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Abstract

We consider relational periods where the relation is a compatibility relation on
words induced by a relation on letters. We introduce three types of periods,
namely global, external and local relational periods, and we compare their prop-
erties by proving variants of the theorem of Fine and Wilf for these periods.
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1 Introduction

Word relations, i.e., compatibility relations on words induced by relations on
letters were introduced as a generalization of partial words in [8]. There and
in [9, 11] the main focus was on the effect of these relations on coding properties
and on the defect theorem of words. In the article [10] we started the study of
periods’ interaction properties with respect to word relations. By the interaction
property we mean that if a sufficiently long word has two periods then it also has
another nontrivial period depending on the original periods. The theorem of Fine
and Wilf is one of the cornerstones in combinatorics on words. In this theorem the
derived period is the greatest common divisor of the original periods [7]. Actually,
this topic was the starting point of the study of partial words in the seminal paper
of J. Berstel and L. Boasson in 1999 [1]. They proved a variant of the theorem of
Fine and Wilf for partial words with one hole. Since then several papers on period
properties of partial words has been published [2–6, 12]. F. Blanchet-Sadri et al.
studied the theorem of Fine and Wilf for partial words with local periods and with
arbitrarily many holes. A.M. Shur and Yu.V. Gamzova investigated the case of
global periods. We continue the study of this topic by introducing global, external
and local relational periods as generalizations of periods of partial words. Using
these periods we prove new variants of Fine and Wilf’s theorem. Especially, our
aim is to compare the interaction properties of different types of periods.

2 Word relations

An alphabet A is a nonempty finite set of symbols, called letters, and a word over
A is a (finite or infinite) sequence of symbols from A. Denote by A+ the set of
all finite nonempty words over A. The length of a word w, denoted by |w|, is the
total number of (occurrences of) letters in w. For a finite word of length n, we
use the notation w = w1w2 · · ·wn, where wi ∈ A is the ith letter of w. If a word
w = w1w2w3 · · · is an infinite catenation of a word x ∈ A+, we denote w = xω.

For a relation R ⊆ X × X , we often write x R y instead of (x, y) ∈ R. A re-
lation R is a compatibility relation on letters if it is both reflexive and symmetric,
i.e., (i) ∀x ∈ X : x R x, and (ii) ∀x, y ∈ X : x R y =⇒ y R x. For exam-
ple, both the identity relation ιX = {(x, x) | x ∈ X} and the universal relation
{(x, y) | x, y ∈ X} are compatibility relations on X .

A compatibility relation R ⊆ A+×A+ on the set of all words over an alphabet
A will be called a word relation if it is induced by its restriction on the letters, i.e.,

a1 · · ·am R b1 · · · bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A. Let R be a relation on A. By 〈R〉 we denote
the compatibility relation generated by R, i.e., 〈R〉 is the reflexive and symmetric
closure of R. Sometimes we need to consider the restriction of a relation R on a
subset X of A+. We denote RX = R ∩ (X ×X). Words u and v satisfying u R v

1



are said to be compatible or, more precisely, R-compatible. If the words are not
R-compatible, they are said to be incompatible.

Example 1. In the binary alphabet {a, b} the only word relation different from
the identity relation is the universal relation of all words of equal length. Namely,
the relation

R = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a)}

makes all words with equal length compatible with each other. On the other hand,
in the ternary alphabet {a, b, c}, where

S = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a), (c, c)},

we have abba S baab but, for instance, the words abc and cac are not compatible.

Example 2. A partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p) is
defined. The set H(w) = {1, 2, . . . , n} \ D(w) is the set of holes of w. A partial
word can also be seen as a word over the augmented alphabet A♦ = A ∪ {♦},
where ♦ is interpreted as a special “do not know” symbol [1]. In [8] we have
shown that using word relations the compatibility relation of partial words can be
expressed by

R↑ = 〈{(♦, a) | a ∈ A}〉.

3 Types of relational periods

Let x = x1 · · ·xn be a word over the alphabet A. An integer p ≥ 1 is a (pure)
period of x if, for all i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi = xj.

In this case, the word x is called (purely) p-periodic. The smallest integer which
is a period of x is called the (minimal) period of x. Here we denote it by π(x), or
shortly by π, if the word x is clear from the context.

For partial words, two types of periods were defined in [1]: A partial word w
has a (partial) period p if, for all i, j ∈ D(w),

i ≡ j (mod p) =⇒ w(i) = w(j).

A partial word w has a local (partial) period p if

i, i + p ∈ D(w) =⇒ w(i) = w(i + p).

For words with compatibility relation on letters, we will now define three types of
periods. We call these periods relational periods.
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Definition 1. Let R be a compatibility relation on an alphabet A. For a word
x = x1 · · ·xn ∈ A+, an integer p ≥ 1 is

(i) a global R-period of x if, for all i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi R xj;

(ii) an external R-period of x if there exists a word y = y1 · · · yp such that, for
all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}, we have

i ≡ j (mod p) =⇒ xi R yj.

In this case, the word y is called an external word of x.

(iii) a local R-period of x if, for all i ∈ {1, 2, . . . , n − p}, we have xi R xi+p.

These definitions generalize naturally to infinite words. For a word x, the min-
imal global (resp. external, local) R-period is denoted by πR,g(x) (resp. πR,e(x),
πR,l(x)). In the sequel, we may omit the subscript R or the argument x if the
relation R or the word x is clear from the context. Of course, these periods may
coincide. Next we give an example where all the above mentioned minimal peri-
ods are different.

Example 3. Let A = {a, b, c, d} and define

x = babbbcbd.

Let R = 〈{(a, b), (b, c), (c, d), (d, a)}〉 be a compatibility relations on the alphabet
A. Clearly, the minimal pure period π(x) = 8. By the definition of R, we see that
2 is a local R-period of x. Since (x7, x8) = (b, d) 6∈ R, 1 is not a local period and
therefore, we have πR,l(x) = 2. Neither 1 nor 2 is an external R-period of x, since
otherwise the letter y1 or respectively y2 in the external word y is related to all the
other letters of the alphabet, which is a contradiction. Since y = bab satisfies the
conditions of an external word in Def. 1.(ii), we have πR,e(x) = 3. Furthermore,
since (b, d) 6∈ R, we have πR,g(x) > 5. Indeed, πR,g(x) = 6, because of the
relation a R d. Hence, for a word x, we have

π = 8 > πg = 6 > πe = 3 > πl = 2.

The next theorem shows how different types of periods are related to each
other.

Theorem 1. Every pure period of a word x is a relational period. Every global
R-period of x is an external R-period of x and a local period of x. Thus, for a
word x, we always have

π ≥ πg ≥ max(πe, πl).
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Proof. By reflexivity, ι ⊆ R, and therefore the first statement holds. Note that if
x = x1 · · ·xn has a period p, then y = x1 · · ·xp is an external word of x. Similarly,
this choice of y also shows that a global R-period is an external R-period. Clearly,
a global period satisfies the definition of a local period. For the minimal periods,
these considerations imply the inequalities of the statement.

Note that every external period is not necessarily a local period and every local
period need not be an external period. For example, in Example 3 the minimal
local R-period πl is not an external R-period, and furthermore, πe is not a local
R-period. There we have πe > πl. Next we give an example where πl > πe.

Example 4. Let R = 〈{(a, b), (b, c), (c, d), (d, a)}〉 and let

x = adcbccccbd.

