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Abstract. We characterize the switching classes that do not contain an acyclic graph. The
characterization is by means of a set of forbidden graphs. We prove that in addition to switches of
the cycles Cn for n ≥ 7 there are only finitely many such graphs in 24 switching classes, all having
at most 9 vertices. We give a representative of each of the 24 switching classes.
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1. Introduction. Blue things are new, red things are replaced (by the blue if
applicable)

For a finite undirected graph G = (V,E) and a set σ ⊆ V , the switch of G by σ
is defined as the graph Gσ = (V,E′), which is obtained from G by removing all edges
between σ and its complement σ and adding as edges all nonedges between σ and
σ. The switching class [G] determined by G consists of all switches Gσ for subsets
σ ⊆ V .

A switching class is an equivalence class of graphs under switching. The initiators
of the theory of switching classes of graphs were Van Lint and Seidel [7]. They used the
model in their investigation of elliptic geometry. For a survey of switching classes of
graphs, and especially their many connections to other parts of mathematics, we refer
to Seidel [8], Seidel and Taylor [9], and Cameron [2]. Recently a book by Ehrenfeucht,
Harju and Rozenberg was published on 2-structures that has a number of chapters on
switching classes of graphs and their generalizations [4]. A book completely devoted
to the subject is the first author’s thesis (Hage [5]). Part of the motivation for the
general model treated in the latter two books is that they constitute a way in which
to model the semantics of a certain type of networks of processors.

In this paper we solve a problem raised by Acharya [1] and mentioned by Zaslavsky
in his dynamic survey in 1999 [11], which asks for a characterization of those graphs
that have an acyclic switch. We are concerned with those graphs that do not have
an acyclic switch. Such graphs will be called forbidden. Obviously, if a forbidden
graph occurs in another graph, then the latter is also forbidden. For this reason we
are interested in the graphs that are minimal in this respect: they do not have an
acyclic switch, but all their induced subgraphs do have an acyclic switch. We call
these graphs and the corresponding switching class critically cyclic. We show that
apart from the simple cycles Cn for n ≥ 7, there are only finitely many critically
cyclic graphs. In fact, we shall prove that a critically cyclic graph G /∈ [Cn] has order
at most 9. These graphs are partitioned into 24 switching classes, and altogether
there are 905 critically cyclic graphs (up to isomorphism and excluding switches of
the cycles Cn).3
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In order to save the reader from long – and occasionally tedious – technical con-
structions for the small graphs, we rely on a computer program (in fact, two indepen-
dent ones) for the cases of order at most 9. Therefore our purpose is to prove that
if G is a critically cyclic graph of order n ≥ 10, then G ∈ [Cn]. The proof of this
result uses the characterization from [6] of the acyclic graphs G – henceforth called
the special acyclic graphs – that have a non-trivial acyclic switch (see Section 4).

The paper is structured as follows. After some preliminaries we list the necessary
details of the special acyclic graphs from [6]. We proceed by proving that critically
cyclic graphs can have only a limited number of isolated vertices. As a consequence,
a vertex in a critically cyclic graph has only a limited number of leaves adjacent to it.
We prove that each switching class consisting of critically cyclic graphs and different
from [Cn] for n ≥ 8, contains a graph G that is almost a special acyclic graph. We
then prove by case analysis relying on the types of the special acyclic graphs that a
critically cyclic graph must have order at most 9. At the end of the paper we shall
spend some time discussing the computer programs that were used to search for the
small critically cyclic graphs. We shall also consider the question of why not all of
the critically cyclic switching classes are used in our proof.

2. Preliminaries. For a (finite) set V , let |V | be the cardinality of V . We shall
often identify a subset A ⊆ V with its characteristic function A:V → Z2, where
Z2 = {0, 1} is the cyclic group of order two, by the convention that for x ∈ V ,
A(x) = 1 if and only if x ∈ A. The symmetric difference of two sets A and B is
denoted by A + B, and for the difference between A and B we write A−B.

The set E(V ) = {{x, y} | x, y ∈ V, x 6= y} is the set of all unordered pairs of
distinct elements of V . A graph is a pair G = (V,E) where V is the set of vertices and
E ⊆ E(V ) the set of edges. We write xy or yx for the undirected edge {x, y} ∈ E; we
call x and y adjacent. The graphs of this paper will be finite, undirected and simple,
i.e., they contain no loops or multiple edges. The cardinalities |V | and |E| are called
the order and the size of G. Analogously to sets, a graph G will be identified with
the characteristic function G:E(V ) → Z2 of its set of edges defined by G(xy) = 1 for
xy ∈ E and G(xy) = 0 for xy /∈ E. Later we shall use both notations, G = (V,E)
and G:E(V ) → Z2, for graphs.

A graph H = (X, E′) is a subgraph of G = (V,E), if X ⊆ V and E′ ⊆ E.
Moreover, if H 6= G then H is a proper subgraph of G. Also, H is an induced subgraph
or a subgraph induced by X if for all distinct vertices x, y ∈ X, H(xy) = G(xy). As
shorthand we write G− x for the subgraph induced by V − {x} and, more generally,
we write G− I for the subgraph induced by V − I. Let H be a subgraph induced by
a nonempty set X ⊆ V . If H(xy) = 1 for all distinct x, y ∈ X, then H is called a
clique. On the other hand, if H(xy) = 0 for all distinct x, y ∈ X, then X is said to
be independent.

For two graphs G and H on the vertex set V , we define G + H to be the graph
such that (G + H)(xy) = G(xy) + H(xy) for all xy ∈ E(V ), where + is addition
modulo 2. We extend this operation to graphs on different sets of vertices V and V ′

respectively, by first extending them to graphs on V ∪ V ′ and setting all new edges
to 0.

The disjoint union of two graphs G and H on the other hand is denoted G ∪H.
We use k ·G as shorthand for the disjoint union of k copies of G.

Some graphs we shall encounter in the sequel are Kn, the clique on n vertices,
and Km,n, the complete bipartite graph on two disjoint sets of m and n vertices
respectively. Pn denotes a path of n vertices and Cn denotes a cycle on n vertices.
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For a vertex v ∈ V of a graph G, the set NG(v) ⊆ V is the set of vertices adjacent
to v in G. The degree of v is defined by dG(v) = |NG(v)|. An isolated vertex has
degree zero, a leaf degree one. A vertex v is a leaf at z if v is a leaf adjacent to z.

A graph is acyclic if it has no cycles. A tree is a connected acyclic graph.
A selector for G = (V,E) is a subset σ ⊆ V , or alternatively a function σ:G → Z2.

A switch of a graph G by σ is the graph Gσ such that for all xy ∈ E(V ),

Gσ(xy) = σ(x) + G(xy) + σ(y).

It should be clear that this definition of switching is equivalent to the one given in the
introduction. One of the switches of the graph (7-3) of Figure 3.1 is the graph (7-3’)
of Figure 3.4. In the figures we shall usually indicate a selector by the black vertices.

