On Unique Factorizations of Primitive Words

Tero Harju
Department of Mathematics,
University of Turku, 20014 Turku, Finland
harju@utu.fi

Dirk Nowotka
Institute of Formal Methods in Computer Science,
University of Stuttgart, 70569 Stuttgart, Germany
nowotka@fmi.uni-stuttgart.de

October 2006

Abstract

We give a short proof of a result by C.M. Weinbaum [Proc. AMS, 109(3):615-619, 1990] stating that each a primitive word of length at least 2 has a conjugate w' = uv such that both u and v have a unique position in the cyclic word of w.

1 Introduction

Let $w \in A^*$ be a word over the alphabet A. We say that a factor v of w has a unique position in w, if w has a unique conjugate having v as its prefix. For instance, if $w = abaabab \in \{a,b\}^*$, then the factor baab has a unique position in w.

We shall give a short proof of the following theorem due to Weinbaum [9] using the Critical Factorization Theorem and basic properties of Lyndon words.

Theorem 1. Let w be a primitive word of length at least 2. There is a conjugate w' = uv of w such that u and v have both a unique position in w.

Such a factorization uv of a conjugate w' is called a Weinbaum factorization. In the above example, where w=abaabab, the factor baab does not induce a Weinbaum factorization, since in the conjugate w'=baababab the suffix abab does not have a unique position in w. Instead, a Weinbaum factorization for w is given by the conjugate w''=aa.babab with the indicated factorization.

We mention that Duncan and Howie [3] considered the extension of the present problem for free groups. Also, in his article Weinbaum [9] showed a stronger result than Theorem 1, a short proof of which is given by the present authors in [6].

Theorem 2. Let w be a primitive word of length at least 2. Then for every letter a there is a conjugate w' such that w' = uv and u and v have a unique position in w and u begins and ends in the letter a and v does not begin nor end in a.

2 Lyndon words and the CFT

We consider finite words on a finite alphabet A. A nonempty word u is a border of a word w, if w = uv = v'u for some words v and v'. The word w is said to be bordered if it has a border that is shorter than w, otherwise w is called unbordered. We notice that every bordered word w has a minimum border u such that u is unbordered and $|u| \leq |w|/2$, where |w| denotes the length of w.

A word w is called *primitive* if $w = u^k$ implies k = 1. Let w = uv for some words u and v. Then u is called a *prefix* of w, denoted by $u \leq_p w$, and v is called a *suffix* of w, denoted by $v \leq_s w$. If w = ufv, where u and v are possibly empty words, then f is a *factor* of w.

The Critical Factorization Theorem (CFT) is one of the main results concerning periodicity of words. A weak version of this theorem was conjectured by Schützenberger [8] and then proved by Césari and Vincent [1]. Later it was developed into its present form by Duval [4].

An integer $1 \leq p \leq n$ is a *period* of $w = a_1 a_2 \dots a_n$, where $a_i \in A$, if $a_i = a_{i+p}$ for all $1 \leq i \leq n-p$. The smallest period of w is called the *minimum period* of w, denoted by $\pi(w)$.

An integer p with $1 \le p < |w|$ is a *point* in w. A nonempty word u is called a *repetition word* at p if w = xy with |x| = p and there exist words x' and y' such that $u \le_s x'x$ and $u \le_p yy'$. Let

$$\pi(w,p) = \min\{|u| \mid u \text{ is a repetition word at } p\}$$

denote the local period at point p in w. A factorization w = uv, with $u, v \neq \varepsilon$ and |u| = p, is critical, and p is a critical point, if $\pi(w, p) = \pi(w)$.

As an example, consider the word w = abaab of period 3. It has two critical points, 2 and 4, indicated by dots in ab.aa.b. The shortest repetition words at these critical points are aab and baa, respectively.

Theorem 3 (Critical Factorization Theorem). Each word w with $|w| \ge 2$ has at least one critical factorization w = uv, with $u, v \ne \varepsilon$ and $|u| < \pi(w)$, i.e., $\pi(w, |u|) = \pi(w)$.

