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Abstract

C. M. Weinbaum [Proc.AMS, 109(3):615–619, 1990] showed the
following: Let w be a primitive word and a be letter in w. Then
a conjugate of w can be written as uv such that a is a prefix and
a suffix of u, but v neither starts nor ends with a, and u and v have
a unique position in w as cyclic factors. The latter condition means
that there is exactly one conjugate of w having u as a prefix and there
is exactly one conjugate of w having v as a prefix. It is this condition
which makes the result non-trivial.

We give a simplified proof for Weinbaum’s result. Guided by this
proof we exhibit quite different, but still simple, proofs for more gen-
eral statements. For this purpose we introduce the notion of Wein-
baum factor and Weinbaum factorization.

1 Introduction

Words w and w′ are conjugated, if they can be written as w = vu and
w′ = uv. Cyclic factors of a primitive word w are factors of conjugates of w.
A cyclic factor u has a unique position in w, if there is exactly one conjugate
of w having u as a prefix. Weinbaum showed in [5] that for each letter a
occurring in a primitive word w there exists a conjugate uv of w such that:
both factors u and v are uniquely positioned in w, the cyclic factor u begins
and ends with a, but v neither begins nor ends with a.
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In this paper we present variations and simple proofs of Weinbaum’s
result. Guided by these proofs we obtain in fact more general statements.
This leads us to the notion of Weinbaum factor and Weinbaum factorization
(or W-factorization for short). A Weinbaum factor of a primitive word w
is a cyclic factor which satisfies some natural condition which is sufficient
to prove an analogue of Weinbaum’s result, if we replace the letter a by
a factor f . Moreover, a Weinbaum factor provides us with another factor g,
which we call a complementary marker, and in Theorem 10 we establish
a W-factorization for the pair (f, g) instead of a single letter (or factor) as
in Weinbaum’s original result.

In Section 5 we prove the existence of W-factorizations by employing
Lyndon words w.r.t. specific lexicographic orders. In Section 6 we consider
W-factorizations without orderings of the alphabets. The main result there
is Theorem 12, it states that a W-factorization of a word w for a Weinbaum
factor f is found be iterating a given relation W at most logΦ(n) many times
for n = |w|, where Φ is the golden ratio. In Section 7 we prove that the
bound is tight by providing a lower bound for this number of iterations by
a variant of Fibonacci words which correspond to so-called singular factors
in the infinite Fibonacci sequence.

Finally, in Sections 9 and 8 we somewhat reverse our viewpoint. We start
with a word f (or with a suitable pair of words f and g). Proposition 22
says that for all f with at least two letters there are primitive words having
f as a factor, but without any W-factorization for f . On the other hand, the
proportion of words with a W-factorization for f and g tends rapidly to 1,
as soon as f and g satisfy some trivial necessary condition. Pairs satisfying
this conditions are called Weinbaum candidates. Starting with such a pair
(f, g), we show in Proposition 19 that all long enough random words have W-
factorization for f and g. So, in general, we can hardly expect any structural
property of triples (w, f, g) which is simultaneously necessary and sufficient
in order to characterize the existence of a W-factorization of w for f and g.

2 Preliminaries

Let A be an alphabet, i.e., a finite set of letters, and let A∗ be the free monoid
over A. We denote the empty word by ε, and A+ is the free semigroup over A.
Thus, A+ = A∗ \ {ε}. The length of a word w ∈ A∗ is denoted by |w|. Let
w = uv. Then u is called a prefix of w, denoted by u ≤p w, and v is called
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a suffix of w, denoted by v ≤s w. We also write u ≤p wA∗, if u ≤p w′ for
some w′ ∈ wA∗, analogously we write v ≤s A∗w.

A word w ∈ A∗ is called primitive, if it is not a power of a different word,
i.e., w = xk implies k = 1. A word w′ is a conjugate of w, if there is a word z
such that zw = w′z. For words conjugation is equivalent to transposition;
cf. page 7 in [2]. This means, w′ is a conjugate of w, if there are words u
and v such that w = vu and w′ = uv. A word f is a (proper) factor of w if
w = ufv (and ε 6= uv 6= w).

We say that f occurs in w if f is a factor of w. We say that a word f is
a cyclic factor of w if both, |f | ≤ |w| and f is a factor of w2. Note that all
conjugates of a word w are factors of w2. Hence, the cyclic factors of w are
exactly the factors of conjugates of w. A cyclic factor f is uniquely positioned
in w, if there exists a unique conjugate w′ of w having f as a prefix.