For a singleton set σ = {x} we shall write Gx instead of G{x}.
The set [G] = {Gσ | σ ⊆ V } is called the switching class of G = (V,E). We

reserve lower case σ, τ for selectors (subsets) used in switching.
We always have Gσ = Gσ for the complemented selector σ = V − σ.
A selector σ is said to be constant on a subset X ⊆ V if σ is a constant function

on X, that is, if X ⊆ σ or X ∩ σ = ∅. Note that if σ is constant on X, then the
subgraphs induced by X in G and in Gσ are equal.

3. Critically cyclic graphs. A graph G is said to be forbidden if G does not
have an acyclic switch. Moreover, a forbidden graph G, as well as its switching class
[G], is called critically cyclic if all proper induced subgraphs of G have an acyclic
switch. It is clear that a switch of a critically cyclic graphs is also critically cyclic.

We say that an acyclic graph G has a singular acyclic switch, if G has a unique
acyclic switch different from G, that is, if σ and τ are any two nonconstant selectors for
which both Gσ and Gτ are acyclic, then Gσ and Gτ are equal (not only isomorphic).

Let G be a critically cyclic graph. By definition, for all x ∈ V , there is a switch
Gσ such that Gσ − x is acyclic. We have the following simple result that will be used
quite often without reference in the proofs.

Lemma 3.1. Let G be a critically cyclic graph and let x be a vertex of G.
(i) The proper subgraphs of G all have acyclic switches.
(ii) There exists a switch Gσ of G such that the subgraph Gσ − x is acyclic. In

this case all cycles of Gσ and of (Gx)σ go through x.
Note that it is not true that in every critically cyclic graph G there is a vertex

x such that G − x is acyclic; the graph K3,3 ∪ 3 · K1 of Figure 3.3(9-2) is a counter
example.

Example 3.2. Let G be the graph (7-3’) in Figure 3.4. We prove that it is a
critically cyclic graph. For this we need to show that it has no acyclic switches and
removing any of the vertices allows for an acyclic switch. For the latter it is sufficient
to observe that the vertices 2, . . . , 6 are all on the unique cycle of G, and the subgraphs
G{2,5} − 7 and G{3,6} − 1 are acyclic.

To prove that G has no acyclic switch observe that G has seven edges and an
acyclic graph can have at most six. We prove that applying any selector will not
decrease the number of edges, and thereby we have proved that there is no acyclic
switch of G. Since Gσ = Gσ for all selectors σ, we can assume that σ has at most
three vertices.

First of all, for all vertices x, dG(x) ≤ 3 = (n− 1)/2. Hence applying a singleton
selector cannot decrease the number of edges.

For doubleton selectors, σ = {x1, x2}, we can reason in the same way. The
number of edges that change is |σ| · (7 − |σ|) = 10. We must make sure that every
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selector makes at most five edges disappear. The only possible way, knowing that the
maximum degree is three, is to take σ = {2, 6}, but in that case only four edges are
removed, because one edge occurs inside the subgraph induced by σ.

For selectors of size 3, twelve edges will change. Hence we must look for selectors σ
which create fewer than six edges, that is, σ make more than six edges of G disappear.
For this, the selector must contain a vertex of degree three, say {2}. If also 6 ∈ σ,
then the number of edges to be removed is four. Since there are no other vertices of
degree three in G, we conclude that 6 /∈ σ. If σ has two vertices of degree two, then
the subset σ has at most six edges going to its complement, because either the two of
them are adjacent, or one of them is adjacent to 2.

Note that Cn for n ≤ 6 has an acyclic switch: take an independent set of cardi-
nality bn/2c. However, the following was already proved by Acharya [1].

Lemma 3.3. The cycle Cn is critically cyclic for each n ≥ 7.
Proof. Let G = Cn with n ≥ 7. First of all, removing any vertex from G = Cn

gives us an acyclic graph Pn−1. Hence we need to prove only that all switches of G have
a cycle. Let {x1, x2, . . . , xn} be the vertices of G where G(xixi+1) = 1 = G(xnx1).
Suppose that Gσ is acyclic.

Assume first that σ has the same value for two adjacent vertices, say σ(x1) = 1 =
σ(x2). Now σ(xi) = 1 for each 4 ≤ i ≤ n − 1, since {x1, x2, xi} does not induce a
triangle C3 in Gσ. Also σ(x3) = 1 and σ(xn) = 1 because otherwise {x3, xn−1, xn−2}
and {xn, x4, x5} induce a triangle in Gσ. However, now σ is constant and Gσ = G;
contradiction. This takes care of all Cn where n ≥ 7 is odd.

There remains the case where σ contains every other vertex of G. In this case, it
is easy to see that if n = 8, then Gσ is again a cycle Cn, and if n ≥ 10 and n is even,
then the subset {x1, x2, x4, x5, x7, x8} induces a cycle C6 in Cσ

n . These contradictions
prove the claim.

We now state the result of our computer search for critically cyclic graphs.
Theorem 3.4. There are 27 switching classes of critically cyclic graphs of order

n ≤ 9. Representatives of these switching classes are given in Figures 3.1, 3.2 and
3.3.

The main theorem proved in this paper is the following.
Theorem 3.5. The switching classes [Cn] are the only critically cyclic switching

classes of order n ≥ 10.
In the following proofs we shall refer to the graphs from Figures 3.1 – 3.4. The

black vertices in Figure 3.4 indicate how these graphs can be switched into the corre-
sponding graphs from the former three figures.

4. The special acyclic graphs. We shall now describe the special acyclic
graphs of [6] (see Figure 4.1) that will be often referred to in the rest of the pa-
per. These acyclic graphs S have the property that they have an acyclic switch Sσ

different from S.

Type (1s). The graph in Figure 4.1(1s) is denoted by Sk,m,l. It is obtained
from the graph K1,k+m by substituting k leaves by an edge and by adding l isolated
vertices. To be precise, S = Sk,m,l consists of the induced subgraphs H, I and M as
defined in (S1) – (S3).

(S1) H = {z}∪ {yi, xi | i = 1, 2, . . . , k} consists of vertices for which G(zyi) = 1 =
G(yixi) for each i. The vertex z is called the centre of S.

(S2) I = {u1, u2, . . . , ul} consists of isolated vertices.
(S3) M = {v1, v2, . . . , vm} consists of leaves such that G(zvi) = 1 for each i.
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(6-1)(5-1) (7-1) (7-2) (7-3)

(7-5)(7-4)

Fig. 3.1. The critically cyclic graphs of order 5, 6 and 7

(8-4)

(8-2) (8-3)

(8-7)(8-6)(8-5)

(8-8) (8-9)

(8-1)

(8-10)

(8-12) (8-13) (8-14) (8-15)

(8-11)

Fig. 3.2. Critically cyclic graphs of order 8
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(9-2)

(9-4) (9-5)

(9-1) (9-3)

Fig. 3.3. Critically cyclic graphs of order 9

(8-5’)(5-1’) (6-1’)

(7-2’) (7-5’)

2

(7-3’)

1

57
6

4

3

(8-8’)

Fig. 3.4. Switches of known critically cyclic graphs that are used in the proofs

For the types (As) with A = 2, 3, . . . 8 the corresponding special acyclic graphs
will be denoted by SA(k,m), where k and m indicate the number of leaves of the
(black) vertices z1 and z2. Because of the symmetry in k and m in each of these
graphs we may assume that k ≥ m.