Consider first the minimal local R-period of x. Since (x9, x10) = (x4, x2) =
(b, d) 6∈ R and 3 is a local R-period, we have πl = 3. Since x1 = a, x4 = b,
x7 = c and x10 = d, there cannot exist any external word y = y1y2y3 of length
3. Otherwise, y1 would be compatible with all letters of the alphabet {a, b, c, d}.
Hence, 3 is not an external R-period. For the same reason 1 is not an external
R-period, but by choosing y = bc, we see that πe = 2. As noted above, 2 is
not a local period. Since (a, c) 6∈ R, the minimal global period satisfies πg > 7.
Actually, πg = 8 since a R b. Clearly, π = 10. Hence,

π = 10 > πg = 8 > πl = 3 > πe = 2.

If the compatibility relation R is also transitive, all relational periods coincide.

Theorem 2. If a word relation R is transitive, and thus an equivalence relation,
then Pg(x) = Pe(x) = Pl(x), where Pg(x) (resp. Pe(x), Pl(x)) is the set of all
global (resp. external, local) relational R-periods of a word x. Moreover,

πg(x) = πe(x) = πl(x).

Proof. Let x = x1 · · ·xn be a word and let R be an equivalence relation. By
Theorem 1, we have Pg(x) ⊆ Pe(x) and Pg(x) ⊆ Pl(x). Consider an external
R-period p with an external word y = y1 · · · yp. Let i ≡ j (mod p), where
i, j ∈ {1, 2, . . . , n}. Then there exists k ∈ {1, 2, . . . , p} such that i ≡ k (mod p)
and j ≡ k (mod p). Now xi R yk and xj R yk by the definition of an external
word. Since R is transitive and symmetric, we have xi R xj . Hence, p is a global
R-period, and we conclude that Pe ⊆ Pg.

Consider then a local R-period q of x. Let i ≡ j (mod q), where i, j ∈
{1, 2, . . . , n}. We may suppose that j = i + kq, where k is a nonnegative integer.
We have

xi R xi+q R xi+2q R · · · R xi+(k−1)q R xi+kq = xj.

Since R is transitive, we have xi R xj . Thus, q is a global period and we conclude
that Pl(x) ⊆ Pg(x). Hence, we have shown that Pg(x) = Pe(x) = Pl(x) and
πg(x) = πe(x) = πl(x).
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If R is not transitive, local R-periods differ from global and relational periods
by the following property.

Lemma 1. If p is a global R-period or an external R-period, then any multiple of
p is a global R-period or an external R-period, respectively. This need not be the
case for local R-periods.

Proof. Suppose that p is a global R-period of x and let i ≡ j (mod kp), where
k is a nonnegative integer. Then clearly i ≡ j (mod p) and, by the assumption,
xi R xj . Hence kp is a global R-period. The proof is similar for external R-
periods. Consider then a word x = abc and a relation R = 〈{(a, b), (b, c)}〉. The
word x has 1 as a local R-period, but 2 is not a local R-period. Thus multiples of
local R-periods are not necessarily local R-periods.

Finally we note that external periods are not very meaningful with partial
words. Namely, any integer p ≥ 1 is an external R↑-period of any partial word.
Indeed, we may choose y = (♦)p for an external word. Consequently, for partial
words, we always have πe = 1.

4 Variants of the theorem of Fine and Wilf

The theorem of Fine and Wilf [7] is well-known in combinatorics on words:

Theorem 3. If a word x has periods p and q, and has length at least p + q −
gcd(p, q), then x has also a period gcd(p, q).

J. Berstel and L. Boasson gave a variant of this theorem for partial words with
one hole in [1].

Theorem 4. Let w be a partial word of length n and suppose that it has local
R↑-periods p and q. If H(w) is a singleton and if n ≥ p + q, then w is purely
gcd(p, q)-periodic.

Furthermore, they showed that this bound on the length is sharp. Generaliza-
tions for several holes were considered, for example, by F. Blanchet-Sadri in [3]
and F. Blanchet-Sadri and R.A. Hegstrom in [6], where it was shown that local
partial periods p and q force a sufficiently long word to have a (global) partial pe-
riod gcd(p, q) when certain unavoidable cases (special words) are excluded. The
bound on the length depends on the number of holes in the word. On the other
hand, A.M. Shur and Yu.V. Gamzova found bounds for the length of a word with
k holes such that (global) partial periods p and q imply a (global) partial period
gcd(p, q) [12]. These results of partial words with several holes show that finding
good formulations for periods’ interaction in the case of arbitrary relational peri-
ods is not possible except for equivalence relations. Namely, any non-transitive
compatibility relation R must have letter relations (x1, x2), (x2, x3) ∈ R, but
(x1, x3) 6∈ R for some letters x1, x2, x3. Then the role of the letter x2 in R is
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exactly the same as the role of ♦ in R↑ and all binary counter examples of Fine
and Wilf’s theorem for partial words apply to words with compatibility relation R
over the alphabet {x1, x2, x3}. However, some periods’ interaction results can be
obtained.

If the relation R is an equivalence relation, we do not have to specify the
type of an R-period, since the definitions of the relational periods coincide by
Theorem 2. We have the following theorem proved in [10].

Theorem 5. Let R be an equivalence relation. If a word has R-periods p and q
and the length of the word is at least p + q − gcd(p, q), then the word has also an
R-period gcd(p, q). The bound on the length is strict.

As was mentioned above, the theorem of Fine and Wilf cannot be generalized
for relational periods of a non-transitive compatibility relation unless some restric-
tions on the number of relations (holes) and exclusions of some special cases are
given. Despite this fact, it might be possible to get some new interesting variations
of the theorem, for example, by assuming that one of the periods is pure and only
the other one is relational by the relation R 6= ι. Unfortunately, this restriction
seems to be insufficient in that extent that sometimes no bound on the length of
the word can be obtained for periods’ interaction. For example, there exists an
infinite word with a pure period q and a local R-period p such that it does not have
a local R-period gcd(p, q).

Example 5. Let R = 〈{(a, b), (b, c)}〉. Note that every non-transitive compatibil-
ity relation must have a subrelation similar to this one such that a and c are not
compatible. Consider an infinite word

x = (bbcab)ω.

Clearly, w has a pure period q = 5. It also has a local R-period p = 3, since
the distance of the letters a and c in x cannot be 3. Since (x3, x4) = (a, c) 6∈ R,
gcd(p, q) = 1 is not a local period and neither a global period by Theorem 1.

In the previous example the notion of a local relational period is too weak
for the desired periods’ interaction result. However, depending on the type of the
relational period p we get diverse results as will be shown in the sequel. One
variant of Fine and Wilf’s theorem was already considered in [10]. The following
theorem was obtained.

Theorem 6. Let P and Q be positive integers with gcd(P, Q) = d. Denote P =
pd and Q = qd. Suppose that a word w has a (pure) period Q and a global
R-period P . Let Bg = Bg(p, q) be defined by Table 1. If |w| ≥ Bgd, then also
gcd(P, Q) = d is a global R-period of the word w. This bound on the length is
sharp.

Hence, one global period with one pure period is strong enough to imply an-
other nontrivial global period. Moreover, according to Theorem 1, one global
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Bg(p, q) p < q p > q

p, q odd
p + 1

2
q q +

q − 1

2
p

p odd, q even
p + 1

2
q

p + 1

2
q

p even, q odd q +
q − 1

2
p q +

q − 1

2
p

Table 1: Table of bounds Bg(p, q)

period must also imply an external and a global relational period. However, the
optimal bound on the length of the word can be different in these cases. The bound
Bg in Theorem 6 is just one example of interaction bounds defined more precisely
in the following.