Two words u and v are said to intersect in (the cyclic word) w, if w3 has
a factor xyz such that u = xy and v = yz or u = yz and v = xy, where x, y
and z are nonempty words, or if u is a factor of v, or if v is a factor of u. We
say that a word u has a self-intersecting occurrence in w (or intersects itself)
if it intersects itself in a non-trivial way in w. A word f is called a marker if
f does not intersect itself in w. Note that f may have a non-trivial overlap
with itself, but then the overlap must not occur in w. For example, aba is
a marker in ababb, but not in ababa.

If f is a marker in w with f ≤p w, then w has a unique factorization of
the form w = fz1fz2 · · · fzk with zi ∈ A∗ and fzif 6∈ A+fA+.

3 Weinbaum’s Theorem

Weinbaum’s original result is the following theorem for the case m = 1.

Theorem 1 ([5]). Let w be a primitive word and am be a cyclic factor of w
with m ≥ 1. Then some conjugate w′ of w has a factorization w′ = uv where
u and v are uniquely positioned in w with u ∈ amA∗∩A∗am and v 6∈ aA∗∪A∗a.

Proof. Let f = am. Let us choose some longest cyclic factor g of w with
g /∈ aA∗∪A∗a∪A∗fA∗, but where fgf is a cyclic factor of w2. Such a factor
g exists. Indeed, some conjugate of w begins with f followed by a letter
which is not a. We start a factor g here and we stop just before we see
in w2 the factor f again. Then the last letter of g is not a neither. Hence
g /∈ aA∗∪A∗a∪A∗fA∗. Since there is at least one such factor we can choose

3



the longest one. The crucial observation is that every cyclic occurrence of g
in w is preceded and followed by f , and, moreover, g is a marker.

Now, either g is a letter or we replace g by some new letter b. We obtain
a (new) word w. If we prove exactly the same statement for w and b, then
we obtain (up to the ordering of the two factors) the desired factorization
for w and f .

Indeed, let w = v′u′ where v′ and u′ are uniquely positioned in w and
v′ begins and ends with b, but u′ neither begins nor ends with b. Since
we allow conjugation we may consider w′ = u′v′ as well. This corresponds
to a desired factorizations w = uv, we just have to see that u and v are
uniquely positioned in w. This is true because g has been a marker without
intersection of am in w.

By induction on the length of w we may assume that g = b is in fact
a letter. Now the repetition of the process starting with b yields a new
factor h which corresponds to g in the first round. Again, we can use either
induction or h is a single letter. Hence we may assume that h is a letter, too.
Since b is preceded and followed by f in w, this means m = 1 and h = a.
But this implies w ∈ (ab)+ ∪ (ba)+. Since w is primitive we obtain w = ab
or w = ba, and the result becomes trivial.

4 Weinbaum Factorizations and Factors

Let w be a primitive word with a conjugate w′, and let f be a word. Then
w′ = uv is called a Weinbaum factorization of w for f (or W-factorization
for short), if u and v are uniquely positioned in w, and u ∈ fA∗ ∩ A∗f and
v 6∈ fA∗ ∪ A∗f . This coincides with Weinbaum’s original definition in the
case where f is a single letter. Every letter a is a marker in w, but a first
guess that a marker leads always to a W-factorization fails. The situation is
more complicated.

Example 2. Consider the word w = abaaaba. We observe the following.

• The conjugate w′ = (aaa) · (baab) yields a W-factorization for a, aa,
and aaa. The factors a and aaa are markers.

• However, aa is not a marker.

• The cyclic factor f = aabaa is not a marker and there is no W-
factorization of w for f , because a has no unique position in w.
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• The factor aba is a marker, but again there is no W-factorization of
w for aba, because neither a nor aaba nor abaa have a unique position
in w.

Before we continue, let us propose a stronger and more symmetric defi-
nition for two factors f and g.

Let w, f , g be words and w be a primitive. A factorization w′ = uv of
a conjugate w′ is called a W-factorization of w for f and g, if the following
three conditions hold:

1. u and v are uniquely positioned in w,

2. u ∈ (fA∗ ∩ A∗f) \ (gA∗ ∪ A∗g),

3. v ∈ (gA∗ ∩ A∗g) \ (fA∗ ∪ A∗f).

Note that if uv is a W-factorization of w for f , then uv is a W-factorization
of w for f and v, too.

Remark 3. The following holds.

(fA∗ ∩ A∗f) \ (gA∗ ∪ A∗g) 6= ∅ ⇐⇒ g 6≤p f and g 6≤s f .

Example 4. Consider the word

w = bbaabacbaacbaaaca.

Then w has a W-factorization for f = ab and g = ac. Indeed, by shifting the
suffix a to the beginning, we obtain:

w′ = abbaabacbaacbaaac = (fbaf) · (gbagbaag) ,

where both fbaf and gbagbaag are uniquely positioned in w.