Denote by Pt(m, k) the tree that is obtained from the path Pt of t vertices when
the leaves are substituted by K1,m and K1,k (see Figure 4.1(4s) for P3(k, m)).

Type (2s). S2(k, m) = K1,k ∪K1,m .
Type (3s). S3(k, m) = K1,k ∪K1,m ∪K1 .
Type (4s). S4(k,m) = P3(k,m) .
Type (5s). S5(k,m) = P3(k,m) ∪K1 .
Type (6s). S6(k,m) = P2(k,m) .
Type (7s).. S7(k,m) is equal to K1,3(k, m) where two leaves of K1,3 are sub-

stituted by K1,k and K1,m (see Figure 4.1(7s)).
Type (8s). S8(k,m) = P4(k,m) .
Types (9s) – (12s). The acyclic graphs of these types are P7, T7, P6, and

P4 ∪ P2. These are listed in Figures 4.1(9s) – (12s) .

A small acyclic graph can be of several of the above types. The role of the small
acyclic graphs of the types (9s) – (12s) is strictly limited in this paper, because of
their low order. Notice that P6 equals P4(1, 1) of the type (8s), but we treat this small
instance independently.

In [6] we proved the following theorem.
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z1 z2
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w
w

w2

(8s)

(6s)(5s)
w1

(7s)

(3s)

w2 w2

w1 w1

(12s)(11s)

Fig. 4.1. The special acyclic graphs (1s)-(12s)

Theorem 4.1. Every switching class contains at most three acyclic graphs up to
isomorphism. The acyclic graphs G that have an acyclic switch Gσ by a nonconstant
selector σ are the special graphs of the types (1s) – (12s).

The blackened vertices in Figure 4.1 constitute the centres of the special acyclic
graphs S. We denote by Z(S) the set of these centres. Notice that Z(S) consists of
either one or two vertices.

Let σ = Z(S) for a special acyclic graph S. We observe that Sσ is of the same
type as S except for a few of the cases: A graph of the type (3s) switches into a graph
of the type (4s) (and vice versa). The graphs (11s) and (12s) switch into each other.

We shall often want to use the fact that a certain special acyclic graph S has a
singular acyclic switch, that is, a unique acyclic switch by a nonconstant selector. We
shall now give a list of small special acyclic graphs that do have a singular acyclic
switch. We omit the proof of Lemma 4.2, because the graphs in it are small and the
claim can be easily checked even by hand although some work is required.

Lemma 4.2. The following special acyclic graphs S have a singular acyclic switch:
(i) S1,2,2 and S0,3,3 of the type (1s),



8 J. HAGE AND T. HARJU

(ii) SA(2, 2) of the types (As) for A = 2, 3, 4,
(iii) SA(2, 1) of the types (As) for A = 5, 7, 8, and
(iv) S6(3, 3) of the type (6s).

In these cases the singular acyclic switch Sσ is obtained by the selector σ = Z(S) and
its complement σ.

We turn now to special acyclic graphs that are more general in their structure.
Lemma 4.3. The special acyclic graph S = SA(k,m) has a singular acyclic switch

if
(i) k,m ≥ 2 for the types (2s), (3s), and (4s),
(ii) k ≥ 2,m ≥ 1 for the types (5s), (7s), and (8s),
(iii) k,m ≥ 3 for the type (6s).

In these cases the singular acyclic switch Sσ is obtained by the selector σ = Z(S) and
its complement σ.

Proof. In each of the cases under consideration the special acyclic graph S =
SA(k,m) has two centres, say Z(S) = {z1, z2}. Let Sσ 6= S for a nonconstant selector
σ such that Sσ is acyclic. We may assume that σ(z1) = 1. In each of these cases
every pair x, y /∈ Z(S) of distinct vertices of S belongs to an induced subgraph Rx,y

from Lemma 4.2 such that Z(S) ⊆ Rx,y and Rx,y is of the same type as S. When
σ is restricted to Rx,y, we have that the switch Rσ

x,y is acyclic. By Lemma 4.2,
σ(x) = σ(y), from which the claim follows.

Lemma 4.4. The special acyclic graph S = Sk,m,l has a singular acyclic switch
in the following cases:

(i) k ≥ 3,
(ii) k = 2 and m + l ≥ 2,
(iii) k = 1 and m, l ≥ 2, and
(iv) k = 0 and m, l ≥ 3.

In these cases the singular acyclic switch Sσ is obtained by the singleton selector
σ = Z(S) and its complement σ.

Proof. Let S = Sk,m,l with Z(S) = {z} be as described in (S1) – (S3) where k,m
and l satisfy the requirements of the claim. Let σ be a nonconstant selector such that
Sσ is acyclic. Since Sσ = Sσ, we may assume that σ(z) = 1. We shall show that
σ = {z} from which the claim follows. Note that the subgraph S − z of S equals the
disjoint union k · P2 ∪ (m + l) ·K1.

Suppose that k ≥ 3. Now S − z is not special and by Theorem 4.1, σ must be
constant on S − z. Therefore σ = {z}.

Suppose then that k = 2 and m + l ≥ 2. In this case, S − z equals 2 · P2 ∪ 2 ·K1,
which is not special. As in the above, we have σ = {z}.

For the rest of the cases where k ≤ 1, the claim follows from Lemma 4.2 as in
the proof of Lemma 4.3, since now every pair of vertices of S belongs to an induced
subgraph S1,2,2 or S0,3,3 that contains the centre z of S.

5. Isolated vertices. In this section we give constraints for the isolated vertices
in critically cyclic graphs. In particular, we prove our main tool for the final proof: if
G is critically cyclic and is such that G− x is acyclic for a vertex x, then G− x has
no isolated vertices.

Lemma 5.1. A critically cyclic graph G has at most two isolated vertices or
G = K3,3 ∪ 3 ·K1 (see (9-2) in Figure 3.3).

Proof. Let I = {x1, x2, . . . , xm} be the set of the isolated vertices in G. We
assume that m ≥ 3. The graph G is critically cyclic, and hence G− x1 is not acyclic
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but it has an acyclic switch (G−x1)τ . The subgraph G− I has a cycle, and therefore
τ is not constant on G− I, say τ(v0) = 0 and τ(v1) = 1 for some v0, v1 ∈ V (G)− I.

We show that τ has different values on the elements of I − {x1}. From this it
follows that m = 3. For this purpose, suppose that there are two vertices, say x2 and
x3, in I−{x1} having the same value. Without loss of generality we may assume that
τ(x2) = 1 = τ(x3).

If τ(v) = 0 for a vertex v ∈ V − {v0}, then (x2, v0, x3, v) is a cycle in (G− x1)τ ,
which contradicts the choice of τ . However, if τ(x) = 1 for all x ∈ I − {x1, x2, x3},
then x1 is a leaf at v0 in Gτ , contradicting the fact that all cycles of Gτ go through
x1. This proves that the vertices of I−{x1} have different values in τ . Hence m = 3
with τ(x2) 6= τ(x3).