Let \triangleleft be an ordering of $A = \{a_1, a_2, \dots, a_n\}$, say $a_1 \triangleleft a_2 \triangleleft \dots \triangleleft a_n$. Then \triangleleft induces a *lexicographic order* on A^* such that

$$u \triangleleft v \iff u \leq_{\mathbf{p}} v \text{ or } u = xau' \text{ and } v = xbu' \text{ with } a \triangleleft b$$

where $a, b \in A$. A suffix v of w is called maximum w.r.t. \triangleleft if $v' \triangleleft v$ for any suffix v' of w. Let \triangleleft^{-1} denote the inverse order, $a_n \triangleleft^{-1} \cdots \triangleleft^{-1} a_2 \triangleleft^{-1} a_1$, of \triangleleft .

We refer to [5] for a short proof of the CFT giving a technically improved version of the proof by Crochmore and Perrin [2]. This proof gives the following

Theorem 4. Let $w \in A^*$ be a word with $|w| \ge 2$, and let \lhd be an order on A. Let $\{\alpha, \beta\}$ be the set of the maximum suffixes of w w.r.t. \lhd and \lhd^{-1} such that $|\beta| < |\alpha|$, say $\alpha = u\beta$. Then |u| is a critical point of w.

Recall that two words w and w' are conjugates if w = uv and w' = vu for some words u and v. A primitive word w is called a $Lyndon\ word$ if it is minimal among all its conjugates with respect to the lexicographic order \lhd (for some \lhd). In other words, see e.g. [7], w is a Lyndon word if it is minimal among its suffixes with respect to some lexicographic order. For example, consider w = abaabb. Then aabbab and bbabaa are conjugates of w and minimal with respect to the orders $a \lhd b$ and $b \lhd a$, respectively.

The following result is well known.

Lemma 5. Each Lyndon word is unbordered. In particular, every primitive word has an unbordered conjugate.

Proof. Assume that uvu is a Lyndon word w.r.t. \triangleleft , where u is nonempty. Then $uvu \triangleleft uuv$ and so $vu \triangleleft uv$, when the common prefix is removed. This gives a contradiction, $vuu \triangleleft uvu$.

We notice that Lemma 5 follows also from the Critical Factorization Theorem. Indeed, consider a critical point of the word w^2 for which $\pi(w) = |w|$ whenever w is primitive. Thus w^2 does have an unbordered factor of length $\pi(w^2)$ and hence this factor is a conjugate of w.

Moreover, each word having k many different letters has at least k Lyndon words among all conjugates, since there is a Lyndon word beginning with a for each letter a.

Lemma 6. Let \lhd be an order on the alphabet A. If $u \lhd v$ and $u \lhd^{-1} v$ then $u \leq_{p} v$.

Proof. Assume that u is not a prefix of v and let w be the longest common prefix of u and v, i.e., u = wau' and v = wbv', where $a \triangleleft b$ for some $a, b \in A$. It follows that $bv' \triangleleft^{-1} au'$ and thus also $v \triangleleft^{-1} u$, as required. \square

3 Weinbaum points

If w=uv is a Weinbaum factorization then |u| is called a Weinbaum point of w. For instance, the word w=abaababba has three Weinbaum points 4, 5 and 6, since abaa.babba, abaab.abba, and abaaba.bba are all Weinbaum factorizations of w

We prove first an result that does not refer to conjugates of a word. We say that u and v intersect, if u and v overlap or one is a factor of the other.

Lemma 7. Let w = uv be an unbordered word with a critical point |u|. Then u and v do not intersect.

Proof. Let w=uv be any factorization of the unbordered word w to nonempty intersecting words u and v. We can assume that $|u| \leq |v|$ without loss of generality. Note that $\pi(w) = |w|$, since w is unbordered. If u = u's and v = sv' for a nonempty word s, then $\pi(w, |u|) \leq |s| < |w|$, and so |u| is not a critical point. Similarly, if u = su' and v = v's, then s would be a border of w; a contradiction. Finally, if v = sut, then $\pi(w, |u|) \leq |su| < |w|$, and again |u| is not a critical point. These cases prove the claim.