In the following, let w be a primitive word. Let f be a proper factor of w.
We define the set G(f) of factors of w such that g ∈ G(f) if and only if g is
a cyclic factor of w that is preceded and followed by f in w3, and g does not
intersect with f . More precisely, we put

G(f) =
{

g
∣∣ |fg| ≤ |w|, fgf is a cyclic factor of w2, and fgf 6∈ A+fA+

}
.
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Remark 5. The set G(f) can be empty even for short factors f . For in-
stance, consider w = (aab)kaaaba with k ≥ 2, and f = aabaa. Here each
factor fgf has a third occurrence of f .

We have constructive results, only if G(f) 6= ∅. In this case we are
interested in maximal elements of G(f). Therefore we let:

max(G(f)) = { g ∈ G(f) | g does not occur in any other element of G(f) } .

We define the subset R(f) of the set of factors of w as follows:

R(f) = { g ∈ max(G(f)) | f and g do not intersect in w } .

A word f is called a Weinbaum factor of w, if R(f) 6= ∅.
Note that a Weinbaum factor is not necessarily a marker and being

a marker does not mean that R(f) 6= ∅. Here is such an example:

Example 6. Let w = abababb. Then f = aba is not a marker in w but
R(f) = {bb}. However, ab is a marker in w, but G(ab) = {b} and R(ab) = ∅.

However, the crucial observation, stated in Lemma 8 is that every element
g of R(f) is a marker. Therefore an element of R(f) can be called a comple-
mentary marker, because if g ∈ R(f), then g is a marker of w. Moreover, f
and g do not intersect in w by the very definition of R(f). In particular, g is
not a factor of f .

Remark 7. For |w| ≥ 2 and a ∈ A a letter, g can be chosen to be a cyclic
factor of maximum length between two occurrences of the letter a in w; and
g ∈ R(a) is a complementary marker. More general, let f ∈ a+ and g be
any longest cyclic factor of w with g /∈ aA∗ ∪A∗a∪A∗fA∗, but where fgf is
a cyclic factor of w2. Then we have g ∈ R(f); and in particular, R(f) 6= ∅

Lemma 8. Let f be a cyclic factor of w. Then each g ∈ R(f) is a marker.

Proof. We may assume that ε 6= g ∈ R(f) 6= ∅. Assume that g is not
a marker. Then h = xyz is a factor in w2 where xy = g = yz for some
nonempty words x, y, and z. Since f and g do not intersect in w, neither
do f and h. Hence, there exists h′ = phq ∈ G(f) (between two consecutive
occurrences of f in w2) and h is a factor of h′. This yields a contradiction,
because now g 6∈ max(G(f)).
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5 Weinbaum Factorizations by Lyndon Words

In this section we give a proof of a strengthened version of Weinbaum’s
Theorem [5] using Lyndon words.

Let E be a total order on the alphabet A. Then E can be extended to
a lexicographic order on A∗ by setting u E v if either u ≤p v or xa ≤p u and
xb ≤p v where a 6= b and a E b and x ∈ A∗. A Lyndon word is a primitive
word that is the minimum among its conjugates w.r.t. E. Note that if w is
a Lyndon word then it is unbordered : this means w 6∈ fA∗ ∩ A∗f for every
proper factor f of w. Indeed, assume the opposite and let f be a proper
factor of minimum length such that w ∈ fA∗ ∩ A∗f . Clearly, w = fxf ,
but then w = fxf E ffx implies xf E fx, and hence, xff E fxf = w;
a contradiction.

Lemma 9. Let w = uv be a Lyndon word w.r.t. a lexicographic order E such
that v is the maximum suffix of w w.r.t. E. Then both u and v are uniquely
positioned in w. Moreover, if v′ is a cyclic factor of w such that v E v′, then
v ≤p v′.

Proof. First, observe that v is uniquely positioned. This is clear, because v
is the maximum suffix and a Lyndon word is unbordered. Assume now that
v′ is a cyclic factor of w such that v E v′, and let w2 = xv′y where |x| < |w|.

Suppose first that w = xv′y′. Since v is the maximum suffix, we obtain
v′y′ E v E v′. Hence y′ = ε, and thus u = x and v = v′.

In the other case we have w = xv′1 = v′2y, where v′ = v′1v
′
2 with v′2 6= ε.

Assume that v′1 6= v. If |v| < |v′1|, then v E v′ implies v E v′1 contradicting
the maximality of v. If |v′1| < |v| then v′1 E v E v′1v

′
2 = v′ implies that

v = v′1v2 for some v2 6= ε with v2 E v′2. Thus, v2 6≤p v′2, for otherwise
w ∈ v2A

∗ ∩A∗v2 would imply that w is not a Lyndon word. But now, v2uv′1
is a conjugate of w and v2uv′1 E v′2y = w contradicts the assumption that w
is a Lyndon word. Consequently, v E v′ implies that v ≤p v′.