Since (G−x1)τ is acyclic, and Gτ (x2x3) = 1, and every vertex of V −I is adjacent
to either x2 or x3, it follows that V − I is independent in (G − x1)τ . The switching
class of a discrete graph of order n consists of the complete bipartite graphs of order
n (see [8]), and therefore G = Kr,s ∪ 3 · K1 where r, s ≥ 2 since G is not acyclic.
Since K3,3 ∪ 3 · K1 is a critically cyclic graph, and each K2,s ∪ 3 · K1, for s ≥ 4, has
an acyclic switch (by switching one of the vertices in the part of size 2 of K2,s), the
claim follows.

The following lemma is an immediate corollary to the previous result.
Lemma 5.2. Let G be critically cyclic of order n ≥ 10. Then no vertex v ∈ V is

adjacent to more than two leaves of G.
Proof. Let L be a set of leaves of G such that G(uv) = 1 for all u ∈ L. Then the

vertices of L are isolated in Gσ for the selector σ = {v}. By Lemma 5.1, L has at
most two elements, since the graph K3,3 ∪ 3 ·K1 is of order 9.

In the proof of the following result we require knowledge of the small critically
cyclic graphs. We shall say that a graph G avoids (c.i) if G does not contain the
graph in Figure 3.1(c.i) for c = 5, 6, 7 and Figure 3.2(c.i) for c = 8, and Figure 3.3(c.i)
for c = 9 as an induced subgraph.

Recall that everry proper subgraph of a critically cyclic graph can be switched
to a graph with no cycles. In particular, we have the following corollary that is used
often in the rest of this paper.

Lemma 5.3. Let G be a critically cyclic graph of order n ≥ 10. Then G avoids
the graphs in Figures 3.1, 3.2 and 3.3.

The next lemma is our first general tool concerning isolated vertices.
Lemma 5.4. Let G be a critically cyclic graph of order n ≥ 10. Then G has at

most one isolated vertex.
Proof. By Lemma 5.1, G has at most two isolated vertices. Suppose that G has

exactly two isolated vertices, say I = {x1, x2}. By assumption, G is critically cyclic,
and therefore there exists a selector τ such that (G− x1)τ is acyclic. We can assume
without restriction that τ(x2) = 0.

The set τ is independent in G, as well as in (G − x1)τ , for otherwise, there is a
triangle containing x2 in (G− x1)τ . In fact, τ contains at most one vertex from each
connected component of (G − I)τ , since x2 is adjacent to each x ∈ τ in the switch
(G − x1)τ . Notice that these connected components are trees, because (G − x1)τ is
acyclic.

We extend the domain of τ by setting τ(x1) = 0. Let τ = {z1, . . . , zr}. In
Figure 5.1 we have depicted the graph

Gτ = (H + (T1 ∪ T2 ∪ . . . ∪ Tr)) ∪ F,

where
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• H = K2,r has the bipartition ({x1, x2}, {z1, . . . , zr}),
• the induced subgraphs Ti are disjoint trees with H ∩ Ti = {zi}, and
• F is an acyclic induced subgraph or it is empty.

z1
...

F

zr· · ·z2

T2

H

Tr

T1

x2x1

Fig. 5.1. The graph Gτ = (H + (T1 ∪ T2 ∪ . . . ∪ Tr)) ∪ F

In the following we let C(i,j) denote the cycle (x1, zi, x2, zj) for different i and j.
Since Gτ is not acyclic, we must have r ≥ 2 and thus C(1,2) always exists in Gτ .
Claim 1. We have |F | ≤ 2. Hence F is either empty, discrete, or a path P2.
To see this, suppose that F 6= ∅. To avoid (7-1) and (7-2’) in C(1,2) ∪ F , F must be
either discrete or a path P2. If F is discrete, then |F | ≤ 2 by Lemma 5.1.
Claim 2. At most two of the trees T1, . . . , Tr have more than one vertex.
Indeed, x1, x2 together with different zi, zj , zk ∈ τ induce a K2,3 in Gτ . The graph
(8-6) then implies the present claim.
Claim 3. Each nonsingleton tree Ti has the form

Ti = Ski,si,0 or Ti = P4(si, 0),

where ki ≥ 0, si ≤ 2 and zi is the centre of Ski,si,0 or it is the centre of P4(si, 0)
adjacent to the si leaves.
For this, let Ti be a nonsingleton tree. By considering the subgraph of Gτ induced by
C(i,j) and Ti (for any j 6= i) we deduce that

• to avoid (7-1) the longest path of Ti starting from zi has length at most 3,
• to avoid (7-1) each v 6= zi in Ti with v /∈ NTi

(zi) satisfies dTi
(v) ≤ 2,

• to avoid (7-2) each v ∈ NTi
(zi) satisfies dTi

(v) ≤ 2,
• to avoid (7-2’) Ti cannot have edge disjoint paths P4 and P3 with the common

end zi.
Hence Ti has the required form. By Lemma 5.2, we have si ≤ 2.

We shall divide our considerations according to the number N of nonsingleton
trees Ti.

Case N = 0. In this case Gτ equals K2,r ∪ F where |F | ≤ 2. All these graphs have
an acyclic switch. Indeed, in K2,r and K2,r ∪ K1 we can take the selector {x1, x2},
in K2,r ∪ 2 ·K1 and K2,r ∪ P2 we can take {x1, x2, v} where v ∈ F . These contradict
the assumption that G has no acyclic switches.

Case N = 1. Suppose Gτ has a unique nonsingleton tree, say T1, among the trees
T1, . . . , Tr.

(1) Suppose first that T1 = P4(s1, 0). We have r = 2, for if r ≥ 3, then C(2,3)

together with T1−z1 does not avoid (7-1). Also, necessarily F = ∅ to avoid the graph
(7-2’) in the subgraph induced by C(1,2) and F together with the edge at the leaf of
T1. However, now n ≤ 9 contradicts our assumption on the order n.
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(2) Suppose then that T1 = Sk1,s1,0 with k1 > 0.
(2.1) Assume that r ≥ 3. Now F = ∅, s1 = 0 and k1 = 1, for otherwise the graph

(7-2’) is in the subgraph induced by C(2,3), F and T1 − z1. Hence T1 is a path P3.
However, now Gτ has an acyclic switch for all r ≥ 3 (select all zi’s and the other end
of the path T1); a contradiction.

(2.2) Let r = 2. To avoid (7-2’), F cannot be P2, and hence it is discrete or
empty. However, now Gτ has an acyclic switch (select z1); a contradiction.

(3) Finally, suppose that T1 = S0,s1,0. Since 1 ≤ s1 ≤ 2 and |F | ≤ 2, we must
have r ≥ 4. By considering the graph induced by C(2,3), F and T1 − z1, we notice
that to avoid (7-2’) the subgraph F cannot be P2. To avoid (8-5) (K{x1,x2},{z1,z2,z3}
with a leaf of T1 and F ) necessarily |F | ≤ 1. If |F | = 1, then s1 = 1 to avoid the
graph (8-5’). Hence T1 is a path P2. In both of these cases (s1 = 1 and |F | = 1, and
s1 = 2 and F = ∅), we have an acyclic switch (select x1, x2 and a leaf adjacent to z1);
a contradiction.

Case N = 2. Suppose that Gτ has exactly two nonsingleton trees, say T1 and T2,
among the trees T1, . . . , Tr. Assume also without loss of generality that |T1| ≥ |T2|.

