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Abstract

We show a reduction of Hilbert’s tenth problem to the solvability of the matrix
equationAi1

1 Ai2
2 · · ·Aik

k = Z over non-commuting integral matrices, whereZ is
the zero matrix, thus proving that the solvability of the equation is undecidable.
This is in contrast to the case whereby the matrix semigroup is commutative in
which the solvability of the same equation was shown to be decidable in general.

We also show that the solvability of the matrix equationAiBi = C for matri-
cesA, B, C ∈ Qn×n is decidable in polynomial time by converting the problem
to the orbit problem.

Keywords: Hilbert’s tenth problem, Diophantine equations, Matrix equations,
Undecidability, Formal power series.
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1 Introduction

Matrices and matrix semigroups play a fundamental and central role in many di-
verse fields of mathematics and computer science. There has been a great deal
of interest by researchers on computational problems for finitely generated matrix
semigroups and many natural decision questions on them are in fact undecidable.

One such problem which was studied is the mortality problem.We are given a
finite set of matrices,G, forming a semigroupS, and must determine whether the
zero matrix (the matrix with all zero elements) is present inthe semigroup. This
problem was shown to be undecidable by M. Paterson in 1970 for3-dimensional
integer matrix semigroups, [13], and remains undecidable even when there are
only 8 matrices in the generator of the semigroup [7].

The membership problem for ascalar matrix(A matrix with a scalark on
all leading diagonal elements and0 elsewhere) was recently shown to be unde-
cidable for4-dimensional integral matrices, see [3]. We also mention that the
freeness problem for3-dimensional integral matrix semigroups is undecidable,
see [10]. In fact, the problem remains undecidable even whenthe matrices are
upper triangular, see [6].

What can be said of decidable cases in the area however? Thereare far fewer
cases where decision problems are known to be decidable. It was shown that the
“orbit problem” (Given a matrixM ∈ Qn×n and vectorsu, v ∈ Qn, does there ex-
ist anyk ≥ 0 such thatMku = v?) is decidable, even in polynomial time, see [9].
Furthermore, it was shown that for a semigroup generated by row-monomial ra-
tional matrices (each row of a matrix contains exactly one non-zero element), the
membership is decidable for any dimension, see [11]. Some criteria for semigroup
freeness in two-dimensional upper triangular matrices wasalso shown in [6].

Another decidable case which was shown was that for acommutativerational
matrix semigroup in any dimension, where the membership problem was shown
to be decidable in polynomial time, see [1]. In this problem,we are given a
(finite) set of matricesG = {M1, M2, . . . , Mt} ⊆ Qn×n where each matrix inG
commutes with each other, and a fixed matrixM . The problem can be stated as:
does there exist natural numbersj1, j2, . . . , jt such that:

M j1
1 M j2

2 · · ·M jt

t = M?

In this paper we shall examine a related problem where we consider the above
equation for non-commutative integral matrices. We show that given thek ma-
tricesA1, A2, . . . , Ak ⊆ Zn×n, determining whether there exists natural numbers
i1, i2, . . . , ik such that:

Ai1
1 Ai2

2 · · ·Aik
k = Z,

whereZ is the zero matrix, is undecidable. We do not use a reduction of Post’s
correspondence problem, as is standard for undecidabilityproofs, we instead use
the undecidability of Hilbert’s tenth problem and properties of formal power series
to show the undecidability.
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We also show that given three matricesA, B, C ∈ Qn×n, determining whether
there exists somek ≥ 0 such thatAkBk = C is decidable in polynomial time.

2 Preliminaries

2.1 Matrices and Words

Let A be a finite set ofletterscalled analphabet. A word w is a finite sequence
of letters fromA and the set of all words overA is denotedA∗. Theempty word
is denoted byε. For two wordsu = u1u2 · · ·ui and v = v1v2 · · · vj , where
u, v ∈ A∗, the concatenation ofu andv is denoted byu · v such thatu · v =
u1u2 · · ·uiv1v2 · · · vj. By abuse of notation, we also refer to concatenation via
juxtaposition, i.e.,u · v = uv. A subsetL of A∗ is called alanguage.