Finally, consider the occurrences of the prefix u. Let w2 = xuy where
0 < |x| ≤ |w|. Let w2 = xuv′y′ where |v′| = |v|. We have v E v′ because
uv′ is a conjugate of w and w is a Lyndon word. Now v′ is a cyclic factor of
w, and hence, by the above, v = v′ and v′ is uniquely positioned in w. This
means that w = x and therefore also u is uniquely positioned in w.

Theorem 10. Let w be a primitive word and let f be a Weinbaum factor
of w and g ∈ R(f). Then w has a W-factorization for f and g.
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Proof. In this proof, we let z̄ denote a letter corresponding to a word z.
Since we consider conjugates of words, and g is a marker by Lemma 8 (or
by an obvious reason in case f = a and g any longest cyclic factor of w
without a), we may assume that w = gz1gz2 · · · gzk where k ≥ 1 such that
zi ∈ fA∗∩A∗f and g is not a factor of any zi. Let B = {ḡ, z̄i | i = 1, 2, . . . , k}
be a new alphabet corresponding to the words g and zi. We may assume
that x = ḡz̄1ḡz̄2 · · · ḡz̄k is a Lyndon word w.r.t. a lexicographic order E on
B∗ such that ḡ is the minimum in B and, if zi occurs in zj, then z̄i E z̄j for
all 1 ≤ i, j ≤ k.

Let t is the maximum suffix of x w.r.t E, say x = st. Then s =
ḡz̄1 · · · ḡz̄m−1ḡ and t = z̄mḡ · · · z̄k−1ḡz̄k, where z̄m is the maximum element
w.r.t. E. By Lemma 9, the prefix s is uniquely positioned in x, and hence
also the corresponding prefix v = gz1 · · · gzm−1g of w is uniquely positioned
in w, since the factor g serves as a marker. Also, v ∈ gA∗ ∩ A∗g.

Again by Lemma 9, the word t = z̄mḡ · · · z̄k−1ḡz̄k is uniquely positioned
in x, but now it is not so immediate that the position of u = zmg · · · zk−1gzk

is unique in w. The factor zm corresponding to the maximum z̄m serves as
a marker, and thus there is a cyclic factor u′ in w with u′ = zmg · · · zk−1gz`

where zk ≤p z`. But then t E z̄mḡ · · · z̄k−1ḡz̄`. By Lemma 9, this implies
z̄k = z̄`, and so u = u′ and x = sz̄mḡ · · · z̄k−1ḡz̄`. This means w = vu and u
is uniquely positioned in w. Finally, we obtain from zm, zk ∈ fA∗ ∩A∗f that
also u ∈ fA∗ ∩ A∗f .

Weinbaum’s original theorem, Theorem 1, a special instance of Theo-
rem 10. Its proof is basically self-contained in this section due to the paren-
thesis in Theorem 10 or Remark 7.

6 An iterative construction

In this section we consider W-factorizations from a different point of view.
We do not require orderings of the alphabets here. The main result of this
section is Theorem 12, which shows that a W-factorization of a word w
is found by iterating the relation W at most 3

2
log2(n) many times where

n = |w|.

Lemma 11. Let f be a Weinbaum factor of w and g ∈ R(f). Then we have

1. The marker g is a Weinbaum factor of w, i.e., R(g) 6= ∅.
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2. Each h ∈ R(g) is in fA∗ ∩ A∗f .

3. If f is a marker, then either R(g) = {f} or R(g) ⊆ fA∗f .

Proof. We know by Lemma 8 that g is a marker. By the maximality assump-
tion, g ∈ R(f) is not a proper factor of any h ∈ G(f), and therefore every
cyclic occurrence of g in w2 must be preceded and followed by f .

We may assume that w = gz1gz2 · · · gzk where k ≥ 1 such that zi ∈
fA∗ ∩A∗f and g is not a factor of any zi. Now let h be some zi of maximal
length, then h ∈ max(G(g)), and h and g do not intersect because f and g
do not intersect. Hence h ∈ R(g) and R(g) 6= ∅. In fact every h ∈ R(g) is
one of the zi above, hence h ∈ fA∗ ∩ A∗f . But if f is a marker, then

{h | h is a factor of w } ∩ fA∗ ∩ A∗f ⊆ {f} ∪ fA∗f.