To avoid (8-4) and (8-8) in the subgraph induced by C(1,2) and F , necessarily
|F | ≤ 1. Since {x1, x2, z1, . . . , z4} forms a K2,4, we must have r ≤ 3 in order to avoid
(8-8’). Moreover, if r = 3, then F = ∅ to avoid (8-7). In any case we have r+ |F | ≤ 3.
Since n ≥ 10, it follows that |T1|+ |T2| ≥ (10− 2)− (r − 2)− |F | ≥ 7.

Let t be the length of the longest path in T1 starting from z1. By Claim 3 we
know that t ≤ 3. First suppose that t = 1 and hence that T1 = S0,s1,0. We know
s1 ≤ 2 and hence |T1| ≤ 3 and we have |T2| ≥ 4, which contradicts the assumption
|T1| ≥ |T2|. Therefore t ≥ 2. To avoid (8-1) in the subgraph induced by C(1,2), T1

and T2, necessarily dT2(z2) = 1. Moreover, to avoid (8-2), T2 must be a path P2.
Consequently |T1| ≥ 5. If T1 = Sk1,s1,0, then k1 = 1. Indeed, if k1 ≥ 2, we remove
the middle vertex from one of the paths P3 in T1, to obtain the graph (8-3) in Gτ .
Now in all cases |T1| = t + 1 + s1 ≥ 5. However, the case where t ≥ 2 and s1 = 2 is
excluded by (9-1), and the cases t = 3 with 1 ≤ s1 ≤ 2 are excluded by (8-4) (remove
the neighbour of z1 on the path longest path of T1 starting from z1).

Analogously to Lemma 5.2, we obtain
Lemma 5.5. Let G be a critically cyclic graph of order n ≥ 10. Then no vertex

v ∈ V is adjacent to more than one leaf of G.
We consider next isolated vertices in the subgraphs G − x for critically cyclic

graphs G.
Lemma 5.6. Let G be a critically cyclic graph of order n ≥ 10 and let x ∈ V .
(i) G − x can have at most two isolated vertices. Moreover, if G − x has two

isolated vertices, then x is adjacent to exactly one of these in G.
(ii) If a vertex v 6= x is adjacent to m leaves of G− x, then m ≤ 2. Moreover, if

m = 2, then x is adjacent to exactly one of these.
Proof. For (i) we only need to observe that if G − x has three isolated vertices,

then in either Gx or G at least two of these are isolated and we can apply Lemma 5.4.
The same holds if the number of isolated vertices is two, but x is not adjacent to
exactly one of them in G.

For (ii) assume that there is a vertex v 6= x adjacent to more than two leaves.
The vertex x is nonadjacent to at least two of these in either G or Gx and the result
then follows from Lemma 5.5.

Let G be a graph and x and y be vertices of G such that G−x is acyclic. We say
that y is compatible with x if G− y and Gx − y are not acyclic.
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Note that if y is compatible with x, then all cycles in G (and Gx) go through x,
and some but not all of them go through y.

Lemma 5.7. Let G be critically cyclic graph such that G− x is acyclic.
(i) If y is compatible with x, then G− {x, y} is a special acyclic graph.
(ii) If G is of order n ≥ 8 such that G /∈ [Cn], then there exists a vertex y ∈ V

that is compatible with x.
Proof. Since G is critically cyclic, G − y has an acyclic switch (G − y)τ . Let

S = G− {x, y}. Because S and Sτ are both acyclic graphs it follows that either S is
special or τ is constant on S.

Suppose τ is constant on S, and thus either τ = S ∪ {x} or τ = S. In the former
case (G− y)τ = G− y is a contradiction, because (G− y)τ is acyclic and G− y is not.
In the second case we have (G − y)τ = (Gx − y)S∪{x} = Gx − y. Again we have a
contradiction, since Gx − y is supposed to have a cycle. This proves that S is special.

For (ii), suppose G /∈ [Cn]. Since G has no acyclic switches, there are cycles in G
and Gx, and they all pass through x, because G− x is acyclic. Moreover, since Ck is
critically cyclic for k ≥ 7, the induced cycles of G and Gx have length at most 6.

If G or Gx has an induced cycle C5 or C6, let y be a vertex that is not on such a
cycle. It is clear that G− y and Gx − y both contain a cycle, and therefore each such
vertex y is compatible with x.

If G and Gx have both an induced cycle of length at most 4, then these two cycles
have altogether at most 7 vertices (since they share the vertex x), Since n ≥ 8, there
exists a vertex y that is not on these cycles. For such a vertex y, both G − y and
Gx − y are not acyclic. This proves the claim.

The next lemma is our second main tool for isolated vertices.
Lemma 5.8. Let G be a critically cyclic graph of order n ≥ 10 such that G− x is

acyclic. Then G− x has no isolated vertices.
Proof. Assume to the contrary of the claim that there is an isolated vertex u in

G − x. Now u is either a leaf adjacent to x in G (and hence isolated in Gx) or it is
isolated in G (and hence a leaf adjacent to x in Gx). Hence no cycle goes through u
in G or Gx. It follows that G − u and Gx − u are not acyclic and by Lemma 5.7(i),
S = G− {x, u} is special.

Let τ be a selector for which (G − u)τ is acyclic. Since G − u and Gx − u both
have a cycle, τ is not constant on S.

If S = SA(k,m) is of the type (As) for A ∈ {2, . . . , 8}, then by Lemma 5.6(ii),
the centres of S are adjacent to at most two leaves of G − x and hence k,m ≤ 2. In
this case, S has at least eight vertices (since n ≥ 10) and this rules out the types (2s),
(3s), (4s) and (6s). Thus S is of the type (1s) or it is one of the types (5s), (7s), (8s)
with k = 2 = m.

In the cases (5s), (7s) and (8s), by Lemma 4.3, S has a singular acyclic switch with
respect to its centres Z(S) = {z1, z2} and therefore τ = {z1, z2} or τ = {x, z1, z2}.
However, by Lemma 5.6(ii), x is adjacent to two leafs of S, one leaf being adjacent to
z1 and one to z2. The same holds for Sτ .

This means that (G− u)τ is not acyclic, which is a contradiction.
Consider then the case S = Sk,m,l and adopt the notations (S1) – (S3) for it.

Without restriction we can assume that τ(z) = 1 for the centre z of S, since (G−u)τ =
(G− u)τ . Extend τ to the whole domain by setting τ(u) = 0.

We have n = (2k+1)+m+l+2 ≥ 10, and thus k ≥ 1
2 (7−(m+l)). By Lemma 5.6,

m ≤ 2 and l ≤ 1. (Recall that u is isolated in G − x.) In particular, k ≥ 2, and if
k = 2, then m = 2, l = 1 and n = 10. (In Figure 5.2 we have depicted the graph



CRITICALLY CYCLIC GRAPHS 13

Sk,m,l obtained so far. In solid lines we indicate what must be there, in dotted lines
what may be there.)

u1
x1

v1
yk

x2

y2

v2

x u

xk

z
y1

Fig. 5.2. The case of the special graph Sk,m,l

In these cases, by Lemma 4.4, the special acyclic graph S has a singular acyclic
switch Sρ for ρ = {z}. Now (G − u)τ is acyclic and hence so is Sτ . Since τ is not
constant on S, the uniqueness of ρ implies that ρ(v) = τ(v) for all v /∈ {x, u}. Also,
the only vertices in G that can be adjacent to u in Gτ are x and z and because Gτ

is not acyclic, both must be adjacent to u. Moreover, x is adjacent in Gτ to exactly
one vertex v ∈ H ∪ I, since Gτ has a cycle but Gτ − u (= (G− u)τ ) is acyclic.