Definition 2. Let P ≥ 2 and Q ≥ 3 be positive integers with gcd(P, Q) = d
and let t1 and t2 be types of relational periods. A positive integer B = B(P, Q)
is called the bound of t1-t2 interaction for P and Q, if it satisfies the following
conditions:

(i) The bound B is sufficient, i.e., for any word relation R and for any word w
with length |w| ≥ B having a (pure) period Q and a t1-type R-period P ,
the number gcd(P, Q) = d is a t2-type R-period of w.

(ii) The bound is strict, i.e., there exist a word relation R and a word w with
length |w| = B−1 having a (pure) period Q and a t1-type R-period P such
that gcd(P, Q) = d is not a t2-type R-period of w.

Note that in the definition we exclude trivial cases by assuming that P ≥ 2
and Q ≥ 3. Namely, if Q ≤ 2, then the word contains at most two letters. This is
the case of Theorem 5, since there are no non-transitive compatibility relations on
a binary alphabet.

The following lemma shows that it is sufficient to consider the case where
gcd(P, Q) = 1. In the proof we use a standard approach which was also used in
the proof of Theorem 5 in [10].

Lemma 2. Let P and Q be positive integers with gcd(P, Q) = d > 1. Denote
P = pd and Q = qd. If B is the bound of t1-t2-interaction for p and q, then Bd is
the bound of t1-t2-interaction for P and Q.

Proof. Suppose that a word w has a pure period Q and a relational t1-type pe-
riod P . We may assume that |w| = Bd. Namely, if |w| > Bd, then the theorem
holds for any factor of w, and therefore also for w itself. Let us now consider the
words

w(i) = wiwi+d · · ·wi+(B−1)d
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for i = 1, 2, . . . , d. Clearly, each of the words w(i) has a pure period q and a t1-
type relational R-period p. Since |w(i)| = B for every i = 1, 2, . . . , d, then 1 is
a t2-type relational R-period for all the words w(i). Consequently, d is a t2-type
relational R-period of w.

In order to prove that the bound Bd is strict, we give an example of a word u
of length Bd − 1 such that it has a period Q and an R-period P but no R-period
d. Suppose that v = v1v2 · · · vB−1 is a word such that it has a pure period q and a
t1-type period p, but gcd(p, q) = 1 is not a t2-type relational period of v. By the
definition of B, such a word exists. Let a be some letter in the alphabet A and
define the word u by the following formula:

u = ad−1v1a
d−1v2 · · ·a

d−1vB−1a
d−1.

Now u has a pure period Q = qd and a t1-type period P = pd, but by the proper-
ties of v, gcd(P, Q) = d cannot be a t2-type R-period of u.

Hence, using our new notation and the previous lemma we may state the result
of Theorem 6 in the following way.

Theorem 6’. Let p and q be positive integers with gcd(p, q) = 1. The bound of
global-global interaction for p and q is Bg(p, q) given by Table 1.

5 Global-local interaction

Instead of attaining a global period gcd(p, q) we loosen our requirements and
consider the case where the greatest common divisor becomes a local relational
period.

Theorem 7. Let p and q be positive integers with gcd(p, q) = 1. Let k be the
smallest integer satisfying kp ≡ ±1 (mod q). The bound of global-local interac-
tion for p and q is

Bl(p, q) =

{

q + kp − 1 if 1 ≡ q − 1 (mod p) and kp ≡ +1 (mod q),
q + kp otherwise.

We divide the proof into two parts. In the sequel, we use the notation [n]q for
the least positive residue of an integer n (mod q), i.e., [n]q is the positive integer
m satisfying 1 ≤ m ≤ q and m ≡ n (mod q).

Lemma 3. The bound Bl(p, q) defined in Theorem 7 is sufficient.

Proof. Denote Bl = Bl(p, q). Assume that a word w has a pure period q and a
global R-period p. We show that 1 is a local R-period of w if |w| ≥ Bl. By the
assumption, the word w is a rational power of a word of length q. Thus in w there
are at most q different letters. Hence, the word w has a local R-period 1 if and
only if, for all n = 1, 2, . . . , q, we have

w[n]q R w[n+1]q . (1)
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We show that, for each n ∈ {1, 2, . . . , q}, there exist integers in, jn ∈ N such that

[n]q + inq ≡ [n + 1]q + jnq (mod p) (2)

and both sides of the congruence belong to the set {1, 2, . . . , Bl}. This implies
together with the global period p of w that Eq. (1) must be satisfied if |w| ≥ Bl.

Case 1. Assume first that kp ≡ 1 (mod q). For n ∈ {1, 2, . . . , q − 1}, choose
jn = kp−1

q
and in = 0. Note that j is an integer by the definition of k. Then

(n + 1) + jnq = n + 1 + kp − 1 = n + kp ≡ n (mod p).

Clearly, both sides of the congruence belong to {1, 2, . . . , Bl}. Furthermore, let
jq = kp−1

q
+ 1 and iq = 0. Now

1 + jqq = 1 + kp − 1 + q = q + kp ≡ q (mod p).

The left hand side is less than or equal to Bl only if 1 6≡ q−1 (mod p). However,
in the special case 1 ≡ q − 1 (mod q), we can choose iq = kp−1

q
and jq = 0 so

that
q + iq = q + kp − 1 ≡ q − 1 ≡ 1 (mod p).

Now the left hand side is exactly Bl.
Case 2. Assume that kp ≡ −1 (mod q) and, for n ∈ {1, 2, . . . , q − 1}, let

in = kp+1
q

and jn = 0. Hence,

n + inq = n + kp + 1 ≡ n + 1 (mod p).

Choose furthermore iq = kp+1
q

− 1 and jq = 0. Then

q + iqq = q + kp + 1 − q ≡ 1 (mod p).

Note that both sides of both congruences belong to the set {1, 2, . . . , Bl}. Hence,
we have shown that Eq. (1) is satisfied for all n = 1, 2, . . . , q if |w| ≥ Bl. There-
fore w must have gcd(p, q) = 1 as a local relational period.

Lemma 4. The bound Bl(p, q) defined in Theorem 7 is strict.

Proof. We prove that there exists a word w of length Bl − 1 such that it has a
global period p and a pure period q but no local period gcd(p, q) = 1. We show
that, at least for one index n ∈ {1, 2, . . . , q}, there is no solution in, jn of Eq. (2)
such that both sides of the equation belong to the set {1, 2, . . . , Bl − 1}. Without
contradicting the assumption that p is a global period of w we may then assume
that (w[n]q , w[n+1]q) 6∈ R and therefore gcd(p, q) = 1 is not a local R-period of w.

Case A. Let us first assume that kp ≡ 1 (mod q) and 1 6≡ q − 1 (mod p).
Consider the equation

q + iq ≡ 1 + jq (mod p).
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Note that in the solution j = jq = kp−1
q

+ 1, i = iq = 0, we have 1 + jqq =
q + kp = Bl. We prove that there is no smaller solution, i.e., there are no integers
i and j such that max(q+ iq, 1+jq) < Bl. Note that if such a solution exists, then
we may assume that either i = 0 or j = 0. Namely, if i > j for some solution,
then q + (i − j)q ≡ 1 (mod p) is a smaller solution. Similarly, if j > i, then
q ≡ 1 + (j − i)q (mod p) is a smaller solution. Thus, assume first that, for some
j ∈ N, we have

q ≡ 1 + jq (mod p)

and max(q, 1 + jq) < q + kp. Now j > 0. Otherwise, 1 + lp = q for some l ∈ N.
This means that lp ≡ −1 (mod q). By the definition of k, we have l > k so that
1 ≡ kp (mod q) and 1 < kp < lp = q − 1. This is a contradiction. Hence, j 6= 0
and max(q, 1+ jq) = 1 + jq. Since q ≡ 1 + jq (mod p), there exists s ∈ N such
that 1+ jq−q = sp. This means that sp ≡ 1 (mod q) and therefore s ≥ k. Thus,
we have

max(q, 1 + jq) = 1 + jq = sp + q ≥ kp + q.

