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Abstract

Let g : D ×D → R be a symmetric function on a finite set D satisfying g(x, x) = 0
for all x ∈ D. A switch gσ of g w.r.t. a local valuation σ : D → R is defined by
gσ(x, y) = σ(x) + g(x, y) + σ(y) for x 6= y and gσ(x, x) = 0 for all x. We show that
every symmetric function g has a unique minimal semimetric switch, and, moreover,
there is a switch of g that is isometric to a finite Manhattan metric. Also, for each
metric on D, we associate an extension metric on the set of all nonempty subsets
of D, and we show that this extended metric inherits the switching classes on D.

1 Introduction

Finite metric spaces are useful in many applications, where one needs to mea-
sure distances or dissimilarities of objects that come out from a large storage
of objects, see, e.g., Linial [10]. In some cases, however, the first natural mea-
sure to be considered might not be properly a distance function, and it may
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be necessary to distort the measure in order to estimate it by a distance func-
tion. We consider this problem with respect to a graph theoretic operation
of switching. Our distortions are governed by the local switching operation of
the complete undirected graphs, where the edges are weighed by real num-
bers. Such a graph g on a set D of vertices will be identified with a function
g : D×D → R, called a symmetric function (on D), that satisfies the following
properties, for all x, y ∈ D, g(x, x) = 0 and g(x, y) = g(y, x).

Switching of unweighed graphs was introduced by Van Lint and Seidel [11] in
connection with a problem in elliptic geometry. For surveys of this topic, see
[4,7,8,12,13]. Symmetric functions are special cases of 2-structures which were
introduced in [5] as a framework for decomposition of finite discrete systems.
Switching was generalized in [6] to 2-structures under the name of ‘dynamic
labelled 2-structures’, where the dynamic aspect was motivated by the theory
of graph transformation systems.

Let g be a symmetric function on a finite domain D. The switch of g with
respect to a function σ : D → R is the symmetric function gσ defined by

gσ(x, y) = σ(x) + g(x, y) + σ(y) ,

for all (x, y) ∈ D×D with x 6= y, and gσ(x, x) = 0 for all x ∈ D. The switching
class of g is the set [g] = {gσ | σ : D → R} of all switches of g.

A symmetric function g can be considered as a generalized distance function
allowing negative values, and which need not satisfy the triangle inequality.
We shall show that every symmetric function g has a switch that is a metric,
and, moreover, each g has a unique minimal semimetric switch. We also show
that each symmetric function g has a switch gσ that is isometric to a finite
Manhattan metric. This is interesting also from the point of view of algorithmic
complexity, since it is known that the embedding problem of finite metrics to
the Manhattan space is NP-complete, see Karzanov [9]. Finally, we consider
domains D with weightings w : D → R, where w(x) > 0 for all x ∈ D. We
extend each metric (symmetric function) g on D to a metric gw on the set of
all nonempty subsets of D. Here gw(X,Y ) corresponds to the weighted mean
value of the connections in g between the elements of X and Y . This extension
inherits the switching classes on D, i.e., if g is a switch of h then gw is a switch
of hw for the extensions of g and h.

2 Semimetrics

We shall consider finite semimetric spaces, i.e., pairs (D, d), where D is a
finite set of points and d : D×D → R is a function, called a semimetric, that
satisfies the following conditions, for all x, y, z ∈ D,
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(i) d(x, x) = 0, d(x, y) ≥ 0,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

Hence every semimetric is a symmetric function. Moreover, a semimetric d is
a metric, if d(x, y) = 0 implies x = y.

Example 1 Let G = (D, E) be an undirected connected graph, i.e., the do-
main D is a finite set of vertices and E is a set of edges {x, y}, x, y ∈ D with
x 6= y. Define dG : D × D → R such that dG(x, y) is the length of a shortest
path from x to y in G. Then dG is a metric on D. 2

The functions from a finite set D to R are provided with the usual operations:
(σ + τ)(x) = σ(x) + τ(x) and (rσ)(x) = r · σ(x), where r ∈ R is a constant.

For a symmetric function g : D ×D → R, the switching class [g] is generated
by each of its elements, that is, [g] = [gσ] for all σ : D → R. This follows from
the equality (gσ)−σ = gσ−σ = g.

