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Abstract

We give a short proof of a result by C. M. Weinbaum [Proc. AMS,
109(3):615–619, 1990] stating that each a primitive word of length at
least 2 has a conjugate w′ = uv such that both u and v have a unique
position in the cyclic word of w.

1 Introduction

Let w ∈ A∗ be a word over the alphabet A. We say that a factor v of w has
a unique position in w, if w has a unique conjugate having v as its prefix. For
instance, if w = abaabab ∈ {a, b}∗, then the factor baab has a unique position
in w.

We shall give a short proof of the following theorem due to Weinbaum [9]
using the Critical Factorization Theorem and basic properties of Lyndon words.

Theorem 1. Let w be a primitive word of length at least 2. There is a conjugate
w′ = uv of w such that u and v have both a unique position in w.

Such a factorization uv of a conjugate w′ is called a Weinbaum factorization.
In the above example, where w = abaabab, the factor baab does not induce a
Weinbaum factorization, since in the conjugate w′ = baababab the suffix abab
does not have a unique position in w. Instead, a Weinbaum factorization for w
is given by the conjugate w′′ = aa.babab with the indicated factorization.

We mention that Duncan and Howie [3] considered the extension of the
present problem for free groups. Also, in his article Weinbaum [9] showed a
stronger result than Theorem 1, a short proof of which is given by the present
authors in [6].
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Theorem 2. Let w be a primitive word of length at least 2. Then for every
letter a there is a conjugate w′ such that w′ = uv and u and v have a unique
position in w and u begins and ends in the letter a and v does not begin nor end
in a.

2 Lyndon words and the CFT

We consider finite words on a finite alphabet A. A nonempty word u is a border
of a word w, if w = uv = v′u for some words v and v′. The word w is said
to be bordered if it has a border that is shorter than w, otherwise w is called
unbordered. We notice that every bordered word w has a minimum border u
such that u is unbordered and |u| ≤ |w|/2, where |w| denotes the length of w.

A word w is called primitive if w = uk implies k = 1. Let w = uv for some
words u and v. Then u is called a prefix of w, denoted by u ≤p w, and v is
called a suffix of w, denoted by v ≤s w. If w = ufv, where u and v are possibly
empty words, then f is a factor of w.

The Critical Factorization Theorem (CFT) is one of the main results con-
cerning periodicity of words. A weak version of this theorem was conjectured
by Schützenberger [8] and then proved by Césari and Vincent [1]. Later it was
developed into its present form by Duval [4].

An integer 1 ≤ p ≤ n is a period of w = a1a2 . . . an, where ai ∈ A, if
ai = ai+p for all 1 ≤ i ≤ n− p. The smallest period of w is called the minimum
period of w, denoted by π(w).

An integer p with 1 ≤ p < |w| is a point in w. A nonempty word u is called
a repetition word at p if w = xy with |x| = p and there exist words x′ and y′

such that u ≤s x′x and u ≤p yy′. Let

π(w, p) = min
{
|u|

∣∣ u is a repetition word at p
}

denote the local period at point p in w. A factorization w = uv, with u, v 6= ε
and |u| = p, is critical, and p is a critical point, if π(w, p) = π(w).

As an example, consider the word w = abaab of period 3. It has two critical
points, 2 and 4, indicated by dots in ab.aa.b. The shortest repetition words at
these critical points are aab and baa, respectively.

Theorem 3 (Critical Factorization Theorem). Each word w with |w| ≥ 2 has
at least one critical factorization w = uv, with u, v 6= ε and |u| < π(w), i.e.,
π(w, |u|) = π(w).

Let C be an ordering of A = {a1, a2, . . . , an}, say a1 C a2 C · · · C an. Then
C induces a lexicographic order on A∗ such that

u C v ⇐⇒ u ≤p v or u = xau′ and v = xbu′ with a C b

where a, b ∈ A. A suffix v of w is called maximum w.r.t. C if v′ C v for any
suffix v′ of w. Let C−1 denote the inverse order, an C−1 · · · C−1 a2 C−1 a1,
of C.
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We refer to [5] for a short proof of the CFT giving a technically improved
version of the proof by Crochmore and Perrin [2]. This proof gives the following

Theorem 4. Let w ∈ A∗ be a word with |w| ≥ 2, and let C be an order on A.
Let {α, β} be the set of the maximum suffixes of w w.r.t. C and C−1 such that
|β| < |α|, say α = uβ. Then |u| is a critical point of w.

Recall that two words w and w′ are conjugates if w = uv and w′ = vu for
some words u and v. A primitive word w is called a Lyndon word if it is minimal
among all its conjugates with respect to the lexicographic order C (for some C).
In other words, see e.g. [7], w is a Lyndon word if it is minimal among its suffixes
with respect to some lexicographic order. For example, consider w = abaabb.
Then aabbab and bbabaa are conjugates of w and minimal with respect to the
orders a C b and b C a, respectively.