Suppose that v is a leaf of the part H of S, say v = x1. If l ≥ 1, then
{x, x1, z, u, y1, u1, y2} induces a graph (7-4) in Gτ . Similarly, if m ≥ 1, then
{x, x1, z, u, y1, w, v1} induces a graph (7-4) in Gτ where w = x2 if Gτ (xv1) = 1 and
w = y2 otherwise. Therefore we have m = 0 = l. Now k ≥ 4, and Gτ contains an
induced graph (7-4) obtained by removing x2.

If v is a middle vertex in H, say v = y1, then {x, y1, x1, z, u} induces a cycle C5

in Gτ , and hence Gτ has an induced graph (6-1’) obtained by removing x2.
If v ∈ I is isolated in S, say v = u1, then to avoid (8-3) as being induced by the

set {x, u1, z, u, x1, y1, y2, vi} (for any vi ∈ M), we must have Gτ (xvi) = 0 (provided
that m > 0). However, now (Gτ )z is acyclic; a contradiction.

Finally, if v = z, then again (Gτ )z is acyclic. This contradiction completes the
proof of the lemma.

6. The proof of Theorem 3.5. In the following we shall consider every type of
special acyclic graphs in turn and show that each case leads to a contradiction, thereby
proving our main theorem that besides the graphs in [Cn] there are no critically cyclic
graphs of order n ≥ 10.

Throughout this section we let G be a critically cyclic graph of order n = |V | ≥ 10
such that G /∈ [Cn]. Also, let x ∈ V be a fixed vertex.

Since G is critically cyclic, there exists an acyclic switch (G−x)ρ of the subgraph
G−x. Since the switches of critically cyclic graphs are critically cyclic, we can assume
that ρ is constant on V , and therefore that G− x is acyclic already.

By Lemma 5.7(ii), there exists a vertex y that is compatible with x, that is, G−y
and Gx− y are not acyclic. Since G is critically cyclic, there is a nonconstant selector
σ such that (G− y)σ is acyclic. By Lemma 5.7(i), S = G− {x, y} is a special acyclic
graph, and it is of one of the types (1s) – (8s), since its order is at least 8.

In the following proofs a number of simple properties are often used, and we
note them here: first of all, the vertex y is adjacent to at most one vertex of each
component of S. If not, G− x would not be acyclic. Also, there must be a cycle in G
that does not contain y, because G− y is not acyclic. This also holds for Gx − y.
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We shall now formulate a few conditions that hold for the special acyclic graphs
(1s) – (8s). For any graph G′ and a vertex v, let LG′(v) be the set of leaves adjacent
to v in G′, and let IG′ denote the set of isolated vertices in G′.

Lemma 6.1. In the above notations, we have
(i) IS ⊆ NG(y).
(ii) for all v ∈ S, |LS(v)| ≤ 3. Moreover, |LS(v)| = 3 implies |NG(x)∩LS(v)| ≥ 1

and |NG(y) ∩ LS(v)| = 1.
Proof. By Lemma 5.8, G− x does not have isolated vertices, and hence Claim (i)

follows.
For (ii), we have |NG(y)∩LS(v)| ≤ 1, since G−x is acyclic. If |LS(v)| ≥ 3, then,

by Lemma 5.6(ii), |LS(v) − NG(y)| ≤ 2, and x is adjacent to at most one vertex of
LS(v)−NG(y). Hence, in this case, we must have |LS(v)| = 3 and in this case x and
y are each adjacent to at least one vertex in LS(v). Because G − x is acyclic, y is
adjacent to exactly one vertex in LS(v).

Note how the previous Lemma restricts the values of k and m for the types (2s)-
(8s) and m for (1s). On the other hand n ≥ 10 gives a lower bound on these values
for most types.

6.1. The case (1s). We shall now consider first the most difficult case, S =
Sk,m,l. We adopt the notations of (S1) – (S3) for it. Without restriction we may
assume that σ(z) = 1 for the centre z of S. Also, we can assume that σ(x) = 0, by
the symmetry in the definition of compatibility, i.e., by the fact that both G− y and
Gx − y are not acyclic. We extend σ to the whole domain by setting σ(y) = 0. Note
that (G− y)σ = Gσ − y.

Lemma 6.2. We have
(i) k = 2,
(ii) 1 ≤ l ≤ 2, 1 ≤ m ≤ 2 and m + l ≥ 3,
(iii) M ⊆ NG(x),
(iv) if l = 2, then |NG(x) ∩ I| = 1,
(v) if m = 2, then |NG(y) ∩M | = 1,
(vi) |NG(x) ∩ (H ∪ I)− {z}| ≤ 1.
Proof. By Lemma 5.4, G has at most one isolated vertex, therefore |NG(x)∩ I| ≤

1 for otherwise, switching by {x, y} we obtain two isolated vertices, because y is
connected to all vertices in I by Lemma 6.1. When Lemma 5.6(ii) is applied to the
vertex y, we have that l ≤ 2 and also Claim (iv).

If k = 0, then m + l ≥ 7, since n ≥ 10. This contradicts the bound m ≤ 3 of
Lemma 6.1(ii) and the above bound l ≤ 2. Hence k ≥ 1.

If k = 1, then m + l ≥ 5. In this case, l = 2 and m ≥ 3. If k = 2, then m + l = 3,
using reasoning similar to that for k = 1. By Lemma 4.4 in both cases Sz is the
singular acyclic switch of S and thus σ = {z}. Now M ⊆ NG(x), for otherwise, there
is an isolated vertex of M in the acyclic graph Gσ−y, contradicting Lemma 5.8 (recall
that σ(x) = 0 = σ(y)). Therefore Claim (iii) is true. Moreover, when Lemma 5.6(ii)
is applied to Gσ, it follows that m ≤ 2, and as a consequence k ≥ 2, because as it was
shown above if k = 1, then we must have m = 3. The Claim (v) follows now from
Lemma 5.6(ii).

Claim (vi) follows from the fact that the subgraph of Gσ induced by H ∪ I is
connected and Gσ − y is acyclic.

Suppose then that k ≥ 3. By Claim (vi) it follows that there are at least two
pairs xiyi such that G(xxi) = 0 = G(xyi), say for i = 1, 2. For i = 1, 2 let τi

be such that (G − xi)τi is acyclic, where we may choose τi(z) = 1. The special
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acyclic graph S − xi, which is Sk−1,m+1,l, has a singular acyclic switch (S − xi)z:
n = 2k + m + l + |{x, y, z}| ≥ 10 and k ≥ 3 implies m + l ≥ 1, so that in the case of
Sk−1,m+1,l we may apply Lemma 4.4).