It is clear that if σ(x) = s for sufficiently large s ∈ R, then gσ is metric. Indeed,
for this we can choose any s > (3/2) ·max{|g(x, y)| | x, y ∈ D}. Therefore all
symmetric functions are switches of metrics:

Theorem 2 Let g be a symmetric function. Then the switching class [g] con-
tains a metric.

Define a partial order on the symmetric functions on D by g ≤ h if and only if
g(x, y) ≤ h(x, y) for all x, y ∈ D. We shall refer to this ordering as the natural
ordering of the symmetric functions.

If x, y, z are three different elements of a set D, then the ordered triple (x, y, z)
is called a triangle in D. For each triangle (x, y, z) and each symmetric function
g on D, we let

∆g(x, y, z) = g(x, y) + g(x, z)− g(y, z) .

Now, for each σ : D → R, we have ∆gσ(x, y, z) = ∆g(x, y, z) + 2σ(x).

Theorem 3 Let g be a symmetric function. Then the switching class [g] con-
tains a unique minimal semimetric with respect to the natural ordering.

PROOF. Let g be on the domain D. For |D| = 1 the claim is obvious, and
if |D| = 2, then there exists only one switching class on D, and the minimum
semimetric on D is the zero function. Assume then that |D| ≥ 3, and define

σ(x) = −(1/2) ·min{∆g(x, y, z) | y, z ∈ D, (x, y, z) a triangle} . (1)
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We show that gσ is the unique minimal semimetric in [g]. Let x, y, z ∈ D.
By (1), σ(x) + σ(y) ≥ −g(x, y), that is, gσ(x, y) ≥ 0. Similarly, using (1) for
σ(z), we obtain

gσ(x, z) + gσ(z, y) = σ(x) + g(x, z) + 2σ(z) + g(z, y) + σ(y)

≥ σ(x) + g(x, y) + σ(y) = gσ(x, y) ,

which shows that gσ is a semimetric.

For minimality, assume that, for each x ∈ D, the minimum in (1) is obtained in
a triangle (x, yx, zx) for some yx, zx ∈ D. By (1), we have that ∆gσ(x, yx, zx) =
2σ(x) + ∆g(x, yx, zx) = 0. Assume then that the switch gτ is a semimetric for
some τ : D → R. We have gτ = (gσ)τ−σ, and thus

0 ≤ ∆gτ (x, yx, zx) = (τ − σ)(x) + gσ(x, yx) + (τ − σ)(yx)

+ (τ − σ)(x) + gσ(x, zx) + (τ − σ)(zx)− (τ − σ)(yx)− gσ(yx, zx)

− (τ − σ)(zx) = 2 · (τ − σ)(x) ,

from which σ ≤ τ follows. This implies gτ (x, y) = (gσ)τ−σ(x, y) = (τ−σ)(x)+
gσ(x, y) + (τ − σ)(y) ≥ gσ(x, y) , where equality holds if and only if τ = σ.
This proves the claim. 2

For each symmetric function g, we denote by min(g) the unique minimum
semimetric in [g] provided by Theorem 3.

Example 4 Let D = {1, 2, . . . , n} for n ≥ 4, and let g be defined by g(i, j) =
(−1)i+j for all i, j ∈ D with i 6= j, and g(i, i) = 0 for each i. Then g is a
symmetric function that is not a semimetric for n ≥ 2, since g attains negative
values. The function σ in the proof of Theorem 3 is constant, σ(i) = 3/2, since,
for each i, one can always choose j and k such that i+ j and i+k are odd and
j + k is even. Therefore, for i 6= j, we have gσ(i, j) = g(i, j)+ 3 = 3+ (−1)i+j.
Since gσ(i, j) > 0 for all i 6= j, this unique minimum semimetric is also a
metric. 2

Theorem 5 Let g be a symmetric function on D with |D| ≥ 3, and let
τ : D → R. The switch (min(g))τ is a semimetric if and only if τ is non-
negative.