Again, we have a contradiction.
Assume next that, for some i ∈ N, we have

q + iq ≡ 1 (mod p)

and max(q + iq, 1) = q + iq < q + kp. Hence, there exists s ∈ N such that
q + iq − 1 = sp and consequently sp ≡ −1 (mod q). By the definition of k, we
again have s > k. Now q > q + iq − kp = sp + 1 − kp > 1. On the other hand,
q + iq − kp ≡ −1 (mod q). We conclude that q + iq − kp = q − 1. Hence,

1 ≡ q + iq ≡ q + iq − kp = q − 1 (mod p)

and we end up in a contradiction. Thus, let us define a word

w = (acq−2b)(Bl−1)/q

in ternary alphabet {a, b, c} with length Bl − 1. By the above considerations, if
a R c and b R c and gcd(p, q) = 1, then the word w has a period q and a local
R-period p. However, 1 is not a local period of w if a and b are unrelated by the
compatibility relation R.

Case B. Assume next that kp ≡ 1 (mod q) and 1 ≡ q−1 (mod p). Consider
the congruence

(q − 1) + iq ≡ q + jq (mod p).

Note that in the solution i = iq−1 = 0, j = jq−1 = kp−1
q

we have q + jqq =
q + kp − 1 = Bl. Assume then that there is a smaller solution. Again, we may
assume that either i = 0 or j = 0. Suppose that, for some j ∈ N, we have

q − 1 ≡ q + jq (mod p)

10



and max(q − 1, q + jq) < Bl. Now jq + 1 = sp for some s ∈ N. As before, we
have sp ≡ 1 (mod q). Thus we must have s ≥ k. Hence

max(q − 1, q + jq) = q + jq = q + sp − 1 ≥ q + kp − 1 = Bl;

a contradiction. Suppose then that, for some i ∈ N,

q − 1 + iq ≡ q (mod p)

and max(q − 1 + iq, q) < Bl. Note that i > 0. Now there exists s ∈ N such that
iq − 1 = sp. Hence sp ≡ −1 (mod q) and s > k. Thus,

max(q − 1 + iq, q) = q − 1 + iq = (q − 1) + (sp + 1) > q + kp > Bl.

Again we end up in a contradiction. In this case, the word

w = (cq−2ab)(Bl−1)/q

and the relation R = 〈{(a, c), (b, c)}〉 together with the above calculations show
the necessity of our bound Bl like in the previous case.

Case C. Finally assume that kp ≡ −1 (mod q). Consider the same congru-
ence as in Case B. However, note that now Bl = q + kp. Similarly as above, we
see that, for any i ∈ N satisfying

q − 1 + iq ≡ q (mod p),

we must have max(q − 1 + iq, q) ≥ kp + q = Bl. If j ∈ N satisfies

q − 1 ≡ q + jq (mod p),

then j > 0 and q + jq − q + 1 = sp for some positive integer s. We have sp ≡ 1
(mod q) and therefore s > k. It follows that

max(q − 1, q + jq) = sp + q − 1 ≥ (k + 1)p + q − 1 = (kp + q) + p − 1 > Bl.

Hence, the word
w = (cq−2ab)(Bl−1)/q

and R = 〈{(a, c), (b, c)}〉 show the necessity of our bound Bl also in this case.

Theorem 7 follows now directly from Lemma 3 and Lemma 4. Note that the
value of k can be calculated easily using an elementary theorem by Fermat and
Euler. Namely, the smallest solution k′ of the equation k′p ≡ 1 (mod q) is called
the reciprocal of p modulo q and, by the theorem,

k′ = [pϕ(q)−1]q,

where ϕ is the Euler’s totient function. Thus, we have k = min(k ′, q − k′), since
(q − k′)p ≡ −1 (mod q).

11



6 Global-external interaction

Under the same assumptions as in the previous section but replacing the local re-
lational periodicity by external periodicity we obtain the next interaction theorem.
Like before, [n]q is the least positive residue of an integer n (mod q).

Theorem 8. Let p and q be positive integers with gcd(p, q) = 1. Denote h =
1 +

⌊

q
2

⌋

p. The bound of global-external interaction for p and q is

Be(p, q) =

{

min(h + [h]q − 1, h + (q − [h]q) + 1) if q is odd,
max(h, h + [h]q − (p + 1)) if q is even.

The proof of the theorem is divided into two lemmata like in the previous
section.

Lemma 5. The bound Be(p, q) defined in Theorem 8 is sufficient.

Proof. Assume that a word w has a pure period q and a global R-period p. Like
in Lemma 3, the word w is a rational power of a word of length q and therefore
contains at most q different letters. If one of the letters, say a, is R-compatible
with all the other letters, then the word w has also an external relational period 1.
Namely, y = a is an external word of w. On the other hand, if this is not the
case and the considered alphabet A does not contain any letters not occurring in
w, then 1 is not an external R-period. Hence, the existence of such a letter a is
crucial for the bound of global-external interaction.

We use the following notation. For an integer n ∈ {1, 2, . . . , q}, we define
τ(n) = max{m | 1 ≤ m ≤ |w|, m ≡ n (mod q)}. Note that if the word w has
q different letters, then τ(n) is the last occurrence of the letter wn in w. Since w
has the global relational period p, it follows that wn must be related to all letters
in the positions

S(n) = {n + ip | i = 0, 1, . . . ,

⌊

|w| − n

p

⌋

}

and

T (n) = {τ(n) − ip | i = 1, 2, . . . ,

⌊

τ(n) − 1

p

⌋

}.

Next we prove that if |w| ≥ Bl, then the union S(n) ∪ T (n) contains at least q
numbers, i.e.,

|S(n) ∪ T (n)| = 1 +

⌊

|w| − n

p

⌋

+

⌊

τ(n) − 1

p

⌋

≥ q. (3)

Since τ(n) ≡ n (mod q), this means that these numbers form a complete residue
system (mod q). Hence, wn must be R-compatible with all letters wi, for i =
1, 2, . . . , q, by the q periodicity of w and therefore 1 is an external R-period of w.
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Consider the case where q is odd. Suppose first that |w| ≥ Be = h + [h]q − 1,
where h = 1 + q−1

2
p. Then the letter wh = w[h]q occurring in the positions h and

[h]q is related to all the other letters. Namely, by the definition of Be, we have
τ([h]q) ≥ h and

1 +

⌊

|w| − [h]q
p

⌋

+

⌊

τ([h]q) − 1

p

⌋

≥ 1 +
q − 1

2
+

q − 1

2
= q.

Hence, Eq. (3) is satisfied for n = [h]q. Suppose next that |w| ≥ Be = h + (q −
[h]q) + 1. Now the letter in position 1 is related to all other letters. Namely, we
have τ(1) ≥ Be and

⌊

|w| − 1

p

⌋

≥

⌊

τ(1) − 1

p

⌋

≥
q − 1

2
.

Hence, |S(1) ∪ T (1)| ≥ 1 + q−1
2

+ q−1
2

= q like above.
Let us then assume that q is even. Hence h = 1 + q

2
p. We note first that

max(h, h + [h]q − (p +1)) = h if and only if [h]q ≤ p. If this is the case, we have

⌊

|w| − [h]q
p

⌋

≥

⌊ q
2
p + 1 − [h]q

p

⌋

≥
q

2
− 1.