The following result is well known.

Lemma 5. Each Lyndon word is unbordered. In particular, every primitive
word has an unbordered conjugate.

Proof. Assume that uvu is a Lyndon word w.r.t. C, where u is nonempty. Then
uvu C uuv and so vu C uv, when the common prefix is removed. This gives a
contradiction, vuu C uvu.

We notice that Lemma 5 follows also from the Critical Factorization The-
orem. Indeed, consider a critical point of the word w2 for which π(w) = |w|
whenever w is primitive. Thus w2 does have an unbordered factor of length
π(w2) and hence this factor is a conjugate of w.

Moreover, each word having k many different letters has at least k Lyndon
words among all conjugates, since there is a Lyndon word beginning with a for
each letter a.

Lemma 6. Let C be an order on the alphabet A. If u C v and u C−1 v then
u ≤p v.

Proof. Assume that u is not a prefix of v and let w be the longest common
prefix of u and v, i.e., u = wau′ and v = wbv′, where a C b for some a, b ∈ A.
It follows that bv′ C−1 au′ and thus also v C−1 u, as required.

3 Weinbaum points

If w = uv is a Weinbaum factorization then |u| is called a Weinbaum point of w.
For instance, the word w = abaababba has three Weinbaum points 4, 5 and 6,
since abaa.babba, abaab.abba, and abaaba.bba are all Weinbaum factorizations of
w.

We prove first an result that does not refer to conjugates of a word. We say
that u and v intersect, if u and v overlap or one is a factor of the other.

Lemma 7. Let w = uv be an unbordered word with a critical point |u|. Then u
and v do not intersect.
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Proof. Let w = uv be any factorization of the unbordered word w to nonempty
intersecting words u and v. We can assume that |u| ≤ |v| without loss of
generality. Note that π(w) = |w|, since w is unbordered. If u = u′s and v = sv′

for a nonempty word s, then π(w, |u|) ≤ |s| < |w|, and so |u| is not a critical
point. Similarly, if u = su′ and v = v′s, then s would be a border of w; a
contradiction. Finally, if v = sut, then π(w, |u|) ≤ |su| < |w|, and again |u| is
not a critical point. These cases prove the claim.

Theorem 8. Let w be an unbordered word with |w| ≥ 2. Then every critical
point of w is a Weinbaum point.

Proof. Since w is unbordered, we have π(w) = |w|. It follows that if x ≤p w
is any prefix of w, say w = xy, then w 6= x2yx1 for all factorizations x = x1x2

of x where x1 is nonempty. Therefore, if x occurs only as a prefix in w, it has
a unique position in (the cyclic word) w. The same conclusion holds for the
suffixes of w.

Let then w = uv be such that p = |u| is a critical point in w. By Lemma 7, u
and v do not intersect, and by the above, it follows that u and v have a unique
position in w. Therefore |u| is a Weinbaum point of w.

Corollary 9. Let w be a primitive word with |w| ≥ 2. There is a conjugate uv
of w such that u and v have a unique position in w.

Proof. Let w′ be an unbordered conjugate of w which exists by Lemma 5 since
w is primitive. By Theorem 8, w′ does have a Weinbaum point.

In the next corollary we consider the strong version of Weinbaum’s theorem
for binary words. Note that there we can have that u = a and/or v = b.

Corollary 10. Let A = {a, b} be a binary alphabet, and let w ∈ A∗ be a
primitive word with |w| ≥ 2. Then there exists a conjugate w′ of w such that
w′ = uv, where u and v have a unique position in w and u ∈ aA∗ ∩ A∗a and
v ∈ bA∗ ∩A∗b.

Proof. Let w′ be a Lyndon word of w with respect to the order a C b. Then
w′ begins with the letter a and ends with b. Let then w′ = uv, where v is the
maximum suffix of w′ with respect to the order C−1. By Lemma 6, w′ is the
maximum suffix w.r.t. C, and hence, by Theorem 4, p = |u| is a critical point
of w′, and also a Weinbaum point by Theorem 8. By the choice of v, a ≤s u
and b ≤p v. This proves the claim.

As an example, for non-binary words consider the Lyndon word w = abccac.
The order of the letters is given by a C b C c. The Weinbaum points in w are 2
(w = ab.ccac; a critical point) and 3 (w = abc.cac; a noncritical point). These
are not of the strong form required for binary words by the proof of Corollary 10.
However, w does have a conjugate w′ = acabcc in which we have a Weinbaum
factorization w = aca.bcc as required by Theorem 2.
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