PROOF. Let h = min(g). For each triangle (x, y, z), we have ∆hτ (x, y, z) =
∆h(x, y, z) + 2τ(x), and hence, if τ(x) ≥ 0 for all x, then hτ is a semimetric,
since h is a semimetric. Also, by the proof of Theorem 3, for each x, there exists
a triangle (x, y, z) such that ∆h(x, y, z) = 0. By the above, ∆hτ (x, y, z) =
2τ(x), and so if hτ is a semimetric, then τ(x) ≥ 0. 2
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By Theorem 5 we have immediately

Corollary 6 Let g be a symmetric function. If min(g) is a metric, then so
are all semimetrics in [g].

3 Manhattan geometry

We consider the n-dimensional space Rn of real vectors. The Manhattan metric
on Rn (see, e.g., [2,3]) is defined by

dL(x̄, ȳ) =
n∑

i=1

|xi − yi| (2)

for all vectors x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn). The metric space (Rn, dL)
is called an L1-space.

There are finite metrics that can be embedded into the Manhattan space L1,
but not into the Euclidean space with its usual metric. One such metric is
defined by g(x1, xi) = 1 for i = 2, 3, 4 and g(xi, xj) = 2 for i 6= 1 and j 6= 1.

We say that a symmetric function g is semi-Manhattan of dimension n, if
there exists a mapping α : D → Rn such that g(x, y) = dL(α(x), α(y)). If the
mapping α is injective, then it is called a Manhattan isometry for g, and, in
this case, g is a Manhattan function of dimension n.

It is well known that all 4-point metrics can be embedded into the Manhattan
space; see Remark 3.2.5 of [3]. However, not all finite metrics are Manhattan.
Indeed, the distance metric of the complete bipartite graph K2,3. is a 5-element
metric that is not Manhattan; see [2,3].

It is also interesting to note that the problem whether a finite metric is iso-
metric to a Manhattan metric, is NP-complete, see Karzanov [9].

A semimetric d on D is called a cut semimetric, if there is a subset S ⊆ D
such that d(x, y) = 0 if either x, y ∈ S or x, y /∈ S; otherwise d(x, y) = 1. The
following general result is due to Assouad [1], see also [3].

Theorem 7 A finite metric can be embedded in L1 if and only if it is a linear
combination of cut semimetrics with nonnegative coefficients.

It follows from this that the sum of two Manhattan functions is also Manhat-
tan.

In the following theorem it is shown that if g is a Manhattan function, then
the switching class [g] contains excessively many Manhattan functions.
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Theorem 8 If g is a Manhattan function, so is gσ for all nonnegative σ.

PROOF. From Theorem 7 it follows that if g is a Manhattan function, so is
gσ for all nonnegative σ. 2

As an immediate corollary to Corollary 6 and Theorem 8, we obtain

Corollary 9 The minimum semimetric min(g) of the switching class [g] is a
Manhattan function if and only if all semimetrics in [g] are Manhattan.

We proceed to show that every switching class does have Manhattan functions.
To this end, let A ⊆ D and let g(A,a) be defined by

g(A,a)(x, y) =

0 if x, y ∈ A or x, y ∈ D \ A ,

a otherwise .

Lemma 10 Let A ⊆ D and a ∈ R be nonnegative. Then g(A,a) is a semi-
Manhattan function of dimension 1.

PROOF. Indeed, consider α(x) = a for x ∈ A and α(x) = 0 for x ∈ D \ A.
Then dL(α(x), α(y)) = g(A,a)(x, y) for all x, y ∈ D. 2

Theorem 11 Each switching class contains a Manhattan function.

PROOF. We can assume that |D| ≥ 4, since each metric on three elements
can be embedded in L1.