As usual, for a matrixM , we denote byMT the transpose of matrixM . For
an arbitrary semiringK, let vec be a function, vec: Kn×n 7→ Kn2

, such that vec
takes ann×n matrix and creates an2 dimensional column vector by stacking the
columns of the matrix on top of each other starting with the first, i.e., for a matrix
M ∈ Kn×n, then:

vec(M) = (M[1,1], . . . , M[n,1], M[1,2], . . . , M[n,2], . . . , M[1,n], . . . , M[n,n])
T ∈ Kn2

Let A, B, C, X ∈ Kn×n, then it is well known that the equationAXB = C
(for unknownX), can be rewritten:

(BT ⊗ A)vec(X) = vec(C), (1)

where⊗ denotes theKronecker product, see [4].
We shall also need themixed product propertyof Kronecker products, namely

that for given matricesA, B, C, D ∈ Kn×n it holds that:

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) ∈ Kn2×n2

. (2)

2.2 Formal Power Series

We use the definitions and terminology as in [5]. Here, and throughout, letK be
a semiring andA a finite alphabet generating a free monoid denoted byA∗. A
formal power series,S, is defined to be a function:

S : A∗ 7→ K,

and the image of a wordw ∈ A∗ underS is denoted(S, w) and is called the coef-
ficient ofw in S. The set of formal power series overA with coefficients inK is
denoted byK〈〈A〉〉. If there are only finitely many coefficients of a formal power
series which are non-zero, then it is called apolynomial. The set of polynomials
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overA with coefficients inK is denoted byK〈A〉. We can also use a standard
notation for a formal power seriesS ∈ K〈〈A〉〉 by writing:

S =
∑

w∈A∗

(S, w)w.

Given two power seriesS andT , we can define theirsumby:

(S + T, w) = (S, w) + (T, w),

for each wordw ∈ A∗. We may also define theproductof S andT by:

(ST, w) =
∑

uv=w

(S, u)(T, v),

whereu, v, w ∈ A∗ and clearly the summation is finite for each wordw. Two
external operations ofK onK〈〈A〉〉 are given by:

(kS, w) = k(S, w), (Sk, w) = (S, w)k,

for eachw ∈ A∗ wherek ∈ K (note thatK is not required to have commutative
multiplication in general).

A formal power series,S, is calledproper if (S, ε) = 0, i.e., the coefficient of
the empty word inS is 0. For a proper formal power seriesS, we may define the
star operation:

S∗ =
∑

i≥0

Si.

The rational operations inK〈〈A〉〉 are the sum, product, star operation and the
two external products. A subset ofK〈〈A〉〉 is rationally closedif it is closed under
the rational operations. The smallest subset ofK〈〈A〉〉 containing a subsetE, is
called the rational closure ofE. A formal power seriesS is calledK-rational if it
is contained within the rational closure ofK〈A〉 (the set of polynomials).

If L is any language over an alphabetA, then itscharacteristic series, S (which
we denote by char(L)), is the formal power seriesS ∈ K〈〈A〉〉:

S = char(L) =
∑

w∈L

w,

i.e., it is the seriesS such that(S, w) = 1 if w ∈ L and0 if w /∈ L.
We may also define theHadamard productof two seriesS, T ∈ K〈〈A〉〉 by:

S ⊙ T =
∑

w∈A∗

(S, w)(T, w)w.

It was shown by Schützenberger that the Hadamard product oftwo K-rational
formal power series is alsoK-rational [16].
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Furthermore, a formal power seriesS ∈ K〈〈A〉〉 is calledrecognizableif there
exists an integern ≥ 1, two vectorsρ, τ ∈ Kn and a monoid homomorphism

µ : A∗ 7→ Kn×n,

such that for all wordsw ∈ A∗,

(S, w) = ρT µ(w)τ.

If such elements exist, then(ρ, µ, τ) is called alinear representationof the formal
power seriesS.

The following fundamental theorem was originally shown by Kleene for for-
mal power series with boolean coefficients and later extended by Schützenberger
to arbitrary semirings:

Theorem 1 (Schützenberger, 1961 [15]). A formal power series is rational if and
only if it is recognizable.

For details of this proof, see also [5] or [14].

3 Hilbert’s Tenth Problem

In 1900, David Hilbert presented a lecture entitled “Mathematische Probleme”
in which he posed23 related open problems for the new millennium. The tenth
problem, which is the only decision problem of the list, concerns the solvability
of Diophantine equations and can be stated:

Hilbert’s Tenth Problem. Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers.

