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Abstract

We show a reduction of Hilbert’s tenth problem to the solligbof the matrix
equationA’ AL - - A}j = Z over non-commuting integral matrices, whefds
the zero matrix, thus proving that the solvability of the atjon is undecidable.
This is in contrast to the case whereby the matrix semigreugpmmutative in
which the solvability of the same equation was shown to béddéde in general.

We also show that the solvability of the matrix equati¥iB’ = C' for matri-
cesA, B,C € Q"™ is decidable in polynomial time by converting the problem
to the orbit problem.

Keywords: Hilbert's tenth problem, Diophantine equations, Matrixuatjons,
Undecidability, Formal power series.

TUCS Laboratory
Discrete Mathematics for Information Technology



1 Introduction

Matrices and matrix semigroups play a fundamental and @erdie in many di-
verse fields of mathematics and computer science. Theredmsdgreat deal
of interest by researchers on computational problems fiejngenerated matrix
semigroups and many natural decision questions on them &retiundecidable.

One such problem which was studied is the mortality probMf@ are given a
finite set of matricess, forming a semigroup, and must determine whether the
zero matrix (the matrix with all zero elements) is preserthm semigroup. This
problem was shown to be undecidable by M. Paterson in 1978 d@mensional
integer matrix semigroups, [13], and remains undecidabém evhen there are
only 8 matrices in the generator of the semigroup [7].

The membership problem for scalar matrix(A matrix with a scalark on
all leading diagonal elements afcelsewhere) was recently shown to be unde-
cidable for4-dimensional integral matrices, see [3]. We also menti@i the
freeness problem fo3-dimensional integral matrix semigroups is undecidable,
see [10]. In fact, the problem remains undecidable even wihematrices are
upper triangular, see [6].

What can be said of decidable cases in the area however? dieeta fewer
cases where decision problems are known to be decidablaslishown that the
“orbit problem” (Given a matrix\/ € Q™*™ and vectors:,, v € Q", does there ex-
istanyk > 0 such that\/*u = v?) is decidable, even in polynomial time, see [9].
Furthermore, it was shown that for a semigroup generatea\Wwymonomial ra-
tional matrices (each row of a matrix contains exactly one-pero element), the
membership is decidable for any dimension, see [11]. Soiteierfor semigroup
freeness in two-dimensional upper triangular matricesalss shown in [6].

Another decidable case which was shown was that famamutativeational
matrix semigroup in any dimension, where the membershiplpno was shown
to be decidable in polynomial time, see [1]. In this problesg are given a
(finite) set of matricess = {M;, Mo, ..., M} C Q™" where each matrix id/
commutes with each other, and a fixed matyix The problem can be stated as:
does there exist natural numbeysjs, . . ., j; such that:

MM - M} = M?

In this paper we shall examine a related problem where weidente above
equation for non-commutative integral matrices. We shaat ffiven thek ma-
tricesAq, As, ..., Ay C Z™", determining whether there exists natural numbers
11,19, ...,1; Such that:

ADAR . AN = 7,
whereZ is the zero matrix, is undecidable. We do not use a reductiétost’s
correspondence problem, as is standard for undecidapiiityfs, we instead use
the undecidability of Hilbert’s tenth problem and propestof formal power series
to show the undecidability.



We also show that given three matricésB, C' € Q"*", determining whether
there exists some > 0 such thatd* B* = (' is decidable in polynomial time.