Obviously, each switching class has a negative symmetric function. Assume
then that g is negative. For all u 6= v, let guv = g({u,v},−(1/4)g(u,v)). Since g is
negative, each function guv is nonnegative. By Lemma 10, each guv, and hence
also the sum h =

∑
u∈D

∑
v∈D\{u} guv over all ordered pairs (u, v) ∈ D × D

with u 6= v is semi-Manhattan. Now, guv = gvu for all u and v, and moreover,
guv(x, y) = 0 unless exactly one of u or v is in {x, y}. Let A = D \ {x, y}.
Then we have

h(x, y) = 2
∑
v∈A

gxv(x, y) + 2
∑
u∈A

guy(x, y) (3)

= −(1/2)
∑
v 6=y

g(x, v)− (1/2)
∑
u 6=x

g(u, y)

= −(1/2)
∑
v∈D

g(x, v)− (1/2)
∑
v∈D

g(y, v) + g(x, y) .
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Therefore h = gσ for the nonnegative mapping σ(x) = −(1/2)
∑

v∈D g(x, v).
Hence h ∈ [g]. Moreover, if v ∈ D \ {x, y}, then, by the definition of gxv, we
have gxv(x, y) > 0. Thus, by (3), h(x, y) > 0 whenever x 6= y. This proves the
claim. 2

4 Mean invariance

Denote by P+(D) = {X | X ⊆ D, X 6= ∅} the set of all nonempty sub-
sets of D. Quotients of 2-structures are defined with respect to partitions of
the domain into clans, see, e.g., [4]. Such partitions can be avoided in the
present approach of metrics. Indeed, if g is a metric on D, we can define a
metric on the set P+(D) such that switching classes are inherited through this
transformation.

Let D be a finite set. Each function f : D → R will be extended to the subsets
X ⊆ D by setting

f(X) =
∑
x∈X

f(x) .

By a weighting we mean a positive function w on D.

Let g be a symmetric function on D, and let w be a weighting on D. With
respect to w, we extend g to gw : P+(D)×P+(D) → R as follows: gw(X, X) = 0
and

gw(X, Y ) =

∑
x∈X

∑
y∈Y w(x)w(y)g(x, y)

w(X)w(Y )
if X 6= Y . (4)

The function gw is well defined since w(X) > 0 for all X 6= ∅. In the above
definition, we do not require that the subsets X and Y are disjoint. Notice
that gw does extend the function d, since for the singleton pairs, we have
gw({x}, {y}) = g(x, y).

Lemma 12 Let g : D ×D → R be a metric, and let w be a weighting on D.
Then gw is a metric on P+(D).

PROOF. Let X, Y and Z be in P+(D). We can assume that they are all
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distinct subsets of D. Now

w(Z) · (gw(X, Z) + gw(Z, Y )) =

=

∑
x∈X

∑
z∈Z w(x)w(z)g(x, z)

w(X)
+

∑
y∈Y

∑
z∈Z w(y)w(z)g(z, y)

w(Y )

=
∑
z∈Z

w(z)

∑
x∈X

∑
y∈Y (w(x)w(y)g(x, z) + w(x)w(y)g(z, y))

w(X)w(Y )

≥
∑
z∈Z

w(z)

∑
x∈X

∑
y∈Y w(x)w(y)g(x, y)

w(X)w(Y )
= w(Z)gw(X, Y ) ,

which shows that gw(X,Y ) ≤ gw(X, Z) + gw(Z, Y ). 2

Recall that by Theorem 2, every switching class contains a metrics. In the
following theorem the domains of the symmetric functions gw will be P+(D).

Theorem 13 Let h be a metric on the domain D, and let w be a weighting
on D. If g ∈ [h], then also gw ∈ [hw].

PROOF. Let σ : D → R be such that g = hσ, and define σ̄ : P+(D) → R
such that, for each X ⊆ D,

σ̄(X) =

∑
x∈X w(x)σ(x)

w(X)
.

For X 6= Y , we have

hσ̄
w(X, Y ) = σ̄(X) + hw(X,Y ) + σ̄(Y )

=

∑
x∈X w(x)σ(x)

w(X)
+

∑
x∈X

∑
y∈Y w(x)w(y)h(x, y)

w(X)w(Y )
+

∑
y∈Y w(y)σ(y)

w(Y )

=

∑
x∈X

∑
y∈Y w(x)w(y)g(x, y)

w(X)w(Y )
= gw(X, Y ) ,

as required. 2

As a special case, for any symmetric function g, consider the constant weight-
ing w(x) = 1 on all vertices. In this case,

gw(X, Y ) =
∑
x∈X

∑
y∈Y

g(x, y)/|X| · |Y | .
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