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Abstract. In the context of graph transformation we look at the opera-
tion of switching, which can be viewed as an elegant method for realizing
global transformations of (group-labelled) graphs through local trans-
formations of the vertices.
Various relatively efficient algorithms exist for deciding whether a graph
can be switched so that it contains some other graph, the query graph,
as an induced subgraph in case vertices are given an identity. However,
when considering graphs up to isomorphism, we immediately run into
the graph isomorphism problem for which no efficient solution is known.
Surprisingly enough however, in some cases the decision process can be
simplified by transforming the query graph into a ’smaller’ graph without
changing the answer. The main lesson learned is that the size of the query
graph is not the dominating factor, but its cycle rank.
Although a number of our results hold specifically for undirected, un-
labelled graphs, we propose a more general framework and give some
preliminary results for more general cases, where the graphs are labelled
with elements of a group.

1 Introduction

The material in this paper is motivated by a quest for techniques which
enable the analysis of certain networks of processors. Our starting point
is that the vertices of a directed graph can be interpreted as processors in
a network and the edges can be interpreted as the channels/connections
between them, labelled with values from some (structured) set, call it ∆,
to capture the current state. The dynamics of such a network lies in the
ability to change the labellings of the graph which is done by operations
performed by the processors. A major aspect of the model here presented
is that if a processor performs an input action, it influences the labellings



of all incoming edges in the same way; the same holds the output actions
which govern the outgoing edges. In other words, we have no separate
control over each edge, only over each processor. On the other hand,
actions done by different processors should not interfere with each other,
making this model an asynchronous one.

Ehrenfeucht and Rozenberg set forth in [3] a number of axioms they
thought should hold for such a network of processors.

A1 Any two input (output) actions can be combined into one single input
(output) action.

A2 For any pair of elements a, b ∈ ∆, there is an input action that changes
a into b; the same holds for output actions.

A3 For any channel (i, j), the order of applying an input action to i and
an output action to j is irrevelant.

Although each processor i was to have a set of output actions Ωi and
a set of input actions Σi, in [3] (see also [2]) it was derived that under
these axioms the input (output) actions of every vertex are the same and
form a group. Also, the sets of input and output actions coincide, but an
action will act differently on incoming and outgoing edges, as evidenced
by the asymmetry in (2) in Section 2. The difference is made explicit by
an anti-involution δ, which is an anti-automorphism of order at most two
on the group of actions. The notion of anti-involution generalizes that
of group inversion. The result of this will be that if a channel between
processors i and j is labelled with a, then the channel from j to i will be
labelled with δ(a). The model generalizes the gain graphs of [9] and the
voltage graphs of [4].

As we shall see later the graphs labelled with elements from a fixed
group ∆ (and under some fixed anti-involution of that group), called
skew gain graphs in the following, are partitioned into equivalence classes.
These equivalence classes capture the possible outcomes of performing ac-
tions in the vertices, i.e., the states of the system arrivable from a certain
’initial’ state. The transformation from one skew gain graph to another,
is governed by selecting in each vertex an operation, which corresponds to
an element of the group. Although the equivalence classes themselves are
usually considered static objects, it is not hard to see that there is also a
notion of change or dynamics: applying a selector to a skew gain graph
yields a new skew gain graph on the same underlying network of pro-
cessors, but possibly with different labels. For this reason the equivalence
classes were called dynamic labelled 2-structures in [3].

Consider now the problem where we have a (target) skew gain graph
h which represents our network, and a skew gain graph g, the query



graph, which represents a fragment of a network which to us has a special
meaning, for instance, it describes a deadlock situation. A question to ask
is then: is there a way to transform h by applying a selector, such that in
the result we can detect a subgraph similar to g? In terms of the example:
is there a possible state in the system, derivable from h which contains
a deadlocked subgraph. If the embedding from g into h is known, then
this can be (in many cases) efficiently solved by applying the results of
Hage [5]. However, the large number of possible embeddings of g into h
remains a problem. In fact, we quickly run into the Graph Isomorphism
problem which does not have a known efficient solution. In this paper, we
seek to alleviate this problem by seeing how we might reduce the skew
gain graph g to a different, simpler graph without changing the outcome,
i.e. if the reduced graph can be embedded, then so can g.