2 Preiminaries

2.1 Matricesand Words

Let A be a finite set ofetterscalled analphabet A word w is a finite sequence
of letters fromA and the set of all words ovet is denotedA*. Theempty word
is denoted bye. For two wordsu = wjuy---u; andv = vyvy---v;, Where
u,v € A*, the concatenation af andwv is denoted byu - v such thatu - v =
uug - - - w0109 - - - v;. By abuse of notation, we also refer to concatenation via
juxtaposition, i.e.i - v = uv. A subsetL of A* is called danguage

As usual, for a matrix\/, we denote byl/” the transpose of matrix/. For
an arbitrary semirindy, let vec be a function, vecK™*" — K™, such that vec
takes am x n matrix and createss @ dimensional column vector by stacking the
columns of the matrix on top of each other starting with thet fice., for a matrix
M e K™, then:

ved M) = (M, - s Mgy, Mgy, s Mgy, - ooy Mg, - - '7M[n,n]>T e K"

Let A, B,C, X € K™, then it is well known that the equatiohX B = C'
(for unknownX), can be rewritten:

(BT ® A)ved X) = ved (), 1)

where® denotes th&ronecker produgtsee [4].
We shall also need thaixed product propertgf Kronecker products, namely
that for given matrices!, B, C, D € K™*™ it holds that:

(A® B)(C ® D) = (AC ® BD) € K™ ™. 2)

2.2 Formal Power Series

We use the definitions and terminology as in [5]. Here, andughout, letK” be
a semiring and4 a finite alphabet generating a free monoid denotediby A
formal power seriesS, is defined to be a function:

S:A* v K,

and the image of a worad € A* underS is denoted S, w) and is called the coef-
ficient ofw in S. The set of formal power series ovérwith coefficients inkK is
denoted byK ((A)). If there are only finitely many coefficients of a formal power
series which are non-zero, then it is calledaynomial The set of polynomials
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over A with coefficients inK is denoted byK (A). We can also use a standard
notation for a formal power serigsc K ({A)) by writing:

S = Z (S, w)w.

weA*

Given two power serie§ and7’, we can define thesumby:
(S+T,w) = (S,w) + (T,w),

for each wordw € A*. We may also define theroductof S andT by:

(ST,w) = 3 (S,0)(T,v),

UV=w

whereu,v,w € A* and clearly the summation is finite for each ward Two
external operations ok on K ((A)) are given by:

(kS,w) = k(S,w), (Sk,w)= (S, w)k,

for eachw € A* wherek € K (note thatK is not required to have commutative
multiplication in general).

A formal power series, is calledproperif (S,¢) = 0, i.e., the coefficient of
the empty word inS' is 0. For a proper formal power seriés we may define the

star operation
S =>"5"
>0
The rational operations i ((A)) are the sum, product, star operation and the
two external products. A subset&f((A)) isrationally closedf it is closed under
the rational operations. The smallest subsekdfA)) containing a subset, is
called the rational closure df. A formal power serie$' is calledK -rational if it
is contained within the rational closure Bf(A) (the set of polynomials).

If Lis anylanguage over an alphabgthen itscharacteristic seriesS (which
we denote by chalf()), is the formal power serieS € K ((A)):

S=chafL) =) w,

weL

i.e., itis the serie$' such thai{.S,w) = 1if w € L and0 if w ¢ L.
We may also define thdadamard producof two seriesS, T' € K ((A)) by:

SOT =" (S w)(T,ww.
weA*
It was shown by Schitzenberger that the Hadamard produstafs-rational
formal power series is als@ -rational [16].
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Furthermore, a formal power seriés= K ((A)) is calledrecognizabléf there
exists an integen > 1, two vectorsp, 7 € K™ and a monoid homomorphism

,UJ : A* —s Kan’
such that for all wordsy € A*,

(S, w) = p" p(w)r.

If such elements exist, theép, 1, 7) is called dinear representatiof the formal
power series.

The following fundamental theorem was originally shown dgéhe for for-
mal power series with boolean coefficients and later exteémgeSchiitzenberger
to arbitrary semirings:

Theorem 1 (Schutzenberger, 1961 [15]\ formal power series is rational if and
only if it is recognizable.

For details of this proof, see also [5] or [14].