The problem remained open for70 years until a “negative solution” to the
problem was shown (In other words, it was shown to be undecidable, although the
notion of algorithmic unsolvability was not known in Hilbert’s day) in 1970 by
Y. Matiyasevich building upon earlier work of many mathematicians, including
M. Davis, H. Putman and J. Robinson. For more details of the history of the
problem as well as the full proof of the undecidability of this theorem, see [12].
Note that we may, without loss of generality, restrict the problem to that whereby
the solution is over natural numbers rather than rational integers, see [12, p.6].

It is well known that we may reduce Hilbert’s tenth problem toa problem
in formal power series, namely the problem of determining for a Z-rational for-
mal power seriesS ∈ Z〈〈A〉〉, whether there exists any wordw ∈ A∗ such that
(S, w) = 0. We shall now show this reduction, see also [14].
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Let P (n1, n2, . . . , nk) be an integer polynomial withk variables (the variables
take natural number values). We shall show a construction ofa Z-rational for-
mal power seriesS over the monoidA = {x, y} with coefficients in the natural
numbers, such that for any word of the formw = xn1yxn2y · · · yxnk ∈ A∗, where
ni ≥ 0 for each1 ≤ i ≤ k, it holds that(S, w) = P (n1, n2, . . . , nk)

2 and for any
word,u, not of this form,(S, u) = 1. Thus, it follows that there exists some word
w ∈ A∗ such that(S, w) = 0 if and only if the polynomialP has a solution in
natural numbers. Due to the undecidability of the latter problem, the problem on
formal power series is also therefore undecidable.

We shall now give the details of the construction as in [14, p.73]. For each
index1 ≤ j ≤ k, define:

Rj =





∑

n1,...,nj−1≥0

xn1yxn2y · · · yxnj−1y









∑

nj≥0

njx
nj









∑

nj+1,...,nk≥0

yxj+1y · · · yxnk



 ,

and it is not difficult to show that each seriesRj is N-rational. Furthermore, by
examining the product we see that:

(Rj , x
n1yxn2y · · · yxnk) = nj

It can now be seen that the seriesR ∈ Z〈〈A〉〉 with the required property can
be constructed using the Hadamard product, addition and subtraction of the se-
ries R1, R2, . . . , Rk. However, we may note that any wordw not of the form
xn1yxn2y · · · yxnk will have the property that(R, w) = 0. Thus, we finally take
the series:

S = R ⊙ R + char((x∗y)k−1x∗)C ,

where the superscriptC denotes the complement. This formal power series is
clearly still Z-rational and note thatR ⊙ R ensures that each element is positive
or 0. ThusS contains a zero for some word if and only if that word is an encoding
of a correct solution to the given Diophantine equation as required.

4 Undecidable Matrix Equations

We shall now show a construction which will allow us to obtainthe undecidabil-
ity of solving a specific type of matrix equation. As above, weshall encode a
Diophantine equation within anZ-rational formal power series, but use a differ-
ent underlying monoid. We shall then convert the series to a linear representation
(which is guaranteed to exist due to Theorem 1) and using thisrepresentation, we
shall obtain the undecidability of determining if the matrix equation has a solution.

Theorem 2. Given integral matricesAn0
, An1

, . . . , Ank+1
of dimensionn × n, it

is algorithmically undecidable to determine whether thereexists a solution to the
equation:

Ai0
n0

Ai1
n1
· · ·Aik+1

nk+1
= Z,

whereZ denotes the zero matrix andi0, i1, . . . , ik+1 ∈ N are variables.
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Proof. Let P (n1, n2, . . . , nk) denote a polynomial with integer coefficients and
let A = {x1, x2, . . . , xk} be an alphabet. Our first step shall be to construct a
Z-rational formal power seriesS ∈ N〈〈A〉〉 1 such that for any word of the form
w = xn1

1 xn2

2 · · ·xnk

k ∈ A∗, it holds that(S, w) = P (n1, n2, . . . , nk)
2 and for any

wordu not of this form, we have(S, u) = 1.
The construction is in fact almost identical to that used in Section 3. Instead

of encoding the argument of the polynomial within a binary alphabet however,
we use a separate letter for each variable in the encoding. Thus, for each index
1 ≤ j ≤ k, we define:

Rj =





∑

n1,...,nj−1≥0

xn1

1 xn2

2 · · ·x
nj−1

j−1









∑

nj≥0

njx
nj

j









∑

nj+1,...,nk≥0

x
nj+1

j+1 · · ·xnk

k



 ,

and as previously, we see that each seriesRj is N-rational. We now have the
required property that:

(Rj , x
n1

1 xn2

2 · · ·xnk

k ) = nj.