Clearly τi = σ when we set τi(xi) = 0. By Lemma 5.8, the vertex yi is not
isolated in Gτi − xi, and therefore Gτi(yyi) = 1 = G(yyi) for i=1,2 (since G(xyi) =
0 = Gτi(xyi)) and we have a cycle in G− x. This contradiction proves Claim (i) and
Claim (ii).

y

v2

z
x

y1
x1

x2

y2

v1

u1

u2

Fig. 6.1. The case of the special graph Sk,m,l after Lemma 6.2

In Figure 6.1 we have depicted part of the situation for the special graph Sk,m,l:
the demands IS ⊆ NG(y), k = 2, 1 ≤ m ≥ 2, 1 ≤ l ≤ 2, M ⊆ NG(x) are all implied
by the drawing (again solid means what must be there, dotted means what might be
there). Notice that in the case at hand, Lemma 6.2 implies that n ≤ 11.

We shall now finish the case S = Sk,m,l. In the following we consider the adja-
cencies of x and y to vertices in S and each other.

(1) Assume first that x is adjacent to a vertex u in I. By the cases (ii) and (iv) of
Lemma 6.2, u is the only neighbour of x in I. Then also G(xz) = 1, since otherwise,
(x, u, z) is a triangle in Gσ−y, contradicting the fact that Gσ−y is acyclic. Moreover,
G(xxi) = 0 = G(xyi) for i = 1, 2, because Gσ − y is acyclic. We have G(xy) = 0, for
otherwise, (x, y, u) is a triangle in G, and to avoid (5-1) with the edges G(xiyi) = 1,
we would have to have that y is adjacent to two vertices in H − {z} giving a cycle to
G− x. Now we know that NG(x) = M ∪ {z, u}, by Lemma 6.2(iii).

For any vertex v ∈ M , (x, z, v) is a triangle in G. Consider the subgraph of G
induced by {x, u, y, v, z, x1, y1}. To avoid (7-5’) we must have that either G(yz) = 1
or G(yv) = 1. Since Gσ − y is acyclic, y is adjacent in G to no other vertices of
H ∪M ∪ {x}.

(1.1) Suppose G(yz) = 1. By Lemma 6.2(v), we have m = 1 and so M = {v}.
Then Lemma 6.2(ii) implies that l = 2. But now {x, u1, y, z, y1, x2, u2} induces the
graph (7-4) in G; a contradiction.

(1.2) Suppose G(yv) = 1. Then {u1, y, x, v1, z, y1, x2} induces a (7-3); also a
contradiction.

(2) Therefore G(xu) = 0 for all u ∈ I and thus by Lemma 6.2(iv), l = 1, I = {u1}.
We have from the case (ii) of Lemma 6.2 that m = 2 (and hence M = {v1, v2}) and
from the case (v) that y is adjacent to exactly one vertex of M , say G(yv1) = 1. In
conclusion so far we know that G(xv1) = 1 = G(xv2), G(yv1) = 1, G(yv2) = 0, and
G(yu1) = 1, G(xu1) = 0. Also, G(yw) = 0 for all w ∈ S − {u1, v1}, since G − x is
acyclic.

Since Gσ − y is acyclic, we must have G(xxi) = 0 = G(xyi) for i = 1 or 2, say
i = 1. There are two cases to be considered here.

(2.1) Suppose G(xz) = 0. Now G(xy) = 1, since otherwise, {x, v1, v2, z, y, x1, y1, u1}
induces a graph (8-9) in G.
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(2.2) Suppose G(xz) = 1. To avoid {x, z, v1, y1, x1, y, u1} inducing a (7-5’) we
must have G(xy) = 1.

In both of these cases, we have G(xy) = 1. But now {x, y, v1, x1, y1} induces a
graph (5-1’). This contradiction proves that the special graph S = G − {x, y} is not
of the type (1s).

6.2. The other cases. Let S = SA(k,m) for A ∈ {2, . . . , 8} where we assume
that k ≥ m. Let z1 and z2 be the two centres of S, and L = {v1, v2, . . . , vk} and
M = {u1, u2, . . . , um} be the sets of leaves of S adjacent to z1 and z2, respectively.

We may assume that σ(z1) = 1 and, as in the previous case, we can assume that
σ(x) = 0. Again we extend σ to the whole domain by setting σ(y) = 0.

Lemma 6.3. We have k ≤ 3. Moreover,
(i) if S is of the types (3s) – (8s), then m ≤ 2.
(ii) if k = 3 and if Sσ is the singular acyclic switch of S, then x and y are each

adjacent to exactly one, but different vertex in L.
Proof. The fact k ≤ 3 is already stated in Lemma 6.1(ii).
For (i), assume that m ≥ 3, and thus that both z1 and z2 have three leaves

adjacent to them in S. By Lemma 6.1(ii), y is adjacent to a leaf in both L and M .
For the types (4s) – (8s) (where S is connected) G − x has a cycle; a contradiction.
For the type (3s) we apply the same argument but taking y in Gσ) instead of x: we
first observe that SZ(S) has a singular acyclic switch by Lemma 4.3, and therefore
σ = Z(S). Now x is adjacent in Gσ − y to a leaf in both L and M . It follows then
that Gσ − y has a cycle; a contradiction.

For the claim (ii), we first observe that x is adjacent to exactly one vertex in L,
since Gσ−y is acyclic. The claim then follows from Lemma 5.6(ii) and Lemma 6.1(ii).

Note that by Lemma 6.1(ii), Lemma 6.2(i) and (ii), Lemma 6.3(i) it already
follows that there are no critically cyclic graphs of order at least 12 (unless they are
in [Cn]).

6.3. The cases (2s)-(4s). Let S be of the type (2s), (3s) or (4s). Since n ≥ 10,
Lemma 6.1(ii) implies that k = 3 and 2 ≤ m ≤ 3. By Lemma 4.3, S has a singular
acyclic switch which means that σ = {z1, z2}. (Recall that σ(z1) = 1 and σ(x) = 0 =
σ(y).)

By Lemma 6.3(ii), x is adjacent to one vertex in L, say G(xv1) = 1, and y is
adjacent to another vertex of L, say G(yv3) = 1. Furthermore, G(xv2) = 0 = G(yv2)
for the third vertex v2 of L. Since G(z2v1) = 0 and G(xv1) = 1, we must have that
G(xz2) = 1, for otherwise, there is a cycle in Gσ − y. We now run through the cases
one by one.

Case (2s). Let S = S2(k,m). By Lemma 6.3 and the fact that n ≥ 10, we know that
k = 3 = m. Also by Lemma 6.3(ii), x and y are both adjacent to one but different
vertex in M , say G(xu1) = 1 and G(yu3) = 1. By the uniqueness of σ, x must
be adjacent to z1 to ensure that Gσ − y is acyclic ({z1, x, u1} would be a triangle).
Because y can only be connected to one vertex in every component of S, the only
remaining unknown is G(xy). If G(xy) = 0, then {x, v1, z1, u3, y} induced the graph
(5-1), and if G(xy) = 1, then {u1, x, y, v3, z1, v2, u2} induces the graph (7-4). These
contradictions show that S is not of the type (2s).