After introducing our notation for groups, skew gain graphs and switch-
ing classes thereof, we continue by formulating a general framework for
reasoning about reductions between skew gain graphs, and give a some il-
lustrative and even surprising examples of such reductions. In some cases
they work irrespective of the group and involution. In the case of bridging
on the other hand, where we can ’shorten’ the lengths of cycles in our
query graph, they generally work only for certain groups. We give ex-
amples of these for the group Z2 and for the group Z3. The correctness of
these reductions follow from rather surprising combinatorial results. We
then show how these results can be used to derive an algorithm for the
embedding problem, showing that the complexity of the embedding prob-
lem depends on the cycle rank of the query graph and not on the number
of vertices. Finally, we prove some impossibility results for bridging.

2 Preliminaries

In this paper, we use both elementary group theory and graph theory. In
this section we establish notation, and introduce the concept of switching
classes of gain graphs with skew gains. For more details on group theory
we refer the reader to Rotman [7].

For a group Γ we denote its identity element by 1Γ . Let Γ be a group.
A function δ : Γ → Γ is an anti-involution, if it is an anti-automorphism
of order at most two, that is, δ is a bijection and for all x, y ∈ Γ , δ(xy) =
δ(y)δ(x) and δ2(x) = x. We write (Γ, δ) for a group Γ with a given anti-
involution δ.



Define E2(V ) = {(u, v) | u, v ∈ V }, the set of nonreflexive, directed
edges over V . We usually write uv for the edge (u, v), but note uv 6= vu.
For an edge e = uv, the reverse of e is e−1 = vu

We consider graphs G = (V,E) where the set of edges E ⊆ E2(V )
satisfies the following symmetry condition:

if e ∈ E then also e−1 ∈ E.

Such graphs can be considered as undirected graphs where the edges have
been given a two-way orientation. We use E(G) to denote the edges E of
G and similarly V (G) to denote its vertices V .

Two vertices v, v′ ∈ V (G) are adjacent in G if (v, v′) ∈ E(G). The
degree of a vertex is the number of vertices in the graph it is adjacent to.
A vertex of degree zero is called isolated, a leaf has degree one, a chain
vertex degree two, and all other vertices are called dense vertices.

A sequence of vertices p = (v1, . . . , vk), k > 0, is a path in G if vi
is adjacent to vi+1 for i = 1, . . . , k − 1 and all vertices are distinct. By
E(p) we denote the set of edges {(v1, v2), . . . , (vk−1, vk)}. Additionally, p
is called a chain if all vertices v2, . . . , vk−1 are chain vertices. The chain p
is maximal in G if the endpoints v1 and vk are not chain vertices. A cut
edge in a graph is an edge which is not on any cycle.

Let G = (V,E) be a graph and (Γ, δ) a group with anti-involution.
A pair (G, g) where g is a mapping g : E → (Γ, δ) into the group Γ is
called a (Γ, δ)-gain graph (on G) (or a graph with skew gains or a skew
gain graph), if g satisfies the following reversibility condition

g(e−1) = δ(g(e)) for all e ∈ E . (1)

In the future we will refer to a skew gain graph (G, g) simply by g unless
confusion arises. We adopt in a natural way some of the terminology of
graph theory for graphs with skew gains. For instance, every path in G
is also a path in g, and we can use E(g) to denote the set of edges of the
underlying graph G.

The class of (Γ, δ)-gain graphs on G will be denoted by LG(Γ, δ) or
simply by LG. More importantly, L(Γ, δ) =

⋃
{LG(Γ, δ) | G a graph }.

A gain graph is a (Γ,−1)-gain graph; these are also called inversive skew
gain graphs.