Therefore, by the maximality condition, if f ∈ R(g), then we must have
R(g) ∩ fA∗f = ∅

The basic idea in the following proof is that for every Weinbaum factor
f of w and g ∈ R(f), there exists an i such that Ri(g) = Ri+2(g). (Here and
in the following Rn means the i-th fold iteration of the relation w, therefore
Ri(g) is a set.) In fact, by Lemma 11 either Ri(g) = Ri+2(g) or Ri+2(g)
contains a word at least twice the length of a word in Ri(g). Therefore, we
must reach a situation Ri(g) = Ri+2(g) with i ≤ 2 log2(n). However, with
a little bit of effort we can be much more precise. We give an upper bound
of the number of iterations in terms of Fibonacci numbers and this meets
exactly the lower bound as we will see in the next section.

Recall that the sequence of Fibonacci numbers {Fi}i∈N is given by the
following conditions:

F0 = 0, F1 = 1, and Fi+1 = Fi + Fi−1

It is a well-known classical fact that Fibonacci grow exponentially fast,
more precisely, we have for all k ≥ 0:

Fk =

[
Φk

√
5

]
where Φ = (1 +

√
5)/2 is the golden ratio and [x] denotes the nearest integer

of x. (See any text book which says something non-trivial about Fibonacci
numbers, e.g. [4].) Thus, if Fk ≤ n, then k ≤ dlogΦ(n)e ≤

⌈
3
2
log2(n)

⌉
.

The following theorem gives our main result about W-factorizations.
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Theorem 12. Let w be a primitive word, and let f be a Weinbaum factor
and g ∈ R(f). Let 2` ≥ logΦ(n), then R2`−1(g) 6= ∅, for every u ∈ R2`−1(g),
the set R(u) is a singleton; and for R(u) = {v} we obtain R(v) = {u} and
a W-factorization of w = uv for f and g.

Proof. By Lemma 8 the word g is a marker, by Lemma 11 we have Ri(g) 6= ∅
for all i ≥ 0.

Consider sequences (f0, f1, f2, . . . , fk) with k ≥ 2 which satisfy the fol-
lowing conditions:

1. f0 = ε, f1 = f, f2 = g,

2. fi+1 ∈ R(fi) for 1 ≤ i < k,

3. fi+2 6= fi for 0 ≤ i < k − 1.

Note that (f0, f1, f2) = (ε, f, g) is such a sequence, so they do exist.
We claim that |fi| ≥ Fi for all 0 ≤ i ≤ k. This is correct for i = 0, 1 and

i = 2. Hence let k ≥ 3 and consider first i = 3. We have f3 6= f1 = f 6= ε,
but f is a prefix of f3, so it is a proper prefix and we obtain |f3| ≥ 2 = F3.
Now let 3 ≤ i + 1 < k and |fj| ≥ Fj for all 0 ≤ j ≤ i + 1. We have to show
|fi+2| ≥ Fi+2.

Every cyclic occurrence of fi+1 is followed by fifi−1 and preceded by
fi−1fi. Since fi+2 ∈ R(fi+1) we obtain:

fi ≤p fi+2 ≤p fifi−1A
∗ and fi ≤s fi+2 ≤s A∗fi−1fi.

Since i ≥ 2 the word fi does not intersect in w neither fi (because it is
a marker) nor fi−1 (because fi ∈ R(fi−1)). Since fi+2 6= fi, we obtain

fi+2 ∈ fi(fi−1A
∗ ∩ A∗fi−1)fi.

This means by induction

|fi+2| ≥ 2 |fi|+ |fi−1| ≥ 2Fi + Fi−1 = Fi+2.

This implies Fk ≤ n, and therefore k ≤ dlogΦ(n)e ≤
⌈

3
2
log2(n)

⌉
. Thus,

we may assume that in the sequence (f0, f1, f2, . . . , fk) the value k is maximal,
hence R(fk+1) ⊆ {fk−1}. Hence in fact, R(fk+1) = {fk−1}. This means that
fk−1 is a marker, and every cyclic occurrence of the marker fk−1 is followed
by the marker fk, and every cyclic occurrence of the marker fk is followed by
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the marker fk−1. Thus, w′ ∈ (fk−1fk)
+ for some conjugate w′ of w. But w is

primitive, hence w′ = fk−1fk. Since fk−1 and fk are markers, their positions
are uniquely defined. In particular, we get R(fk−1) = {fk}, too.

Now, let 2` ≥ logΦ(n), then every u ∈ R2`−1(g) is some fk−1 or fk in
a sequence as above. Thus, the set R(u) is a singleton and for R(u) = {v}
we obtain R(v) = {u}, and a W-factorization of w = uv for f and g.

7 An example related to Fibonacci Words

The following example provides a sequence of words with a large number
of iterations of w in order to find a W-factorization. This example is related
to Fibonacci words.

Consider the following sequence {fi}i≥0 of words over the binary alphabet
{a, b}:

f0 = ε, f1 = a, f2 = b, and fi+1 = fi−1fi−2fi−1 (i ≥ 2) .