On the other hand, if [h]q > p, we have

⌊

|w| − [h]q
p

⌋

≥

⌊ q
2
p + 1 + [h]q − (p + 1) − [h]q

p

⌋

=
q

2
− 1.

Furthermore, τ([h]q) ≥ h in both cases and

⌊

τ([h]q) − 1

p

⌋

≥

⌊ q
2
p + 1 − 1

p

⌋

=
q

2
.

Thus, Eq. (3) is satisfied for n = [h]q.

Lemma 6. The bound Be(p, q) defined in Theorem 8 is strict.

Proof. In order to prove that our bound is strict, we show that, for some suitable R,
there exists a word w of length Be − 1 with a period q and with a global period
p such that none of its letters is related to all other letters. We use the notation
of Lemma 5. It suffices to prove that, for every integer n ∈ {1, 2, . . . , q}, the set
S(n) ∪ T (n) does not contain a complete residue system (mod q), i.e., Eq. (3) is
not satisfied if |w| = Be − 1. Namely then we may define the relation R in the
alphabet A = {a1, a2, . . . , aq} in such a way that wn is R-compatible only with
the letters in the positions S(n)∪ T (n) and hence none of the q different letters is
related to all other letters. Then the word

w = (a1a2 · · ·aq)
Be−1

q

13



has a pure period q and a global period p, but it does not have gcd(p, q) = 1 as an
external R-period. We consider four cases:

Case 1. Let q be odd and Be = h + [h]q − 1 = q−1
2

p + [h]q. Assume that
|w| = Be − 1 = q−1

2
p + [h]q − 1. Let 1 ≤ n ≤ q and suppose furthermore that

n = [h]q + ip + j, where i ∈ Z and 0 ≤ j < p − 1. Now

⌊

|w| − n

p

⌋

=

⌊

q−1
2

p + [h]q − 1 − ([h]q + ip + j)

p

⌋

=
q − 1

2
− i − 1.

Since gcd(p, q) = 1, we have [h]q 6= 1. Thus, Be = h + [h]q − 1 < h +
(q − [h]q) + 1 by the definition of the bound. This implies that, for any number
l ∈ {h, h + 1, . . . , Be}, we have [l]q ≥ [h]q. Therefore,

τ(n) =

{

h + ip + j if n ∈ {1, 2, . . . , [Be]q − 1},
h − q + ip + j if n ∈ {[Be]q, [Be]q + 1, . . . , q}

and moreover,

⌊

τ(n) − 1

p

⌋

≤

⌊

1 + q−1
2

p + ip + j − 1

p

⌋

=
q − 1

2
+ i.

We conclude that the set S(n)∪T (n) contains at most ( q−1
2
−i)+( q−1

2
+i) = q−1

elements. Hence, it does not form a complete residue system (mod q).
Case 2. Let q be odd and Be = h+(q− [h]q)+1) = q−1

2
p+q+2− [h]q. Then

|w| = Be − 1 = q−1
2

p + q + 1− [h]q. Like above, denote n = [h]q + ip + j, where
i ∈ Z and 0 ≤ j < p− 1. By the assumption, h + [h]q − 1 ≥ h + q − [h]q + 1 and
therefore 2[h]q ≥ q + 2. Thus, we have

⌊

|w| − n

p

⌋

=

⌊

q−1
2

p + q + 1 − [h]q − ([h]q + ip + j)

p

⌋

≤

⌊

q−1
2

p − 1 − ip − j

p

⌋

=
q − 1

2
− i − 1.

By the same reasoning as in Case 1, we have τ(n) ≤ h + ip + j and

⌊

τ(n) − 1

p

⌋

≤
q − 1

2
+ i.

This means that Eq. (3) is not satisfied for any n.
Case 3. Let q be even and |w| = Be − 1 = h − 1 = q

2
p. For any n ∈

{1, 2, . . . , B}, we have

⌊

|w| − n

p

⌋

≤
q

2
− 1 and

⌊

τ(n) − 1

p

⌋

≤
q

2
− 1.
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Thus, again Eq. (3) is not satisfied.
Case 4. Let q be even and |w| = Be − 1 = h + [h]q − (p + 1) − 1 =

q
2
p + [h]q − p − 1. Like in the previous cases, denote n = [h]q + ip + j, where

i ∈ Z and 0 ≤ j < p − 1. We have
⌊

|w| − n

p

⌋

=

⌊ q
2
p + [h]q − p − 1 − ([h]q + ip − j)

p

⌋

=
q

2
− i − 2.

Next we prove that, for each l ∈ {h, h + 1, . . . , Be − 1}, we have [l]q ≥ [h]q.
Let us assume the contrary. Then, for some l ∈ {h, h + 1, . . . , Be − 1}, we have
[l]q = 1. Consider now the number l − q

2
p. On one hand,

l −
q

2
p ≡ l −

q

2
p + qp ≡ 1 +

q

2
p ≡ [h]q (mod q),

and on the other hand,

l −
q

2
p ≤

q

2
p + [h]q − p − 1 −

q

2
p < [h]q.

This is a contradiction. Hence, [l]q ≥ [h]q and therefore τ(n) ≤ h + ip + j, and
⌊

τ(n) − 1

p

⌋

≤

⌊ q
2
p + 1 + ip + j − 1

p

⌋

=
q

2
+ i.

Thus, |S(n) ∪ T (n)| ≤ 1 + ( q
2
− i − 2) + ( q

2
+ i) = q − 1.

7 External interactions

In the last two sections we found interaction bounds for one pure period and one
global relational period. On the other hand, Example 5 shows that if we replace
the global period by a local period such bounds do not necessarily exist. Does this
hold also if the global period is replaced by an external period?

Let us assume that a word w has a pure period q and an external period p. Let
y = y1 · · · yp be an external word of w, i.e., for every j ∈ {1, 2, . . . , p}, yj R wi

if i ≡ j (mod p). Denote by Alph(w) the set of the letters occurring in w. The
succeeding easy example shows that some conditions on the letters of the external
word are needed for external-global and external-local interactions.

Example 6. Consider a three letter alphabet A = {a, b, c} and let

R = 〈{(a, c), (b, c)}〉.

Consider the infinite word w = (aq−1b)ω for any integer q ≥ 2 and choose p such
that gcd(p, q) = 1. Clearly any p is an external R-period of w, since c is related
to both a and b. However, 1 is not a global nor a local R-period of w.

Hence, the example implies the following.
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Theorem 9. The bound of external-global interaction and the bound of external-
local interaction do not exist.

Because of this, in the formulation of the next theorem we consider only exter-
nal periods satisfying a special condition. Namely, we require that, for an external
R-period p of a word w, there exists an external word y = y1 · · · yp of w satisfying

|Alph(w) \ Alph(y)| ≤ 1. (4)

By considering only these restricted external periods it is possible to find a bound
of interaction.

Theorem 10. Let p and q be positive integers with gcd(p, q) = 1. The bound
of external-global interaction Cg for a restricted external period p and a pure
period q is pq. Similarly, the bound of external-local interaction Cl for a restricted
external period p and a pure period q is pq.