With a path p = (v1, . . . , vk) in g ∈ LG(Γ, δ) we can associate the
sequence of labels λ(p) = (g(v1v2), . . . , g(vk−1vk)). Now, p is an a-path
if every value in λ(p) is equal to a. Secondly, p is a b-summing path for
some b ∈ Γ if g(v1v2) · g(v2v3) · . . . · g(vk−1vk) equals b. (We often denote
this fact by writing g(p) = b.) In other words, evaluating the product of



values found along p using the group operation · of Γ evaluates to the
group element b.

Let g ∈ LG(Γ, δ). A set X ⊂ V (G) is an a-clique if for all x, y ∈ X:
x 6= y implies g(x, y) = a. Also, for X,Y ⊆ V (G), X is said to be a-
connected to Y , if X ∩ Y = ∅ and g(x, y) = a for all x ∈ X, y ∈ Y .

A function σ : V → Γ is called a selector. For each selector σ we as-
sociate with g a (Γ, δ)-gain graph gσ on G = (V,E) by letting, for each
uv ∈ E,

gσ(uv) = σ(u)g(uv)δ(σ(v)) . (2)

The class [g] ⊆ LG(Γ, δ) defined by

[g] = {gσ | σ : V → Γ}

is called the switching class generated by g.
It is not difficult to prove that a switching class is an equivalence class

of skew gain graphs. The underlying equivalence relation on LG(Γ, δ) is
that g ≡ g′ for g, g′ ∈ LG(Γ, δ) if and only if ∃σ : V (G) → Γ such that
g′ = gσ. Obviously g ≡ g and if g1 ≡ g2 then also g2 ≡ g1, because gσ1 = g2
if and only if g1 = gσ

−1

2 , where the σ−1 is such that σ−1(v) = σ(v)−1 for
all v ∈ V .

Closure under composition of selectors is something that we would
expect in our model: it is a consequence of Axiom A1 of the introduction.
If we define the composition of two selectors σ and τ to be στ(v) =
σ(v)τ(v), then we can prove that for each g ∈ LG(Γ, δ) and selectors σ, τ ,
gστ = (gτ )σ.

If the group Γ is the cyclic group of order 2, Z2, then by necessity the
involution is the identity function and the skew gain graphs are exactly the
undirected simple graphs of, e.g., [1, 6]. Directed graphs are obtained by
choosing Γ = Z4 and we take the involution δ to be the group inversion.

3 The general framework

In the following let Γ be a fixed, but arbitrary group and δ a fixed, but
arbitrary involution of Γ .

Let g ∈ LG(Γ, δ) and h ∈ LH(Γ, δ) be skew gain graphs. An injection

ψ : V (G) → V (H) embeds g into h, denoted by g
ψ
↪→ h, if

g(uv) = h(ψ(u)ψ(v)) for all uv ∈ E(G).

If we do not care what ψ is, we write g ↪→ h instead. Note that in some
definitions of embedding there is also an injection on the labels, but since
our application attaches meaning to the labels, we do not allow that here.



The embedding ψ is an isomorphism from g to h if g
ψ
↪→ h and h

ψ−1

↪→ g.

We denote this fact by g
ψ∼= h, or, equivalently, h

ψ−1

∼= g.
The definition of embedding can be extended to switching classes in

a natural way:

g ↪→ [h] if and only if there exists h′ ∈ [h] such that g ↪→ h′.

In this and the following sections, the central problem is to decide whether
the query skew gain graph g ∈ LG(Γ, δ) can be embedded in a switch of
the target skew gain graph h ∈ LH(Γ, δ).

We assume for the remainder of the paper that the target skew gain
graph is total, meaning that H = (V,E2(V )) for some set of vertices V .

We now come to the definitions central to this paper. We are interested
in establishing for a certain query graph g into which other skew gain
graph g′ it may be transformed so that the ability of embedding g into
h is preserved into g′. More formally, we define R(Γ,δ) as the set of
embedding equivalent pairs (g, g′) ∈ L(Γ, δ)× L(Γ, δ) such that

∀h : g ↪→ [h] ⇐⇒ g′ ↪→ [h].