We have for example f3 = aa, f4 = bab, f5 = aabaa, and so forth. Let

wn = fnfn−1 .

For instance w1 = a, w2 = ba, w3 = aab, w4 = babaa, and so on. We will
show in the following that we need logΦ(|wn|) many iterations of w to obtain
a W-factorization of wn for a. It is clear that

|fn| = Fn and |wn| = |fnfn−1| = Fn+1 .

Remark 13. All words fi are palindromes. This means they remain same
when reading from right to left. This is obvious from the recursive definition.

There is also a very close connection between the sequence {fi}i≥1 and
the sequence {hi}i≥1 of Fibonacci words defined by

h1 = b, h2 = a, and hi+1 = hihi−1 (i ≥ 2).

We have f2i = bh•2i and f2i−1 = ah•2i−1, for all i ≥ 1, where x• denotes x
without its last letter.

In fact, the words fi are known as the singular factors of the infinite
Fibonacci sequence, [6]. (Note that hi is a prefix of hi+1 for i ≥ 1, hence we
can define the infinite Fibonacci sequence as the limit of the sequence {hi}i≥1.)
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The infinite Fibonacci sequence is a Sturmian word, so it has exactly n + 1
different factors of length n. Out of these n + 1 different factors of length n
there are n conjugates of the Fibonacci word hn and the missing one is called
the singular factor of length n. It turns out that it is the word fn we are
considering here.

Let us continue with some observations about {fi}i≥0.

Lemma 14. The following holds for all 0 ≤ i ≤ n with n ≥ 2.

1. fn−2fn−3 · · · f0 ≤p fn ,

2. fi ≤p fn ⇐⇒ i ≡ n (mod 2) ,

3. |fn| = |fn−2fn−1| and fn 6= fn−2fn−1 .

Proof. The proof is by induction on n in all cases. Clearly, ε ≤p b and
a ≤p aa and b 6= a. Let n > 2 and assume that the claims hold for all k < n.

(1) We have fn−4fn−5 · · · f0 ≤p fn−2 by the induction hypothesis, and
hence, fn−2fn−3fn−4 · · · f0 ≤p fn−2fn−3fn−2 = fn.

(2) (⇒) From the definition of {fi}i≥0 follows immediately that a ≤p fi

if i is odd and b ≤p fi otherwise. (⇐) Clearly, fi ≤p fn if i = n. Let i < n.
Then i ≤ n− 2 and fi ≤p fn−2fn−3fn−2 = fn by the induction hypothesis.

(3) The fact |fn| = |fn−2fn−1| can be easily seen from the definitions of
{fi}i≥0 and {Fi}i≥0. We have fn−2 6= fn−4fn−3 by the induction hypothesis,
and hence, fn = fn−2fn−3fn−2 6= fn−2fn−3fn−4fn−3 = fn−2fn−1.

The next lemma shows that every fi in wn with i + 1 < n is a marker.

Lemma 15. fi does not intersect itself in fn for all 0 ≤ i < n.

Proof. We proceed by induction on n. The cases for n ≤ 8 can be easily
checked.

If n ≥ i + 4, then we have that fi has no self-intersecting occurrence in
fn−2 = fn−4fn−5fn−4 by the induction hypothesis. From

fn = ︸ ︷︷ ︸
fn−2

fn−4fn−5

g︷ ︸︸ ︷
fn−4fn−3︸ ︷︷ ︸

fn−2

fn−4fn−5fn−4
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it follows that a possible intersection of fi with itself can occur only in

g = fn−4fn−3fn−4 = fn−4︸ ︷︷ ︸
fn−3

fn−5fn−6fn−5fn−4 .

We have by the induction hypothesis that fi has no self-intersecting occur-
rence in fn−3, which means the only remaining part of fn to consider are the
prefix and suffix of g of length at least 2|fi|. Consider

h = fn−4fn−5fn−6fn−7fn−8 ≤p fn−4fn−5fn−6fn−5 ≤p g

and, by Lemma 14(1), we have

h = fn−4fn−5fn−6fn−7fn−8 ≤p fn−4fn−5fn−4 = fn−2 .

So, fi has no self-intersecting occurrence in h ≤p g. Symmetrically, fi

has no self-intersecting occurrence in fn−8fn−7fn−6fn−5fn−4 ≤s g. We have
|h| ≥ 2|fn−4| ≥ 2|fi| because |fn−4| = 2|fn−6|+ |fn−7| < |fn−5fn−6fn−7| since
|fn−6| < |fn−5|. That proves the case.