Case (3s). Let S = S3(k, m). In this case Sσ is of the type (4s).
By the above, G(xz2) = 1 and G(xv2) = 0 = G(xv3). To avoid a cycle in Gσ − y,

necessarily G(xz1) = 1. G(xw) = 0 (for the isolated vertex w of G) and G(xu) = 0
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for all u ∈ M . The reason is that x is adjacent to v1 in Sσ, and the above choices
prevent x from being adjacent to any other vertex of the connected graph Sσ.

By Lemma 5.6(ii), m = 2 and y is adjacent to one vertex in M , say G(yu2) = 1.
By Lemma 6.1(i), y is connected to w. The only unknown is the value G(xy). If
G(xy) = 0, then {v1, x, z2, u1, y, v3, z1} induces the graph (7-5’), and if G(xy) = 1,
then {v1, x, y, u2, z2, v2, u1} induces the graph (7-4). Hence S is not of the type (3s).

Case (4s). Let S = S4(k,m). Because S is connected, y is not adjacent to any
other vertex of S (except v3). Hence, m = 2 and x is adjacent to one vertex of M ,
say G(xu1) = 1 (see Lemma 5.6(ii)). Since Gσ − y is acyclic, x must be adjacent to
z1. If G(xy) = 0, then {x, u1, z2, v3, y} induces the graph (5-1). If G(xy) = 1, then
{v1, z1, v2, v3, x, u1, y} induces the graph (7-4) in Gx. Hence S is not of the type (4s).

6.4. The cases (5s)-(8s). We shall first consider the type (6s).
Case (6s). Let S = S6(k, m). In this case, n ≥ 10 implies that k, m ≥ 3. But this
contradicts Lemma 6.3(i). Hence S is not of the type (6s).

For the remaining cases (5s), (7s) and (8s), let w1 be the neighbour of z1 of degree
at least 2. Let w2 be the vertex that is not adjacent to z1 and z2 in the types (5s)
and (7s), and which is adjacent to z2 in (8s) (see Figure 4.1(5s), (7s) and (8s)).

By Lemma 6.1(ii) and n ≥ 10, 2 ≤ k ≤ 3, m ≥ 1, and k + m ≥ 4. In all these
cases S has a singular acyclic switch by Lemma 4.3 and therefore σ = {z1, z2}.

We can assume that x is adjacent to a vertex in L, say G(xv1) = 1. This follows
from Lemma 6.3(ii) if k = 3. On the other hand, if k = 2, then necessarily m = 2,
since k + m ≥ 4, and in this case NG(y) ∩ L = ∅ or NG(y) ∩M = ∅ in order to avoid
a cycle in G− x. By Lemma 5.6(ii), NG(x) ∩M 6= ∅ or NG(x) ∩ L 6= ∅, respectively.
In the case under consideration, k = m (= 2), so the assumption that G(xv1) = 1 is
validated.

Claim 1: The following adjacencies for x exist: G(xz1) = 1 = G(xz2), and G(xu) = 0
for all u /∈ {v1, z1, z2, w2, y}. Moreover, G(xw2) = 0 if dS(w2) 6= 0 (that is, excepting
the case (5s)).

Recall that σ = {z1, z2} (and σ(x) = 0). In the cases under consideration the centres
z1 and z2 belong to the same connected component as v1 in both of the acyclic
graphs S and Sσ. Since Gσ − y is acyclic, x can be adjacent in Gσ − y only to v1.
Hence G(xz1) = 1 = G(xz2). Also, if dS(w2) > 0, then w2 is in the same connected
component, from which it follows that G(xw2) = 0 as required.

Claim 2: The following adjacencies for y exist: G(yv) = 1 holds for exactly one
vertex v ∈ S − {w2}, and either
(i) v ∈ L, say G(yv3) = 1, in which case k = 3 and m = 1,
(ii) v ∈ M , say G(yu2) = 1, in which case k = 2, m = 2.
Moreover, G(yw2) = 1 holds only in the case (5s).

For the first statement we observe that S is connected in the cases (7s) and (8s) and
S − w2 is connected in the case (5s). Hence y is adjacent to at most one vertex in
S − w2, since G− x is acyclic. By Lemma 5.8, G− x does not have isolated vertices
and therefore G(yv) = 1 for a unique v ∈ S − {w2} as required.

Now if y is not adjacent to a vertex of M , then |M | = 1 by Lemma 5.6(ii) and
the fact that G(xu) = 0 for all u ∈ M . It follows that k = 3, and, consequently, y
is adjacent to a vertex of L. On the other hand, if G(yu) = 1 for a u ∈ M , then
G(yv) = 0 for all v ∈ L to avoid a cycle in G−x, and in this case, k = 2 by Lemma 5.6.
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That G(yw2) = 1 in the case (5s) follows from Lemma 6.1(i). In the other two cases,
G(yw2) = 1 would result in a cycle in G− x.

These two claims together determine G with the exception of the value for G(xy).
We are ready to exclude the remaining cases.
Case (5s). Let S = S5(k,m). Now x is not adjacent to w1 and neither is y. Hence
in Gσ − y the vertex w1 is isolated, which contradicts Lemma 5.8.

Case (7s). Let S = S7(k,m). In both cases (i) and (ii) of Claim 2, G(xy) = 1 to avoid
(7-4) as being the subgraph induced by the vertices {x, z1, w1, z2, v2, w2, y}. Now G
contains a switch of the graph (7-4) if k = 3 and m = 1 (this is G{z1}−{w1, w2, u1}),
and G contains the graph (7-5’) if k = 2 = m (this is G− {u1, v2, z2}).

Case (8s). Let S = S8(k, m). In both cases (of Claim 2), G(xy) = 1 to avoid (6-1) as
being the subgraph induced by the vertices {x, z1, w1, w2, z2, y}. Now {x, z1, w1, w2, z2, y, u1}
induces the graph (7-3’).

This proves Theorem 3.5.

7. Concluding remarks. Finding the critically cyclic graphs was done as fol-
lows: a program was written in C that listed for a number n of vertices, a representative
of each switching class that did not contain any acyclic switches. In a later phase,
when we were looking for critically cyclic graphs on n vertices, we only had to make
sure that all critically cyclic graphs of lower order could not anymore occur in these
graphs. The program was run in this way for up to 12 vertices. We used here the files
from [10] which list generators for the switching classes up to isomorphism and up to
complementation for up to 10 vertices.

A computer program in the functional language Scheme verified that the critically
cyclic graphs found were in fact critically cyclic. Also, the authors verified this by
hand.

In our proofs, not all of the critically cyclic graphs were used. The graphs that
were not used are (8-10)-(8-15) and (9-3)-(9-5). Lemma 5.7 excludes the cycles C8

and C9. For the other graphs, except (8-12), the reason is that if they are induced
subgraphs of any graph of order at least 10, then this graph also contains one of the
cyclic graphs from Figure 3.1, 3.2 and 3.3 or it contains (8-12). The graph (8-12) does
not occur in our proofs, because it is overruled by Lemmas 5.7 and 5.8, that is, if G
is a forbidden graph of order 10 that does not have 2 isolated vertices and such that
G− x is acyclic and G−{x, y} is special, then G contains an induced critically cyclic
graph that was used in the proofs.

As an aside we note that our program found that the graphs (8-9) and (8-12) have
a similar property: adding two vertices to either of these graphs in any way, always
results in a graph that contains a switch of one of the other critically cyclic graphs.
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