Note that in our definition we have left the embedding itself unspecified,
meaning that in general we do not care whether g and g′ are embedded
“in the same place”. It also implies that g and g′ may have different
underlying graphs.

Although we have just defined the largest possible (equivalence) rela-
tion relating skew gain graphs from L(Γ, δ) to each other, it does not give
us any concrete information which pairs are actually in the relation for a
given group and involution. In the remainder of this paper we shall estab-
lish a number of results which either show that some pairs are definitely
in this relation, or that some pairs can never be.

Let R be any equivalence relation on L(Γ, δ). R is an embedding in-
variant relation (emir) if (g, g′) ∈ R implies (g, g′) ∈ R(Γ,δ).

We now give some examples of emirs that occur in the literaure. The
following easy lemma shows that for embedding the identities of the ver-
tices of the query graph are unimportant.

Lemma 1.
For two isomorphic (Γ, δ)-gain graphs g and g′ (with isomorphism φ from

g to g′): if g
ψ
↪→ h, then g′

ψ·φ−1

↪→ h.

The second example is that embedding a query graph g is the same
as embedding one of its switches:



Lemma 2.
If g

ψ
↪→ [h], then also gσ

ψ
↪→ [h] for any selector σ : V (g) → Γ .

Note that Lemma 1 implies the existence of an emir RIR: (g, g′) ∈ RIR

if and only if g ∼= g′. Another example comes from Lemma 2 where it is
proved that in fact ≡ is an emir.

We shall now give a slightly more complicated example.
Define RDCR such that (g, g′) ∈ RDCR if g′ can be obtained from g

by removing any number of cut edges of g. The symmetric closure of this
relation, RCR, is an equivalence relation on (Γ, δ)-gain graphs. So any
two g and g′ are related if and only if they have exactly the same cycles
and the same domain. A basic result from the theory of switching classes
proves that this relation is in fact an emir (see for instance [8]):

Theorem 1.
Let H be a graph and let T be a subgraph of H that is a forest. For every

(Γ, δ)-gain graph g on T and every h on H: g
id
↪→ [h].

The proposition states that any acyclic structure can be embedded in
a switching class. Note that by removing edges we do not change the size
of the domain of the (Γ, δ)-gain graph; this is necessary for establishing
embedding invariance.

To combine two emirs into one we can use the join operation: for two
emirs R and R′ on (Γ, δ), the join of R and R′, denoted by R∨R′, is the
smallest equivalence relation including both R and R′.

Lemma 3.
If R and R′ are emirs, then the join of R and R′ is an emir.

The join can be used to combine various emirs into a larger one. For
instance, joining an emir such as RDCR with RIR yields an emir that
“incorporates” removing of cut edges and isomorphisms. In such a way
we can define various emirs and compose these to come as close as possible
to the largest of emirs, R(Γ,δ).

4 Bridging

In this and the coming sections we assume that the group Γ is abelian
and that the involution δ is the group inversion −1; we will denote the
identity of the group simply by 0.

The reason for the restriction is the Cyclic Sum Invariance, which
holds for switching classes with abelian groups and involution equal to



the group inversion. It means that if one takes any cycle and computes
the sum along that cycle for the labels on that path, then this value does
not change when the skew gain graph is switched [2].

Let g, g′ ∈ L(Γ, δ) be such that g contains a 0-chain p = (x0, . . . , xk).
Then, for integers k and ` with k ≥ `, g′ is an (k, `)-bridging of g, denoted
gBk

` g
′, if g′ is a (Γ, δ)-gain graph on V (g) with

E(g′) = (E(g)− E(p)) ∪ E(p′) for p′ = (x0, . . . , x`−1, xk)

and

g′(e) =

{
g(e), if e ∈ E(g)− E(p)
0, otherwise

We additionally define Bk
` to be equal to (B`

k)
−1 for k ≤ `.