We can thus create a rational formal power seriesR ∈ Z〈〈A〉〉 using the Hadamard
product, addition and subtraction of the seriesR1, R2, . . . , Rk in a straightforward
manner. To complete the encoding, we must make words not of the correct form
have non-zero coefficients, thus we define the series:

S = R ⊙ R + char(x∗
1x

∗
2 · · ·x

∗
k)

C ,

where again, char(L) denotes the characteristic series of the languageL and the
superscriptC denotes the complement of the series. ThusS has the property that
if any wordw ∈ A∗ is such that(S, w) = 0, thenw is of the formxn1

1 xn2

2 · · ·xnk

k

wheren1, n2, . . . , nk ∈ N, and it holds thatP (n1, n2, . . . , nk) = 0. Since it is
undecidable ifP has any such solution in natural numbers, determining whether
S has a zero coefficient for any wordw ∈ A∗ is undecidable.

Now, using Theorem 1, there exists an integern ≥ 1, two column vectors
ρ, τ ∈ Zn and a monoid morphismµ : A∗ 7→ Zn×n such that for any word
w ∈ A∗ :

(S, w) = ρT µ(w)τ,

and(ρ, µ, τ) is called a linear representation of theZ-rational seriesS.
We shall not discuss how to convert between rational formal power series and

linear representations, see [14] for details. Suffice it to say that in such a con-
version, we may assume thatρ is of the form(1, 0, . . . , 0)T andτ is of the form
((S, ε), 0, . . . , 0, 1)T whereε denotes the empty word. We can also see for a non-
empty word,w ∈ A+ thatρT µ(w)τ = µ(w)[1,n], i.e., the value(S, w) is given in
the top right element ofµ(w).

1The seriesS is Z-rational but the coefficients are natural numbers.
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Let Γ = {µ(x1), µ(x2), . . . , µ(xk)} ⊆ Zn×n andζ be the semigroup gener-
ated byΓ, then we obtain an undecidable scalar reachability problem, with the
vectorsρ, τ and scalar0. As the final step, we shall show how to obtain the matrix
equation given in the theorem.

First note that(S, ε) is only present in theτ vector for the case when we have
a word of0 length, otherwise, due to the construction in [14], it will be multiplied
by 0 for any non-empty word (since the left most column ofµ(w) has all zero
elements for allw ∈ A+). Since we may check if(S, ε) = 0 independently, we
may ignore this value and take the vectorτ = (0, 0, . . . , 1)T . Let us now define
two new matrices:

X0 =











1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











, Xk+1 =











1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1











∈ Zn×n,

i.e.,Xk+1 has all zeros except elements[1, 1] and[n, n] which are1. Note thatX0

andXk+1 are both idempotent, thusX2
0 = X0 andX2

k+1 = Xk+1. Consider now
the equation:

X i0
0 X i1

1 · · ·X ik
k X

ik+1

k+1 = Z, (3)

whereZ is the zero matrix of dimensionn. SinceX0 andXk+1 are idempotent, the
powersi0 andik+1 are irrelevant unless they equal0. If i0 or ik+1 equals0, then
the corresponding matrix equals the identity matrix. We canclearly see below
however that the result holds even if either of these matrices equals the identity
matrix (in fact we will get more non-zero elements).

Note that for any matrixM ∈ Zn×n:

X0MXk+1 =











M[1,1] · · · 0 M[1,n]

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0











,

and thatρT Mτ = M[1,n]. In the construction of [14], each matrix in the image of
µ, has a zero first column, thus in an equation of the formX i0

0 X i1
1 · · ·X ik

k X
ik+1

k+1 ,
the top left element equals1 if and only if i1 = i2 = · · · = ik = 0 (all central
powers are zero corresponding to the empty word and giving the identity matrix),
and we discount this case since we may check(S, ε) separately as mentioned. As-
sume then that the top left element equals0. Thus, Equation (3) holds if and only
if M[1,n] = ρT Mτ = 0, if and only ifP (n1, n2, . . . , nk) = 0. Since determining if
P (n1, n2, . . . , nk) = 0 is undecidable, the solvability of Equation (3) for variables
i0, i1, . . . , ik+1 ∈ N is also undecidable as required.