3 Hilbert’'sTenth Problem

In 1900, David Hilbert presented a lecture entitled “Matla¢isthe Probleme”
in which he pose@3 related open problems for the new millennium. The tenth
problem, which is the only decision problem of the list, cems the solvability

of Diophantine equations and can be stated:

Hilbert’s Tenth Problem. Given a Diophantine equation with any number of
unknown quantities and with rational integral numericakfficients: To devise a
process according to which it can be determined by a finitebermof operations
whether the equation is solvable in rational integers.

The problem remained open @0 years until a “negative solution” to the
problem was shown (In other words, it was shown to be undbt@dalthough the
notion of algorithmic unsolvability was not known in Hild&rday) in 1970 by
Y. Matiyasevich building upon earlier work of many matheitians, including
M. Davis, H. Putman and J. Robinson. For more details of tkeoty of the
problem as well as the full proof of the undecidability ofshiheorem, see [12].
Note that we may, without loss of generality, restrict theljem to that whereby
the solution is over natural numbers rather than ratioriabjers, see [12, p.6].

It is well known that we may reduce Hilbert’s tenth problematgroblem
in formal power series, namely the problem of determiningaf@-rational for-
mal power serie$ € Z((A)), whether there exists any wotd € A* such that
(S, w) = 0. We shall now show this reduction, see also [14].
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Let P(ny,no, ..., ng) be an integer polynomial with variables (the variables
take natural number values). We shall show a constructicaZfrational for-
mal power serie$ over the monoidd = {x,y} with coefficients in the natural
numbers, such that for any word of the formn= z"'yxz"?y - - - y2™ € A*, where
n; > 0 for eachl < i < k, it holds that(S, w) = P(ny, ns, ...,n;)?* and for any
word, u, not of this form,(S, ) = 1. Thus, it follows that there exists some word
w € A* such that(S,w) = 0 if and only if the polynomialP has a solution in
natural numbers. Due to the undecidability of the lattebjpem, the problem on

formal power series is also therefore undecidable.
We shall now give the details of the construction as in [143p. For each
index1 < j < k, define:

R; = S amyamyeyatioy | | Y ngat S yaltlyega™ |
N1,.eny nj—12>0 n; >0 Tjd1seee ng >0

and it is not difficult to show that each seri&s is N-rational. Furthermore, by
examining the product we see that:

(Rj, z™yx"™y - - -ya"™) = n;

It can now be seen that the seriBse Z((A)) with the required property can
be constructed using the Hadamard product, addition anulastiion of the se-
ries Ry, Ry, ..., R,. However, we may note that any word not of the form
xMyz"y - - - yz™ will have the property thatR, w) = 0. Thus, we finally take
the series:

S =R® R+ charf(z*y) "),

where the superscrigt’ denotes the complement. This formal power series is
clearly still Z-rational and note thak ® R ensures that each element is positive
or 0. ThusS contains a zero for some word if and only if that word is an einog

of a correct solution to the given Diophantine equation gsired.

4 Undecidable Matrix Equations

We shall now show a construction which will allow us to obttie undecidabil-
ity of solving a specific type of matrix equation. As above, st&ll encode a
Diophantine equation within a#-rational formal power series, but use a differ-
ent underlying monoid. We shall then convert the series toeal representation
(which is guaranteed to exist due to Theorem 1) and usingdpi®sentation, we
shall obtain the undecidability of determining if the magguation has a solution.

Theorem 2. Given integral matricesl,, , A,,, ..., Ay, ., of dimensiom x n, it
is algorithmically undecidable to determine whether thexests a solution to the
equation:
Aio Ai1 . ,Aik+1 =7
no* ni Nk41 ’

whereZ denotes the zero matrix arngl i1, . . . ,ix,1 € N are variables.
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Proof. Let P(ny,no,...,n;) denote a polynomial with integer coefficients and
let A = {x1,29,..., 2} be an alphabet. Our first step shall be to construct a
Z-rational formal power serieS € N((A)) ! such that for any word of the form
w=xtal? 2% € A*, it holds that(S,w) = P(ny,ns,...,ns)* and for any
word u not of this form, we havésS, u) = 1.