For the following two (Γ, δ)-gain graphs g and g′ it holds that gB5
3g

′.
In this case p = (x0, . . . , x5):

x6
0

0
0 0

0

0

0 0

x0

x1 x2 x3 x4 x5

x6

x7

x1

x7

x2

x3 x4

R5
3

x0

x5

Note that we can assume that the chain is labelled with zeroes, since
if it does not we can always switch it so that it does. Also, the fact that
we have chosen certain vertices (x`, . . . , xk−1) to become isolated might
seem arbitrary, but joining with RIR removes this restriction.

In what follows we are interested in determining for which groups we
can always (i.e., for any (Γ, δ)-gain graph g ∈ L(Γ, δ)) change bridges of
length k to bridges of length `. For this we introduce the following relation
RΓ ⊆ N ×N, where (k, `) ∈ RΓ if and only if Bk

` is an emir on L(Γ, δ).
Obviously, for any group Γ it holds that (k, k) ∈ RΓ where k > 0.

The following lemma couples the concept of bridging to something
we can more easily verify. Implicitly we allow the embedding only to be
changed on the chain vertices that occur on the bridge.

A (Γ, δ)-gain graph on {0, . . . , n} for some n is an (n, k)-bridge struc-
ture if it has a 0-path (0, . . . , k).

The following lemma shows that to decide whether we can bridge
paths of length k into `, we can look at total skew gain graphs which



have a 0-labelled path (0, . . . , k) and show that whatever labels are on
the other edges, we can always find a 0-summing path from 0 to k of
length `.

Lemma 4.
Let k and ` be natural numbers, and let n = max(k, `). It holds that
(k, `) ∈ RΓ if and only if for every (n, k)-bridge structure g there is a
0-summing path p in g of length ` from 0 to k.

Proof. For the if-part we need only note that we can replace a path of
length k by one of length ` which has the same starting and end-point
without changing the sum on any of the cycles of which these vertices are
part. Because a bridge is part of a chain, every vertex on the bridge is
part of exactly the same cycles.

The only if part follows from the fact if we cannot replace the path
of length n by a path of the same sum of length k, then we change the
cyclic sum along at least one cycle, which contradicts the Cyclic Sum
Invariance.

Theorem 2.
For natural numbers k1 > 1 and k2 > 2: (k1, 1) /∈ RΓ and (k2, 2) /∈ RΓ ,
if Γ is not the trivial group, {0}.

Proof. Let a ∈ Γ with a 6= 0. Let g2 be a (Γ, δ)-gain graph on {0, . . . , k2}
such that for 1 ≤ i ≤ k2 − 1 g2(0, i) = 0, g2(i, k2) = a and all other edges
are labelled arbitrarily. Hence for all i, g2(0, i, k2) = a 6= 0. The same
kind of reasoning can be applied to the other case.

Example 1.
If we know that (5, 3) ∈ RΓ , then it is easy to see that (k, k − (5− 3)) =
(k, k − 2) ∈ RΓ as long as k − 2 ≥ 3: if g contains a chain of length
greater than 5, then we can take any part of this chain of length 5 and
reduce it to 3 and thereby reduce the length of the entire chain from k
to k− 2. We can repeat this process until the length of chain path is not
sufficiently long anymore. We conclude that if we prove that (5, 3) ∈ RΓ
then (k, k − 2) ∈ RΓ for k ≥ 5 and even (k, k − 2`) for k − 2` ≥ 3. Using
similar reasoning we conclude that (3, 5) ∈ RΓ implies that (k, k+2`) for
k ≥ 3. �

In general we have

Lemma 5.
If (k1, `1) ∈ RΓ then (k2, `2) ∈ RΓ where `2 = k2 − (k1 − `1)m, m ≥ 1
and `2 ≥ `1.