Theorem 8. Let w be an unbordered word with $|w| \geq 2$. Then every critical point of w is a Weinbaum point.

Proof. Since w is unbordered, we have $\pi(w) = |w|$. It follows that if $x \leq_{\mathbf{p}} w$ is any prefix of w, say w = xy, then $w \neq x_2yx_1$ for all factorizations $x = x_1x_2$ of x where x_1 is nonempty. Therefore, if x occurs only as a prefix in w, it has a unique position in (the cyclic word) w. The same conclusion holds for the suffixes of w.

Let then w = uv be such that p = |u| is a critical point in w. By Lemma 7, u and v do not intersect, and by the above, it follows that u and v have a unique position in w. Therefore |u| is a Weinbaum point of w.

Corollary 9. Let w be a primitive word with $|w| \ge 2$. There is a conjugate uv of w such that u and v have a unique position in w.

Proof. Let w' be an unbordered conjugate of w which exists by Lemma 5 since w is primitive. By Theorem 8, w' does have a Weinbaum point. \square

In the next corollary we consider the strong version of Weinbaum's theorem for binary words. Note that there we can have that u = a and/or v = b.

Corollary 10. Let $A = \{a,b\}$ be a binary alphabet, and let $w \in A^*$ be a primitive word with $|w| \geq 2$. Then there exists a conjugate w' of w such that w' = uv, where u and v have a unique position in w and $u \in aA^* \cap A^*a$ and $v \in bA^* \cap A^*b$.

Proof. Let w' be a Lyndon word of w with respect to the order $a \triangleleft b$. Then w' begins with the letter a and ends with b. Let then w' = uv, where v is the maximum suffix of w' with respect to the order \triangleleft^{-1} . By Lemma 6, w' is the maximum suffix w.r.t. \triangleleft , and hence, by Theorem 4, p = |u| is a critical point of w', and also a Weinbaum point by Theorem 8. By the choice of v, $a \leq_{\mathbf{s}} u$ and $b \leq_{\mathbf{p}} v$. This proves the claim.

As an example, for *non-binary* words consider the Lyndon word w = abccac. The order of the letters is given by $a \triangleleft b \triangleleft c$. The Weinbaum points in w are 2 (w = ab.ccac; a critical point) and 3 (w = abc.cac; a noncritical point). These are not of the strong form required for binary words by the proof of Corollary 10. However, w does have a conjugate w' = acabcc in which we have a Weinbaum factorization w = aca.bcc as required by Theorem 2.

References

- [1] Y. Césari and M. Vincent. Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris Sér. A, 286:1175–1177, 1978.
- [2] M. Crochemore and D. Perrin. Two-way string-matching. J.~ACM, 38(3):651-675, 1991.
- [3] A. J. Duncan and J. Howie. Weinbaum's conjecture on unique subwords of nonperiodic words. *Proc. Amer. Math. Soc.*, 115(4):947–954, 1992.
- [4] J.-P. Duval. Périodes et répétitions des mots de monoïde libre. *Theoret. Comput. Sci.*, 9(1):17–26, 1979.
- [5] T. Harju and D. Nowotka. Density of critical factorizations. *Theor. Inform.* Appl., 36(3):315–327, 2002.
- [6] T. Harju and D. Nowotka. Uniquely occurring factors in primitive words. *in preparation*, 2005.
- [7] M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics. Addison-Wesley, Reading, MA, 1983.
- [8] M.-P. Schützenberger. A property of finitely generated submonoids of free monoids. In Algebraic theory of semigroups (Proc. Sixth Algebraic Conf., Szeged, 1976), volume 20 of Colloq. Math. Soc. János Bolyai, pages 545–576. North-Holland, Amsterdam, 1979.
- [9] C. M. Weinbaum. Unique sunwords in nonperiodic words. Proc. Amer. Math. Soc., 109(3):615–619, 1990.