Proof. Suppose that w is of length pq and it has a pure period q and a restricted
external period p. Let y = y1 · · · yp be an external word of w satisfying Eq. (4).
Consider a letter wn in position n ∈ {1, 2, . . . , q}. Since the set {n + iq | i =
0, 1, . . . , p − 1} is a complete residue system (mod p), it means that wn is related
to all letters in Alph(y). By the assumption, there may exist only one letter which
does not occur in y. If this letter is wn, then it is trivially related to itself and
therefore to all letters in Alph(w). On the other hand, if wn ∈ Alph(y), then there
exists a position k such that yk = wn. Now {k + jp | j = 0, 1, . . . , q − 1} is
a complete residue system (mod q). Hence yk = wn is related to all letters of
w. This shows that all letters are compatible with all other letters. Hence, 1 is a
global and therefore also a local period of w.

Modification of the previous example shows that the bound Cg = Cl = pq is
strict. Assume that R is like in Example 6 and

w = (aq−1b)p−1aq−1.

We may choose y = cp−1a. Namely, yp = a must be only related to letters in
positions p+ ip for i = 0, 1, . . . , q−2, which are all a’s. Hence, w has an external
word which satisfies Eq. (4), but 1 is not a local neither a global R-period of
w.

For the external-external interaction no additional conditions are needed.

Theorem 11. Let p and q be positive integers with gcd(p, q) = 1. The bound of
external-external interaction for p and q is C = 1 + (q − 1)p.

Proof. Assume that y = y1 · · · yp is an external word of w. Clearly, if |w| ≥ C,
then y1 is related to all letters in Alph(w). Namely, the set {1 + ip | i =
0, 1, . . . , q − 1} forms a complete residue system (mod q).
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In order to prove that this bound is strict, consider the word

w = (a1 · · ·aq)
C−1

q

with q different letters a1, . . . , aq. Furthermore, let us assume that the alphabet
A under consideration has p extra letters not occurring in w. Suppose that these
letters are y1, . . . , yp. We may now define that yk, where k ∈ {1, 2, . . . , p}, is
not related to the letter a[k+(q−1)p]q , but it is related to all letters wk+ip for i =
0, 1, . . . , q−2. Note that the length of w and the assumption that w has q different
letters ensures that this is well defined. Hence, y = y1 · · · yp is an external word
of w. Furthermore, we may assume that two different letters in Alph(w) are not
compatible with each other. Hence, no letter in the alphabet A is related to all
letters in Alph(w). Therefore, the word w does not have 1 as an external R-
period.

On the other hand, it might be more interesting to restrict our considerations
to the case where there are no extra letters in the alphabet, i.e., the external word
consists only of letters occurring in Alph(w).

Theorem 12. Let p and q be positive integers with gcd(p, q) = 1 and assume that
the alphabet is A = Alph(w). Then the bound of external-external interaction for
p and q is

C(p, q) =

{

(q − 2)p + (q − 1) if q is odd and either q < p or q = p + 1,
(q − 1)p + 1 otherwise.

This theorem is a direct consequence of the following two lemmata.

Lemma 7. The bound C(p, q) defined in Theorem 12 is sufficient.

Proof. First of all, Theorem 11 implies that the bound C = 1 + (q − 1)p is
sufficient. Hence, let us consider those cases where C = (q +2)p+(q− 1), i.e., q
is odd and either q < p or q = p+1. Assume that a word w of length |w| ≥ C has
a pure period q and an external period p. First we fix some notation. We introduce
a parameter t which is the maximal number of different letters the word w can
contain. This parameter t will be used also in the proof of the next theorem. In
this proof, we always have t = q. In order to simplify the notation, we also set
U = {1, 2, . . . , t − 1}. For 1 ≤ k ≤ p, set Wk = {wj | j ≡ k (mod p)}. For
each k, denote k′ = [(q − 1)p + k]q. Furthermore, a R Y means that the letter a is
compatible with all the letters in Y . For example, the kth letter yk of the external
word y is, by the definition, compatible with all the letters in Wk, i.e.,

yk R Wk. (5)

Note that if k ∈ U , then |w| − k ≥ (q − 2)p and the set Wk contains at least q − 1
different letters. In other words,

Wk =

{

wk+ip

∣

∣

∣

∣

i = 0, 1, . . . ,

⌊

|w| − k

p

⌋}

⊇ A \ {wk′.} (6)
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Next we make a couple of important observations, which will be needed through-
out the proof.

(i) If k ∈ U and yk = wk′, then yk RA.

(ii) If there exist k, l ∈ U (k 6= l) such that yk = yl = a, then yk RA.

(iii) If there exist k, l ∈ U (k 6= l) such that yl = wk′ but yk 6= wl′ , then yk RA.

Let us prove these statements in brief. First, consider (i). It follows from Eq. (5)
and Eq. (6) that yk RA \ {wk′}. Since the word relation R is reflexive and
wk′ = yk, it follows that yk RA. Next, consider (ii). Like in (i), we have
yk R (A \ {wk′}) and yl R (A\{wl′}). Now k′ 6= l′, since k, l ∈ {1, 2, . . . , q−1}.
Hence, yk R wl′ and yl R wk′ . Since yk = yl = a, we have yk RA. Finally, con-
sider (iii). Again, yk R (A\{wk′}) and yl R (A\{wl′}). Since yk 6= wl′ , we have
yk ∈ (A \ {wl′}). Therefore yl = wk′ R yk, which implies that yk RA. Indeed, if
k, l ∈ U (k 6= l), yl = wk′ and yk = wl′ , then relations yk R Wk and yl R Wl do
not imply that wk′ R wl′ . In other words, it is possible that (wk′, wl′) 6∈ R. Such
a pair (k, l) is called a match and the set of indices belonging to some match is
denoted by M in the sequel.

If any of the assumptions of (i) − (iii) is satisfied, then the word w has nec-
essarily an external period 1. Namely, y = yk is an external word of w. Thus, let
us assume that none of them is satisfied. Assume first that, at least for one index
k ∈ U , the letter in the position k′ occurs also in another position 1 ≤ n ≤ q.
Denote wk′ = wn = a. Since Wk must contain a letter which is in a position
congruent to n, we have a ∈ Wk and Wk = A. Thus, yk RA and 1 is an external
period of w.

Finally, assume that, for each k ∈ U , the letter wk′ occurs only in posi-
tions congruent to k′ (mod q). Then all letters in positions {i′ | i ∈ U} are
different. Moreover, by (ii), all letters in Alph(y1 · · · yt−1) are different. Set
m = [(q − 1)p + t]q. Hence, m does not belonging to the set {i′ | i ∈ U}. By
Eq. (6), wm ∈ Wi for every i ∈ U . Thus, by Eq. (5), yi R wm for 1 ≤ i ≤ t − 1.
Suppose that wm does not occur in the t − 1 different letters of Alph(y1 · · ·yt−1).
Then wm R (A \ {wm}), since t is the maximal number of letters occurring in t.
By reflexivity of R, we have wm RA and y = wm is an external word of w.

Furthermore, the case where yk = wm for any k ∈ U is impossible. This is
based on the fact that t − 1 = q − 1 is even. Consider a position l ∈ U \ {k}.
Since none of the assumptions of the observations is satisfied, we have

(i) yl 6= wl′, (ii) yl 6= yk = wm (iii) yl 6= wk′.

Moreover, since there are at most t letters in w, we have {wi′ | i ∈ U} =
Alph(w) \ {wm}, and there must exists a unique match s ∈ U \ {k, l} such that
yl = ws′ and ys = wl′ . Since the set U \ {k} has odd number t− 2 elements, there
cannot be a unique match for each l. Thus, this case is impossible, and we have
showed that if |w| ≥ C, then gcd(p, q) = 1 is an external period of w.
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Lemma 8. The bound C(p, q) defined in Theorem 12 is strict.

