where i tends to in�nity. De�ne then
f = h1h2 · · ·hn−1 and h = hnhn+1 · · ·hn+d−1.Now, f is a morphism, and (h, a) is a D0L system with a �xed point ω′ =

limn→∞ hn(a). Hen
e ω = f(ω′), and this proves the 
laim.By the previous theorems, we have immediately our main theorem for markedinstan
es.Theorem 1. Let I = (h, g) be a marked instan
e of the Post Corresponden
eProblem. Then the in�nite solutions of I form a set
Eω(I) = Eω

min ∪ E∗
min (P ∪ F ) ,where P is a �nite set of ultimately periodi
 words, and F is a �nite set ofmorphi
 images of �xed points of D0L systems.Example 1. Let I0 = (h0, g0), where h0, g0 : {a, b, c, d}

∗
→ {a, b, c, d}

∗, de�nedin the following table:
a b c d

h a baa c dd

g baa aa caa dddNow, there is an in�nite solution beginning with d, namely dω . The su

essormorphisms are all listed in the following table.
a b c d

h1 aa b caa ddd

g1 b a c dd

h2 a b c dd

g2 bb a cbb ddd

h3 a bb cbb ddd

g3 b a c dd

h4 a b c dd

g4 b aa caa dddIn this example, we have I5 = I1. We see that there are in�nite solutions oftype (S2a) beginning with c and with d. These 
an be de�ned by D0L systems,but the solution for d is periodi
: dω.The in�nite solution starting with c is the �xed point of the D0L system
(h, c), where h = h1h2h3h4 is de�ned by9



a b c d

h aa bb caabb d12Now one 
an see that the �xed point is
caabbaaaabbbbaaaaaaaabbbbbbbb · · ·= ca2b2a4b4a8b8 · · · ,i.e., a sequen
e 
ounting powers of two. This sequen
e is 
learly nonregular inthe language theoreti
 sense.4 Binary in�nite PCPIt was proved in [7℄ that the existen
e of an in�nite solution is de
idable forthe binary instan
es. We state the redu
tion introdu
ed in [7℄, where a given(nonperiodi
) binary instan
e I is transformed to an equivalent instan
e of themarked PCP with three letters. Therefore, also the form of the solution of thebinary in�nite PCP follows from the study in the previous se
tion.In this se
tion we assume that the domains and the ranges of the morphismsequal to the binary set {0, 1}. Therefore the instan
es are of the form I = (h, g)su
h that h, g : {0, 1}

∗
→ {0, 1}

∗.Theorem 5. Let I = (h, g) be a binary instan
e of the PCP that has at leastone in�nite solution.(i) If both h and g are periodi
, then the set of in�nite solutions of I is {0, 1}
ω.(ii) If exa
tly one of the morphisms h or g is periodi
, then I has a uniquesolution that is ultimately periodi
.Proof. Let I = (h, g) be su
h that h(0), h(1) ∈ v∗ for a primitive word v ∈

{0, 1}
+. Clearly, ω ∈ {0, 1}

ω is an in�nite solution of the instan
e I if and onlyif g(ω) = vω.(i) Assume �rst that also g is periodi
, say g(0), g(1) ∈ u∗ for a primitiveword u ∈ {0, 1}
+. Now, there exists an in�nite solution of I if and only if

vω = uω, whi
h means that u|v| = v|u| and thus u = v, sin
e ea
h word has aunique primitive root. Therefore, the set of in�nite solutions is exa
tly {0, 1}
ω.(ii) Assume then that g is nonperiodi
, and therefore also nonerasing. Weprove that there is exa
tly one in�nite solution. Assume on the 
ontrary thatthere are two di�erent in�nite solutions ω′

1 and ω′
2. Let u = ω′

1 ∧ ω′
2 so that

ω′
1 = uω1 and ω′

2 = uω2. Hen
e we have g(ω1) = vω = g(ω2). By the defe
ttheorem for in�nite words, see, e.g., [1, Theorem 6.2.4℄, g(0) and g(1) are powersof a 
ommon word; a 
ontradi
tion.We still need to prove that the unique solution is ultimately periodi
. Assumethat ω is a solution. Sin
e h(ω) = vω, there are pre�xes u and uv of ω su
hthat g(u) = vrx and g(uv) = vsx for some r < s and a word x. In this 
ase,
g(v) = yvix for some i ≥ 0 and a word y with v = xy. It follows that ω = uvωand thus it is ultimately periodi
.Next we 
onsider the nonperiodi
 
ases. Note that in the binary 
ase, non-periodi
 morphisms are nonerasing.Let h : {0, 1}∗ → {0, 1}∗ be a nonperiodi
 morphism. Denote h(0) = h. Fora word w, denote by wi the pre�x of w of length i. De�ne a morphisms h(i) in10



a following way: For a letter x ∈ {0, 1}, let j be su
h that j ≡ i (mod |h(x)|)with 0 ≤ j < |h(x)|, and let
h(i)(x) = (h(x)j)

−1
(

h(x)h(x)j

)

.In other words, the morphisms h(i) are 
y
li
 shifts of the original morphism h.Denote by zh = h(01) ∧ h(10) the longest 
ommon pre�x of the images of 01and 10.The following lemma is a 
ombined from the results in [2℄ and [7℄. (In [7℄,see Lemma 4 and its proof.) In this lemma # is a new letter.Lemma 9. Let m = |zh| and n = |zg| and assume m ≥ n. Then the morphisms
h(m) and g(n) are marked and the instan
e (h, g) of the binary PCP has anin�nite solution ω if and only if the marked instan
e (h′, g′) has the in�nitesolution #ω, where

h′(#) = #z−1
g zh , h′(a) = h(m)(a),

g′(#) = # , g′(a) = g(n)(a).for both a ∈ {0, 1}.Note that we 
an have that zg = zh in whi
h 
ase in the new instan
e (h′, g′)we 
an safely remove the spe
ial symbol #.By Lemma 9 and the results in the previous se
tion, we haveCorollary 1. Let I be a binary instan
e of the PCP that has an in�nite solution.Then there is a �nite set K of words su
h that ea
h in�nite solution ω is either(i) ultimately periodi
, or (ii) ω ∈ K∗ω′, where ω′ is a morphi
 images of the�xed points of D0L systems, or (iii) ω ∈ Kω, where Kω is a set of in�nitesolutions.Next example shows that the D0L 
ase is possible also for binary instan
es.Example 2. Consider the binary instan
e (h, g) de�ned by
a b

h a baa

g aab aaNow, zh = ε and zg = aa. By Lemma 9, the instan
e (h, g) has an in�nitesolution if and only if the instan
e (h′, g′) has a solution beginning with #,where
a b #

h′ a baa #
g′ baa aa #aaNote that (h′, g′) is the same instan
e as in Example 1, if we repla
e c with #and omit the useless letter d. Therefore, by Example 1, (h, g) has an in�nitesolution a2b2a4b4a8b8 · · · . 11
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