If Γ = Γ1 × Γ2 then (k, `) ∈ RΓ implies (k, `) ∈ RΓi(i = 1, 2), but not
vice versa, not even if Γ1 = Γ2 (see Theorem 4). The positive result is easy,
because the identity of Γ maps to the identities of the factors. Hence the
0-summing paths stay 0-summing in the projection. The following result
says that if a bridging is not possible for a given group, it automatically
precludes bridging in groups of which it is a factor.

Lemma 6.
If Γ is a group such that (k, `) /∈ RΓ , then this also holds for all groups
of which Γ is a factor.

4.1 The case for Z2

In view of Theorem 2 it may be surprising that bridgings do exist.

Lemma 7.
(5, 3) ∈ RZ2

Proof. Let b be a (5,5)-bridge structure (recall that the path (0, . . . , 5) is
a 0-path, and the other edges are arbitrarily labelled by elements of Z2).
Now, if b(0, 3) = 0, then b(0, 3, 4, 5) = 0. The same reasoning applies to
(2, 5). In the other cases, b(0, 3) = 1 = b(2, 5) and b(0, 3, 2, 5) = 0.

Knowing that bridging is possible under Z2 we can now illustrate that
the necessity of the target skew gain graph being total: take a cycle on six
vertices – call it c. We can bridge c into c′ which consists of two isolated
vertices and a cycle on four vertices. Obviously, c ↪→ [c], but c′ 6↪→ [c].
The reason is that the target graph, in this case c, does not have all its
edges present.

Lemma 8.
(k, `) /∈ RZ2

if k and ` are of opposite parity.

Proof. Let k and ` be of opposite parity. We may assume `, k ≥ 3, because
of Theorem 2.

Let n = max(k, `), b be a (n, k)-bridge structure and V = V (b). By
Lemma 4, we only need to exhibit one such structure which has no path
of length ` from 0 to k which sums to 0. For that, choose b such that the
sets K ⊆ V and V − K are 0-connected 1-cliques. Here, K = {x | 0 ≤
x ≤ k, xeven}. Note that there is a 0-path (0, 1, . . . , k).

We are interested in paths of length ` which go from 0 to k and sum
to 0. If k is even, then ` is odd, and the path is one that starts in K



and ends in K. Since we must switch from K to V −K an even number
of times, we traverse an an odd number of edges within either K and
V −K. Since these edges each contribute 1 to the sum, and they are the
only edges which contribute, the sum along the path equals 1. If k is odd
and hence the path starts in K and ends in V −K similar reasoning leads
to a sum of 1.

Theorem 2 and Lemmas 5, 7 and 8 lead to the following.

Corollary 1.
If k ≥ ` > 2 then (k, `) ∈ RZ2

if and only if k and ` have the same parity.
Also, (k, `) ∈ RZ2

for 1 ≤ ` ≤ 2 if and only if k = `.

4.2 The case for Z3

The following result was quite a surprise.

Lemma 9.
(6, 4) ∈ RZ3

and (6, 5) ∈ RZ3
, but (5, 4) /∈ RZ3

.

Proof. The positive results have been obtained by a computer check of
all paths of length 4, resp. 5, from 0 to 6 in a (6, 6)-bridge structure.

The counterexample for (5, 4) is given in the following figure, here the
solid edges are labelled with 0 and the dashed edges (in the direction of
the arrow) with 1. The reader may verify that indeed no path from 0 to
6 of length 5 sums to 0.

2

0

3

5

1 4

5 An algorithm for checking configuration containment

In this section we use the fact that (5, 3) ∈ RZ2
(Lemma 7) to derive an

algorithm for checking that g ↪→ [h] for g, h ∈ L(Z2,
−1) where h is total.

The result is mainly based on the following graph theoretical argument
which shows that if we consider graphs that do not have any isolated
vertex or leaves, and every chain contains a bounded number of chain
number, then the number of vertices in the graph can be bounded by
a constant multiple of the cycle rank of the graph. The cycle rank of a



graph G is defined as the size of its cycle base, and equals e−n+k, where
n = |V (G)|, e = |E(G)| and k is the number of connected components of
G.