If n = i + 3, then fn−3 has no self-intersecting occurrence in fn−2 by the
induction hypothesis. Hence, if fn−3 has a self-intersecting occurrence in fn,
then it intersects with the centered occurrence of fn−3 in fn = fn−2fn−3fn−2.
Since by the induction hypothesis fn−5 has no self-intersecting occurrence in
fn−4 we have that fn−3 could only intersect itself so that fn−5 is aligned in
fn = fn−2fn−5fn−6fn−5fn−2, that is, either fn−3 ≤p fn−5fn−4 ≤p fn−5fn−2 or,
symmetrically, fn−3 ≤s fn−4fn−5 ≤s fn−2fn−5 which contradicts Lemma 14(3).

If n = i + 2, then fn−2 = fn−4fn−5fn−4 occurs in fn = fn−2fn−3fn−2 =
fn−4fn−5fn−4fn−3fn−4fn−5fn−4 only so that fn−4 is aligned otherwise fn−4

has a self-intersecting occurrence in fn contradicting previous case. There-
fore, if fn−2 has a self-intersecting occurrence in fn, then we have either
fn−2 ≤p fn−4fn−3 or, symmetrically, fn−2 ≤s fn−3fn−4 which contradicts
Lemma 14(3).

If n = i + 1, then, similarly to the previous case, fn−1 = fn−3fn−4fn−3

occurs in fn = fn−2fn−3fn−2 only so that fn−3 is aligned otherwise fn−3 has
a self-intersecting occurrence in fn contradicting a previous case. There-
fore, if fn−1 has a self-intersecting occurrence in fn, then we have either
fn−1 ≤p fn−3fn−2 or, symmetrically, fn−1 ≤s fn−2fn−3 which contradicts
Lemma 14(3).

The next two lemmas show that G(fi) = {fi−1, fi+1} for all i + 1 < n.

13



Lemma 16. fi does not occur in fi+1.

Proof. By Lemma 15, fi = fi−2fi−3fi−2 can only occur in fi+1 = fi−1fi−2fi−1

such that fi−2 has no self-intersecting occurrence in fi+1. Hence, we have
either fi−3fi−2 ≤p fi−1 or fi−2fi−3 ≤s fi−1. Both of these cases contradict
Lemma 14(3).

Lemma 17. If figfi occurs in fn such that fi is not a factor of g, then we
have g ∈ {ε, fi−1, fi+1}.

Proof. We proceed by induction on n. Again the cases n ≤ 8 can be easily
checked. We have that the claim holds for all occurrences of figfi in fn−2

and fn−3 by the induction hypothesis. Hence, we need to consider only those
cases where figfi intersects with both fn−2 and fn−3 in fn = fn−2fn−3fn−2.
Assume that i ≡ n (mod 2). The case with different parities is symmetric.
It follows from Lemma 14(2) that fi ≤p fn−2 and fi 6≤p fn−3 and, again by
symmetry, fi ≤s fn−2 and fi 6≤s fn−3. Consider the latter case. It follows
from Lemma 15 that gfi ≤p fn−3fi. Clearly, if i+2 = n then g = fn−3 = fi−1,
and if i+4 = n then g = fn−3 = fi+1. Let i+4 < n. Then fi+1fi ≤p fn−3 by
Lemma 14(1). The claim follows from the fact that fi is not a factor of fi+1

which is shown by Lemma 15.

Consider now wn for some fixed n. Proposition 18 follows straightfor-
wardly from Lemma 17.

Proposition 18. R(fi) = {fi+1}, for all 1 ≤ i < n, and R(fn) = {fn−1}.

We have wn = Rn−1(a)Rn−2(a). From |wn| = Fn =
[

Φn
√

5

]
follows that we

need dlogΦ |wn|e many steps to reach a W-factorization of wn for a.

8 Weinbaum Factorizations for random words

Consider alphabets of size at least two in the following. By definition,W-
factorizations for given words f and g can exist only if (fA∗ ∩A∗f) \ (gA∗ ∪
A∗g) 6= ∅ and (gA∗ ∩A∗g) \ (fA∗ ∪A∗f) 6= ∅. In the following we call a pair
(f, g) satisfying these conditions a Weinbaum candidate for short. For all
Weinbaum candidates there exist W-factorizations. In fact this is not a rare
event at all, they exist in all long enough random words. This means it is
a generic property. It is the gist of the next proposition.
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Proposition 19. Let k,m ≥ 1 be constants and Prk,m(n) be the probabil-
ity that a word w of length n (under the uniform distribution) is primitive
and that w admits at least k different W-factorizations for all Weinbaum
candidates (f, g) with |fg| ≤ m. Then we have:

1− Prk,m(n) ∈ 2−Ω(n).

Proof. The proof relies on standard arguments as used e.g. in Kolmogorov
complexity frequently. Therefore we give a sketch of the proof, only. We
refer to [3] for details on Kolmogorov complexity.