Proof. We construct a word w of length C(p, q) − 1 and a relation R such that
w has a pure period q and an external R-period p, but 1 is not an external period.
In other words, using the notation of Lemma 7, we want to show that we can
define R and y = y1 · · · yp in such a way that no letter is R-compatible with all
other letters of the alphabet and yi RWi for all i = 1, 2, . . . , p. First, consider the
bound C = (q − 1)p + 1.

(a) Assume that q < p and q is even. Set A = {a1, . . . , aq} and
w = (a1 · · ·aq)

(C−1)/q. Since q is even, we can make a partition P of the set
{i′ | i = 1, 2, . . . , q} = {1, 2, . . . , q} into pairs, i.e., subsets of cardinality two. If
m and n belong to the same subset in P , we denote (m, n) ∈ P and define

(am, an) 6∈ R. (7)

Define furthermore that these are the only R-incompatible pairs. Hence, each let-
ter is incompatible with exactly one other letter. Taking benefit of this partition P ,
we define for every i, j ∈ {1, 2, . . . , q} satisfying (i′, j ′) ∈ P that

yi = aj′ and yj = ai′ . (8)

Then yi = aj′ R Wi = A \ {ai′} for i ∈ {1, 2, . . . , q}. Furthermore, set yi = y[i]q

for i = q + 1, q + 2, . . . , p. Note that Wi ⊆ W[i]q . Namely, if i = [i]q + tq ≤ p,
then by the q-periodicity of w,

Wi = {wj | j ≡ [i]q + tq (mod p)} ⊆ {wj−tq | j − tq ≡ [i]q (mod p)} = W[i]q .

Hence, yi RWi for all i = 1, 2, . . . , p.
(b) Assume that q > p + 1 and p is even. Consider the word

w = (abq−p−1aq−p+1aq−p+2 · · ·aq)
(C−1)/q

in the alphabet A = {a, b, aq−p+1, aq−p+2, . . . , aq}. We make a partition P of the
set {q−p+1, q−p+2, . . . , q} into pairs like in (a). This is possible since the set
has p elements and p is even. Define R-incompatible pairs by Eq. (7). Since this
concerns only letters {aq−p+1, aq−p+2, . . . , aq}, we also set (a, b) 6∈ R. Let these
be the only R-incompatible pairs. It is clear that no letter in A is compatible with
all other letters. We use Eq. (8) to define the external word y. This is possible,
since i′ = q − p + i for all i = 1, 2, . . . , p. We conclude that yi = aj′ RWi =
A \ {ai′}.

(c) Assume that q > p and p is odd. Set A = {a, aq−p+1, aq−p+2, . . . , aq} and

w = (aq−paq−p+1aq−p+2 · · ·aq)
(C−1)/q.

Since p is now odd, we partition only the set {q− p+1, q − p+2, . . . , q− 1} and
make (p − 1)/2 incompatible pairs using Eq. (7). Additionally, set (aq, a) 6∈ R.
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Assume moreover that these are the only R-incompatible pairs. Again, each letter
is incompatible with exactly one other letter. Define y1 · · · yp−1 using Eq. (8) and
set yp = a. Now yi R Wi for i = 1, 2, . . . , p − 1 like in the previous cases and
yp = a RWp = A \ {aq}.

Next assume that C = (q − 2)p + (q − 1). In the following four subcases the
alphabet is A = {a1, . . . , aq} and the word is w = (a1 · · ·aq)

(C−1)/q.
(d) Assume that q = p + 1 and q is odd, i.e., p = q − 1 is even. Like in (b),

we form P and R-incompatible pairs (7) by partitioning the set {q − p + 1, q −
p + 2, . . . , q}. Define also the external word as in (b). In this case, there is no
letter b like in (b) and the definition (7) does not concern a1. In order to forbid
a1 to be related to all the other letters, we define (a1, yp) 6∈ R. Note that since
C = (q − 2)p + (q − 1) = (q − 2)p + p, Wp = A \ {aq, a1}. Hence, yi R Wi for
all i, especially for i = p.

(e) Assume that q < p, q is odd and neither p + 1 nor p − 1 is divisible by q.
Denote

a = a[(q−2)p+(q−1)]q , b = a[(q−2)p+q]q ,
c = a[(q−1)p+(q−1)]q , d = a[(q−1)p+q]q .

Note that by the above divisibility properties all these four letters are different.
Now {ai′ | i = 1, 2, . . . , q − 2} = A \ {c, d}. Hence, there exist numbers
k, l ∈ {1, 2, . . . , q − 2} such that ak′ = a and al′ = b. We make a partition P of
the set {1, 2, . . . , q − 2} \ {l} into pairs. This is possible since the set contains an
even number q − 3 of elements. We use Eq. (7) to define R-incompatible pairs
of P and furthermore, define (b, c) 6∈ R and (b, d) 6∈ R. Let these be the only
incompatible pairs. Hence, except for b, all other letters are R-incompatible with
exactly one other letter. Now consider an external word y = y1 · · · yp. For indices
in the partitioned set, use Eq. (8) like before. In addition, set yl = c, yq−1 = yk

and yq = d. Furthermore, like in (a), set yi = y[i]q for i = q + 1, q + 2, . . . , p.
Now

yl = c R Wl = A \ {b},
yq−1 = yk R Wq−1 = A \ {a, c},

yq = d R Wq = A \ {b, d},

and yi R Wi by Eq. (8) for all the other indices i ∈ {1, 2, . . . , q − 2} \ {l}.
(f) Assume that q < p, q is odd and p + 1 ≡ 0 (mod q). We use the same

notation as in (e). Since p+1 ≡ 0 (mod q), a = d. Clearly b 6∈ {c, a}. Now {ai′ |
i = 1, 2, . . . , q− 2} = A\{c, a}. Thus, there does not exist k ∈ {1, 2, . . . , q− 2}
such that ak′ = a, but we have l like in (e). Define the relation R and the external
word y as in (e) except that now yq−1 = b. Hence, no letter is related to all the
other letters and y is well defined. Namely,

yq−1 = b R Wq−1 = A \ {a, c}.

(g) Assume that q < p, q is odd and p − 1 ≡ 0 (mod q). Using the notation
of (e), we conclude that b = c. Clearly a 6∈ {b, d}. Now we have {ai′ | i =
1, 2, . . . , q − 2} = A \ {b, d}. Hence, using the notation of (e) there exists k but
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no l in {1, 2, . . . , q− 2}. This time we make a partition P of the set {1, 2, . . . , q−
2} \ {k} into subsets of cardinality two. Set Eq. (7) and define furthermore that
(a, b) 6∈ R and (a, d) 6∈ R. Assume again that these are the only R-incompatible
pairs. In addition to Eq. (8) set yk = b, yq−1 = b and yq = a. Again no letter is
compatible with all the other letters and y is well defined, since

yk = b R Wk = A \ {a},
yq−1 = b R Wq−1 = A \ {a, b},

yq = a R Wq = A \ {b, d}.

Hence, we have showed that in all cases there exists a word of length C such it
has a pure period q and an external word y = y1 · · · yp but 1 is not an external
R-period. Moreover, the external word y satisfies Eq. (4) in all the cases.

We may also consider restricted external periods and have a bound for re-
stricted external-external interaction like in Theorem 10.

Theorem 13. Let p and q be positive integers with gcd(p, q) = 1. Then the bound
of external-external interaction for a restricted external period p and pure period
q is

Ce(p, q) =







(q − 2)p + (q − 1) if q is odd and q < p,
(q − 1)p if p is even and q ≥ p + 1,
(q − 1)p + 1 otherwise.