We can note that the solvability of Equation (3) is decidable(even in polyno-
mial time) when all matrices are commutative, see [1].
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5 Decidable Cases

We shall now examine some matrix equations whose solvability is in fact decid-
able, in contrast to the results of the last section.

Theorem 3. Given three matricesA, B, C ∈ Qn×n, it is decidable if there exists
anyi ≥ 0 such that:

AiBi = C.

Moreover, this can be checked in polynomial time.

Proof. Rewriting the matrix productAB asAInB whereIn is then-dimensional
identity matrix and applying Equation (1) from Section 2.1,we see thatAB = C
can be expressed as:

(BT ⊗ A)vec(In) = vec(C)

Iteratively applying the mixed product property of Kronecker products, Equa-
tion (2), we see that:

(BT ⊗ A)k = ((BT )k ⊗ Ak),

which corresponds to the productAkBk, thus the problem becomes: “does there
exist ani such that:

(BT ⊗ A)ivec(In) = vec(C)

is satisfied?”. We have therefore reduced the problem to a vector reachability
problem on a matrix semigroup generated by one rational matrix, (BT ⊗A). It was
proven that the “orbit problem” (i.e., the vector reachability problem for rational
matrix semigroups generated by one matrix) is decidable in polynomial time, see
[9]. Thus we can decide whether the given matrix equation hasany solution in
polynomial time also as required.

We shall now show a relation of the above result to Skolem’s problem (also
called Pisot’s problem), which we shall soon define after some preliminary defini-
tions. A sequence of integers(ui)

∞
i=0 is called a linear recurrent sequence if it sat-

isfies the recurrenceun = un−1rk−1 +un−2rk−2 + · · ·+un−kr0, whereri are fixed
integers called therecurrence coefficients. The firstk values,u0, u1, · · · , uk−1 are
called theinitial conditionsof the sequence.

Skolem’s Problem. Given the initial conditions and recurrence coefficients ofa
linear recurrent sequence,(ui)

∞
i=0, determine whether there exists an integeri ≥ 0

such thatui = 0.

The decidability status of Skolem’s problem in general is a long standing open
problem. It was recently shown to be decidable for linear recurrences of depth5,
see [8].

The following theorem concerning themortality problem2 was recently proven:

2Given a matrix semigroup, determine whether the zero matrixbelongs to the semigroup.
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Theorem 4 ([2]). Skolem’s Problem with depthk recurrences can be reduced
to the Mortality Problem for a semigroup generated by a pair of k-dimensional
integral matrices.

Utilizing this result and Theorem 3, we obtain the followingcorollary.

Corollary 5. There exist integral matricesP, X, Z ∈ Zk×k (whereZ is the zero
matrix) such that determining ifPX i = Z or X iP = Z are solvable for some
i ≥ 0, is decidable, but determining ifPX iP = Z has a solution is equivalent to
Skolem’s problem.

Proof. In the proof of Theorem [2], we have two integral matrices,P, X ∈ Zk×k

such thatP has a1 in the top left element and0 everywhere else. It follows from
the proof that we can therefore state Skolem’s problem as, “Given matricesP, X,
does there exist ani ≥ 0 such thatPX iP = Z whereZ is the zero matrix?”. This
proves that the decidability of Skolem’s problem can be reduced to the solvability
of the equationPX iP = Z.

For the decidable cases, note thatP is idempotent, thusP 2 = P , from which it
follows thatPX i = P iX i and we know from Theorem 3 that determining if there
exists ani such thatP iX i = Z is decidable in polynomial time (ifi = 0, P iX i =
I 6= Z). An almost identical argument holds for the solvability ofX iP = Z, and
thus the corollary holds.
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[6] J. Cassaigne, T. Harju, J. Karhumäki,On the Undecidability of Freeness of
Matrix Semigroups, Internat. J. Algebra Comput., 9(3-4):295-305, 1999.

[7] V. Halava, T. Harju,Mortality in Matrix Semigroups, Amer. Math. Monthly,
108:649-653, 2001.

[8] V. Halava, T. Harju, M. Hirvensalo, J. Karhumäki,Skolem’s Problem - On the
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Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN XXX-XXX-XXX-X
ISSN 1239-1891