In order to prove the claim it is enough to consider random words. More
precisely, it suffices to show that almost all words w which are either not prim-
itive or which have less than k different W-factorizations for some Weinbaum
candidate (f, g) with |fg| ≤ m can be compressed by a fixed linear factor.
The compression rate depends on m, k, and the alphabet A, only. So, it is
independent of n and this will give the result.

A compression is here simply an injective function γ : A∗ → A∗. A subset
X ⊆ A∗ is compressible (by γ) with compression rate ε > 0, if |γ(w)| <
(1− ε)|w| for almost all words w in X. Clearly, for each compression γ and
ε > 0, the probability that a word w of length n belongs to X is in 2−Ω(n). Let
w be a word of length n where n > n(k,m, A) is large enough and assume
that w is not compressible (by some fixed compression γ) by an ε-factor
where 0 < ε < ε(k,m, A) is small. (The description of the compression γ and
possible values for n(k,m, A) and ε(k,m, A) can be derived from the following
considerations, we omit details.) Then w must be primitive, otherwise w were
highly compressible. Write w = w1 · · ·wk+4 where each wi has length at least

n
k+4

− 1. We may assume that this value is still huge since k is a constant.
The position of each cyclic factor wi must be unique in w, because otherwise
a (say Lempel–Ziv like) encoding would lead to a compression by a linear
factor. Note that this implies that the position of a cyclic factor u in w is
unique, as soon as any wi is a factor of u. Now we claim that all words v with
|v| = m are factors of all factors wi. Indeed, by contradiction assume that
some word v does not appear in some wi. Then in a block code of length m
not all letters of this block code are necessary to code wi. This knowledge
can be used to compress wi, and hence w (because k is a constant) by a linear
factor.

Now it is easy to exhibit at least k different W-factorizations for all Wein-
baum candidates (f, g) with |fg| ≤ m. For each candidate (f, g) we choose
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a factor fg in w1 and for each i = 3, . . . , k + 3 we choose a factor gf in
wi. This is possible since all words of length m are factors of each wi. This
leads to k different conjugated words uivi of w with vi ∈ gA∗w2A

∗g and
ui ∈ fA∗wk+4A

∗f such that each position of ui and vi is unique. Moreover,
(fA∗∩A∗f)\(gA∗∪A∗g) 6= ∅ and (gA∗∩A∗g)\(fA∗∪A∗f) 6= ∅ (by definition
of a Weinbaum candidate) implies that f (g resp.) is neither prefix nor suffix
of g (f resp.). Therefore ui 6∈ gA∗ ∪ A∗g and vi 6∈ fA∗ ∪ A∗f .

9 Not all factors allow always Weinbaum Fac-

torizations

Weinbaum’s result, Theorem 1, states that every primitive word w admits
a W-factorization for all letters a that occur in w. Moreover, we have seen
that this is true for all factors of the form am with m ≥ 1. Let us show
that this is the best we can expect. For this we investigate some few cases
for which a factor f of a primitive word w does or does not admit a W-
factorization.

Proposition 20. Let f ∈ A+, a ∈ A. Let m be the maximum exponent such
that am occurs in f . Then w = fan admits a W-factorization for f if and
only if both, f 6∈ aA∗ ∪ A∗a and n > m.

Proof. Clearly, if f 6∈ aA∗ ∪ A∗a and n > m, then w = (f) · (an) is a W-
factorization for f . For the converse, since w must be primitive and f must
be a proper factor of w, there is a letter b 6= a occurring in f . But then
there is only one cyclic position for f in w and w = (f) · (an) must be the
W-factorization for f . Since an has a unique position, we see f 6∈ aA∗ ∪A∗a
and n > m.

It is well-known that the following proposition follows from the Theorem
of Fine and Wilf; see for example [1].

Proposition 21. Let f ∈ A∗ be a word. Then there is at most one letter
a ∈ A such that fa is not primitive.

Corollary 22. Let f ∈ A∗ be a word where pairwise different letters a1, . . . , ak

occur for k ≥ 2. Then at least k− 1 of the words fai are primitive, but none
of them admits a W-factorization for f .

16



10 Conclusion

The original idea to this paper has been modest, just provide a simple proof of
Weinbaum’s result, Theorem 1. But when playing around with the result we
discovered some nice combinatorics on words which seems to be unexplored
so far. We have however absolutely no application at all for our investigation
which go beyond the original statement of Weinbaum.

We did not discuss algorithmic issues. How expensive is it to compute
a W-factorization of w for f , if it exists? The reason for our silence is simple.
We do not have any non-trivial result here. By a further exploration it
seems however possible that some clever use of stringology might lead to fast
algorithms.
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