Lemma 10. Let G = (V,E) be a connected graph which has only vertices
of degree at least two and at least one dense vertex. If every maximal chain
in G has at most c > 0 chain vertices, then |V (G)| ≤ 2cξ, where ξ is the
cycle rank of G.

Proof. We first make an estimation for graphs which only contain dense
vertices. Let dG(v) denote the degree of the vertex v of G. Then, by
the handshaking lemma of graph theory, 2e =

∑
v∈V dG(v) ≥ 3n, since

dG(v) ≥ 3 for all v. Hence ξ = e − n + 1 ≥ 3n/2 − n + 1 = n/2 + 1, so
that n ≤ 2ξ as required. Now, any edge between two dense vertices can
be replaced by a chain of a most c chain vertices, which adds to n and e
in equal amounts, so that n ≤ 2cξ.

Lemma 11.
Let g ∈ L(Z2,

−1) and let ξ be the cycle rank of g. Then, there exists a
g′ embedding equivalent with g such that ni(g′) ≤ 6ξ, where ni(g′) is the
number of non-isolated vertices of g′.

Proof. Remove cut-edges, isolated vertices and use the (5,3) bridging to
change g into g′ which has the property that it consists only of a number
of isolated vertices, dense and chain vertices. Neither of these operations
change the cycle rank of g. Now apply Lemma 10 to each of the com-
ponents of the graph (the cycle rank of a disconnected graph equals the
sum of the cycle rank of its components) to obtain the given bound for
the number of chain and dense vertices, where we use Lemma 7 to limit
the number of chain vertices in any chain to 3. We omit in this reasoning
components which are simple cycles, connected graphs which have only
chain vertices. These, however, can all be reduced to cycles of length at
most six, again using Lemma 7.

Finally, we can formulate a bound on the time complexity of the
embedding problem for Z2 as follows:

Theorem 3.
Let g, h ∈ L(Z2,

−1) where h total, n = |V (h)| and ξ is the cycle rank of
g. It can be decided in O(n6ξ+2) time whether g ↪→ [h].

Proof. After checking that |V (g)| ≤ h, we can find an embedding equival-
ent g′ such that ni(g′) ≤ 6ξ through Lemma 11. Now, we actually remove



the isolated vertices from g′ (we have already checked that g does not
have more vertices than h does). The number of possible injections from
g′ into h is bounded by n6ξ, for each of which we have to do at most
O(n2) work to see if under the injection, we can switch h so that it con-
tains g′ (using the results of [5]). The preprocessing of g, which consists
of removing leaves, isolated vertices and shortening chains, can easily be
done in time O(n2).

6 Some impossibility results

In this section we are interested in determining, given a natural number
`, for which finitely generated abelian group Γ it holds for every k > `,
that (k, `) /∈ RΓ . In Lemma 2 we found two such examples, ` = 1 and
` = 2, in which case impossibility was obtained for all groups. Since we
have already treated the cases for ` ≤ 2, we assume ` ≥ 3, and hence
k > 3. From Lemma 6 and the fundamental result on finitely generated
abelian groups, it follows that we can restrict ourselves to solving this
question for the cyclic groups (of order a prime power) and Z.

Since we are interested in proving the impossibility of bridging, we
have to show that we can always find (k, k)-bridging structure in which
there is no 0-summing path of length ` from 0 to k.

First we investigate which edges in the bridge structures must be
labelled with a non-identity element. These are exactly the edges that
are on a path of length ` from 0 to k which traverse only edges on the
path (0, . . . , k), except for one edge which has an undetermined label. We
observe that these edges are those of the form

(i, i+ (k − `+ 1)), i = 0, . . . , `− 1. (3)

We shall next prove that the only bridging (k, 3) for k > 3 occurs if
the group is trivial or the group is Z2. The main technique used here is
to generate a family of skew gain graphs, depending on k, which contains
a large 0-clique, and only relatively few edges besides. Parts of the paths
in the 0-clique contribute nothing to the sum along a path, so only the
values on the other edges really matter. To simply the proof any vertex
outside X is connected in a uniform way to all vertices in X and (by
reversibility) the other way around. In 2-structures jargon, such a set X
is called a clan (see [2]). The next theorem is a typical example of this
kind and can be viewed as an illustration of the proof technique.