Proof. It suffices to consider only the case where p is even and q ≥ p + 1.
Lemma 7 and Lemma 8 cover the other cases. For the restricted external period,
the maximal number of different letters in w is p+1. Hence, in order to show that
the bound Ce = (q− 1)p is sufficient, set t = p+1 in Lemma 7. Finally, consider
the word

w = (aq−paq−p+1aq−p+2 · · ·aq)
(Ce−1)/q

in the alphabet A = {a, aq−p+1, aq−p+2, . . . , aq} with length Ce − 1. We make a
partition P of the set {q−p+1, q−p+2, . . . , q} into pairs. Define R-incompatible
pairs by Eq. (7) and use Eq. (8) to define the external word y like in Lemma 8.(b).
Note that Alph(y) = {aq−p+1, aq−p+2, . . . , aq}. In order to forbid a to be related
to all the other letters, we define (a, yp) 6∈ R.Hence, no letter is related to all other
letters. Note also that since C − 1 = (q − 2)p − 1, Wp = A \ {aq, a}. Hence,
yi R Wi for all i, especially for i = p. This means that w has a pure period q and
a restricted external period p, but 1 is not an external period of w.

8 Local interactions

Despite the negative result in Example 5 there exist interaction bounds for some
integers p and q also in the case where p is local. If no bound B exists, i.e., there is
an infinite word w such that gcd(p, q) is not a t2-type period of w, we set B = ∞.
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Theorem 14. Let p and q be positive integers with gcd(p, q) = 1. Then the bound
of local-local interaction for p and q is

Dl =

{

p + q if p − 1 ≡ 0 (mod q) or p + 1 ≡ 0 (mod q),
∞ otherwise.

Proof. Let w be a word of length Dl with a pure period q and a local period
p. Suppose that gcd(p, q) = 1. Assume first that p + 1 ≡ 0 (mod q). By the
periodicity assumption, we then have

wi R wi+p = wi−1

for all i = 2, 3, . . . , q and furthermore w1 R w1+p = wq. Since q is a period of w,
1 is a local R-period of w. On the other hand, if we set R = 〈{(a, c), (b, c)}〉, the
word

w = (cq−2ab)(p+q−1)/q

has a pure period q and a local R-period p. However, gcd(p, q) = 1 is not a local
R-period of w, since (wq−1, wq) 6∈ R. Note that in order to check that w has a
local period p, it suffices to ensure that the distance from any occurrence of a to
any occurrence of b is not p. By the length of w this holds. Namely, we have a =
wq−1 R wq−1+p = wq−2 = c and if q = p + 1, then also b = wq R wq−p = w1 = c.

Assume next that p − 1 ≡ 0 (mod q). Now wi R wi+p = wi+1 for all i =
1, 2, . . . , q. Like above, this means that w has a local R-period 1. Our bound is
strict, since setting again R = 〈{(a, c), (b, c)}〉, the word

w = (acq−2b)(p+q−1)/q

has a pure period q and a relational R-period p. However, (wq, wq+1) 6∈ R and 1
is not a local R-period. Again the length of w ensures that a and b do not have to
be related. We only check that a = w1 R w1+p = w2 = c, which is satisfied.

Finally, assume that q does not divide p − 1 nor p + 1. Then wi+p 6= wi+1

and wi+p 6= wi−1 if Alph(w) = q. Thus, if R = 〈{(a, c), (b, c)}〉, then the infinite
word

w = (abcq−2)ω

has a pure period q and a local R-period p, but clearly 1 is not a local R-period
of w.

Local periods are really weak when considering other interactions.

Theorem 15. Let p and q be positive integers with gcd(p, q) = 1. The bounds
De of local-external interaction and Dg of local-global interaction do not exist,
except for p = 2 and q = 3, in which case De = Dg = 5.

Proof. Suppose first that w is a word with a pure period 3 and a local period 2.
If |w| ≥ 5, we must have wi R Alph(w) for i = 1, 2, 3. Hence, 1 is a global
and external R-period. Otherwise, consider a four letter alphabet {a, b, c, d} and
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define R = 〈{(a, b), (b, c), (c, d), (d, a)}〉. By Lemma 2, we may assume that
gcd(p, q) = 1. Define an infinite word w = (w1 · · ·wq)

ω in the following way.
Set

w1 = a, w[1+p]q = b, w[1+2p]q = c and w[1+ip]q = d

for i = 3, 4, . . . , q − 1. Now, by the definition of R, wi R wi+p for all i =
1, 2, . . . , q. Hence, p is a local R-period of w. However, 1 is not an external
neither a global R-period, since no letter is compatible with all the other letters.
Hence, De = ∞.

9 Summary of bounds

In order to get a clearer picture of all the different variants of Fine and Wilf’s
theorem represented in the previous sections, we summarize the bounds in Table 2.

By Theorem 1, a global period is a stronger attribute than the other periods,
and therefore

Bg ≥ Be and Bg ≥ Bl,

for every p and q. Observe also that B-bounds (Bg, Be and Bl) are in many cases
smaller than the other bounds.

On the other hand, if we compare the bounds of global-external and global-
local interaction we see, for example, that

Be(5, 9) = 23 > 19 = Bl(5, 9),
Be(4, 7) = 15 = 15 = Bl(4, 7),
Be(3, 5) = 8 < 10 = Bl(3, 5).

This indicates the incomparability of external relational period and local relational
period, which was already seen in Examples 3 and 4 with respect to minimal
periods. However, in some sense the local period seems to be the weakest. In
the case where p is an external period, we get interaction bounds, at least, if we
assume an extra condition. In the case of a local period p, bounds usually do not
even exist. Furthermore, note that

Ce < Cg = Cl and Dl ≤ Dg = De.

Hence, in these cases the interaction bound is lower if the type of the period
gcd(p, q) is same as the type of the period p. As a final example, we give a
complete table of interaction bounds for p = 6 and q = 7.
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interaction type bound

global-global Bg =











p + 1

2
q

if (p < q and p is odd)
or (p > q and q is even),

q +
q − 1

2
p otherwise.

global-external Be =

{

min(h + [h]q − 1, h + (q − [h]q) + 1) if q is odd,
max(h, h + [h]q − (p + 1)) if q is even.

global-local Bl =







q + kp − 1
if 1 ≡ q − 1 (mod p)
and kp ≡ +1 (mod q),

q + kp otherwise.

restricted ext.-global Cq = pq

restricted ext.-ext. Ce =







(q − 2)p + (q − 1) if q is odd and q < p,
(q − 1)p if p is even and q ≥ p + 1,
(q − 1)p + 1 otherwise.

restricted ext.-local Cl = pq

external-global ∞

external-external C = 1 + (q − 1)p

external-local ∞

local-global Dg =

{

5 if p = 2 and q = 3
∞ otherwise

local-external De =

{

5 if p = 2 and q = 3
∞ otherwise

local-local Dl =







p + q
if p − 1 ≡ 0 (mod q)
or p + 1 ≡ 0 (mod q),

∞ otherwise.

Table 2: Interaction bounds for p and q, where gcd(p, q) = 1, h = 1+ bq/2cp and
k is the smallest integer such that kp ≡ ±1 (mod q).
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X
X

X
X

X
X

X
X

X
X

X
X

t1

t2 global external local

global 25 22 13

restricted external 42 36 42

external ∞ 37 ∞

local ∞ 13 ∞

Table 3: Interaction bounds for p = 6 and q = 7.
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