The construction is in fact almost identical to that usedect®n 3. Instead
of encoding the argument of the polynomial within a binarghalbet however,
we use a separate letter for each variable in the encodings, Tar each index
1 < j <k, we define:

e nMane o Ml ' Tt Lk
R; = E Ty x;ly E n;x; E Tivr T ]

ni,..,nj—1>0 n; >0 M0N0

and as previously, we see that each sefieds N-rational. We now have the
required property that:

(B, aitay? - apt) = ny.

We can thus create a rational formal power selles Z(( A)) using the Hadamard
product, addition and subtraction of the seligsR,, . . ., R, in a straightforward

manner. To complete the encoding, we must make words noeafdtrect form

have non-zero coefficients, thus we define the series:

S =R® R+ chalxiz) - a})°,

where again, chaf( denotes the characteristic series of the languaged the
superscript’ denotes the complement of the series. THU®s the property that
if any wordw € A* is such that S, w) = 0, thenw is of the formz{' 252 - - - 2}*
whereny, ny,...,n, € N, and it holds that?(ny,ns,...,n,) = 0. Since it is
undecidable if? has any such solution in natural numbers, determining veneth
S has a zero coefficient for any wotd € A* is undecidable.

Now, using Theorem 1, there exists an integep 1, two column vectors
p,7 € Z"™ and a monoid morphismp : A* — Z™*" such that for any word
we A"

(Sv w) = pT,u(w)T,
and(p, u, 7) is called a linear representation of therational seriesS.

We shall not discuss how to convert between rational forroalgy series and
linear representations, see [14] for details. Suffice itap that in such a con-
version, we may assume thats of the form(1,0,...,0)" andr is of the form
((S,€),0,...,0,1)T wheree denotes the empty word. We can also see for a non-
empty wordw € AT thatp” u(w)r = p(w)p,,, i.e., the valugsS, w) is given in
the top right element gf(w).

1The seriesS is Z-rational but the coefficients are natural numbers.
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LetI' = {u(z1), u(x2), ..., u(zx)} € 2" and( be the semigroup gener-
ated byI', then we obtain an undecidable scalar reachability probieitt the
vectorsp, T and scalaf). As the final step, we shall show how to obtain the matrix
equation given in the theorem.

First note that S, ) is only present in the vector for the case when we have
a word of0 length, otherwise, due to the construction in [14], it wil imultiplied
by 0 for any non-empty word (since the left most column.aiv) has all zero
elements for allv € A™). Since we may check ifS, ) = 0 independently, we
may ignore this value and take the vector= (0,0,...,1)7. Let us now define
two new matrices:

1 0 ---0 1 0 0
00 --- 0 00 --- 0

Xo = oo e X1 = o . SYA
00 --- 0 00 - 1

i.e., Xj1 has all zeros except elemeffits1] and|n, n] which arel. Note thatX|,
and X, are both idempotent, thus§ = X, andX?,, = X;,. Consider now
the equation: '

XXy XpXH =7, 3)
whereZ is the zero matrix of dimensian SinceX, andX, . are idempotent, the
powersi, andi,,; are irrelevant unless they equal If i, or i, equals), then
the corresponding matrix equals the identity matrix. We cl@arly see below
however that the result holds even if either of these matrempuals the identity
matrix (in fact we will get more non-zero elements).