Theorem 4.
If for k > 3, (k, 3) ∈ RΓ for a finitely generated abelian group, then Γ is
Z2 or the trivial group.

Proof. Like in Lemma 2 the idea is to find a (k, k)-bridge structure which
does not exhibit an 0-summing path of length ` = 3 from 0 to k. Because
of Lemma 6 and the fundamental theorem on finitely generated abelian
groups, we start by considering the cyclic groups of order larger than two
and the group Z of integer addition.

Consider the following graph in which all edges whose value is as yet
unknown is labelled with a variable label ai for some i, and the vertex X
represents a 0-clique on k − ` vertices.

0

0
0

0

0 a1

a2

a0a3

a4X
k

k − 1k − 2

By (3), a0, a1 and a2 should be labelled by values different from 0. It
is easily seen that also a4 6= 0 (for paths through X). We also find that
a0 6= a4

−1, because of the path (0, k−2, x ∈ X, k). In fact if we set a3 = 0,
a0, a2 and a4 to the generator of the group, 1, and a3 to 1−1 there is no
path of length ` = 3 which sums to 0. It is important to note that since
the group has order at least three, 1 6= 1−1.

Since a (k, 3) bridging existed for Z2, we should also show that such a
bridging is not possible for Z2×Z2. Taking the same graph as our starting
point, we choose a3 the identity (0, 0) and set a0 = a1 = a2 = (0, 1) and
a4 = (1, 0). Again, the reader can verify (there are only a finite number
of cases), that no path of length 3 from 0 to k sums to (0, 0).

7 Conclusions and future work

Taking the model of Ehrenfeucht and Rozenberg as our starting point,
we have considered the embedding problem in detail. We have set up a
framework to establish results about reducing query skew gain graphs to
smaller ones and proved some general results in this matter. Then we
concentrated on bridging, which, for Z2 at least, results in an algorithm
for the embedding problem which is dominated not by the size of the
query graph, but by its cycle rank, corresponding to the general intuition
in switching classes that cycles make life harder.



We have not completed a full investigation of all possible bridgings
for all possible finitely generated abelian groups, although we have the
full picture for Z2 and Z3. We do conjecture that for every such group
Γ there is for every ` a k such that (k, `) /∈ RΓ . Note by the way, that
bridging is just one possible reduction strategy and others might exist.
In that sense, the research in this area is still very much open, especially
for non-abelian groups where bridging is not an option.

Acknowledgements

We thank Hans Bodlaender for some helpful discussions.

References

1. A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity issues in switch-
ing of graphs. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Theory And Application Of Graph Transformations - TAGT ’98, volume 1764 of
Lecture Notes in Computer Science, pages 59–70, Berlin, 2000. Springer Verlag.

2. A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures. World
Scientific, Singapore, 1999.

3. A. Ehrenfeucht and G. Rozenberg. Dynamic labeled 2-structures. Mathematical
Structures in Computer Science, 4:433–455, 1994.

4. J. L. Gross and T. W. Tucker. Topological Graph Theory. Wiley, New York, 1987.
5. J. Hage. The membership problem for switching classes with skew gains. Funda-

menta Informaticae, 39(4):375–387, 1999.
6. J. Hage, T. Harju, and E. Welzl. Euler graphs, triangle-free graphs and bipartite

graphs in swithing classes. Fundamenta Informaticae, 58(1):23–37, November 2003.
7. J. J. Rotman. The Theory of Groups. Allyn and Bacon, Boston, 2nd edition, 1973.
8. T. Zaslavsky. Signed graphs. Discrete Applied Math., 4:47–74, 1982. Erratum on

p. 248 of volume 5.
9. T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. J. Combin. Theory, Ser.

B, 47:32–52, 1989.