Note that for any matrixd/ € 7"*":

Mpay o 0 Mpy
XoMXpi=| ., |
0 .00

and thatp” Mt = M. In the construction of [14], each matrix in the image of

11, has a zero first column, thus in an equation of the foffhX | - - - X;* X1,
the top left element equalsif and only ifi; = i, = --- = 4, = 0 (all central
powers are zero corresponding to the empty word and giviedgdintity matrix),
and we discount this case since we may chetk) separately as mentioned. As-
sume then that the top left element equal3 hus, Equation (3) holds if and only
if My, = p' M7 = 0, ifand only if P(n{, ns, ..., n;) = 0. Since determining if
P(ny,ns,...,nx) = 0is undecidable, the solvability of Equation (3) for variedbl
10,11, - - ., ix+1 € Nis also undecidable as required. O

We can note that the solvability of Equation (3) is deciddbiesn in polyno-
mial time) when all matrices are commutative, see [1].
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5 Decidable Cases

We shall now examine some matrix equations whose solwalsliin fact decid-
able, in contrast to the results of the last section.

Theorem 3. Given three matricesl, B, C' € Q"*", it is decidable if there exists
anyi > 0 such that: o

A'B' =C.
Moreover, this can be checked in polynomial time.

Proof. Rewriting the matrix produci B as Al,, B wherel,, is then-dimensional
identity matrix and applying Equation (1) from Section 2v/E, see thal B = C'
can be expressed as:

(BT @ A)vedI,) = vedC)

Iteratively applying the mixed product property of Kroneckoroducts, Equa-
tion (2), we see that:

(BT @ A)* = ((B")" @ AY),
which corresponds to the produdt B*, thus the problem becomes: “does there

exist ani such that: ‘
(BT @ A)'vedl,) = vedC)

is satisfied?”. We have therefore reduced the problem to toveeachability
problem on a matrix semigroup generated by one rationaixpéfs” ® A). It was
proven that the “orbit problem” (i.e., the vector reachiépiproblem for rational
matrix semigroups generated by one matrix) is decidableipnomial time, see
[9]. Thus we can decide whether the given matrix equationamgssolution in
polynomial time also as required. O

We shall now show a relation of the above result to Skolemiblem (also
called Pisot’s problem), which we shall soon define afterespneliminary defini-
tions. A sequence of integefs;):°,, is called a linear recurrent sequence if it sat-
isfies the recurrence, = w,,_174—1 + Up_oTr_o+ - - - +u,_xro, Wherer; are fixed
integers called theecurrence coefficients he firstk values,ug, uq, - - -, up_1 are
called thenitial conditionsof the sequence.

Skolem’s Problem. Given the initial conditions and recurrence coefficientaof
linear recurrent sequencéy; ), determine whether there exists an integer 0
such thatu; = 0.

The decidability status of Skolem'’s problem in general igraglstanding open
problem. It was recently shown to be decidable for lineaunemces of depth,
see [8].

The following theorem concerning tingortality problent was recently proven:

2Given a matrix semigroup, determine whether the zero mhgiangs to the semigroup.
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Theorem 4 ([2]). Skolem’s Problem with depth recurrences can be reduced
to the Mortality Problem for a semigroup generated by a pdikalimensional
integral matrices.

Utilizing this result and Theorem 3, we obtain the followicwyollary.

Corollary 5. There exist integral matriceB, X, Z € Z*** (whereZ is the zero
matrix) such that determining iPX* = Z or X‘'P = Z are solvable for some
i > 0, is decidable, but determining R X*P = Z has a solution is equivalent to
Skolem’s problem.

Proof. In the proof of Theorem [2], we have two integral matricBsX € ZF**
such thatP has al in the top left element andl everywhere else. It follows from
the proof that we can therefore state Skolem’s problem assgfGmatricesP, X,
does there exist an> 0 such thatP X*P = Z whereZ is the zero matrix?”. This
proves that the decidability of Skolem’s problem can be ceduto the solvability
of the equatiolPX*'P = Z.

For the decidable cases, note tRdt idempotent, thu®? = P, from which it
follows thatPX* = P'X* and we know from Theorem 3 that determining if there
exists an such thatP’ X* = 7 is decidable in polynomial time (if= 0, P'X" =
I # Z). An almost identical argument holds for the solvability6fP = Z, and
thus the corollary holds. O
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