CATALAN NUMBERS: good and bad paths

Consider lattice paths $(0,0) \rightarrow (n,n)$ using moves

up u (or \uparrow) and right r (or \rightarrow).

A good path never visits below the diagonal (0,0)-(n,n).

BAD PATH ENTERING FORBIDDEN (i, i-1)

We first count the bad paths.

Assume w is a bad path. Let i be the first place where w enters below the diagonal: it will hit (i, i-1).

REFLECT THE PORTION (0,0)-(i,i-1)

w.r.t. the lower diagonal (0,-1)-(n+1,n)

Every path $(1,-1) \rightarrow (n,n)$ is a reflection of a unique bad path (for some instance i):

So a bijective correspondence.

NOW COUNT

#bad paths = #all paths
$$(1,-1) \rightarrow (n,n)$$

= #all paths $(0,0) \rightarrow (n-1,n+1)$ (lift the bad paths \nwarrow)
=
$${2n \choose n-1} = {2n \choose n+1}$$

Good paths: All paths $(0,0) \rightarrow (n,n)$ - bad paths

$$\binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1} \binom{2n}{n}$$

Catalan numbers are solutions to dozens of combinatorial problems; Stanley, "Combinatorial Enumeration, Vol. II"

TRIANGULATIONS OF A CONVEX (n+2)-GON

Divide the polygon with nonintersecting diagonals. (There are (n-1) such diagonals.)

PARENTHESIZED STRINGS OF (n + 1) LETTERS

For n = 3, these are

or, without the placeholder *x*:

For n = 3, these are

These are known as the Dyck words in formal language theory.

PAIRS OF LATTICE PATHS w_1, w_2

Using n+1 rules u and r, starting from (0,0), ending at the same point, and intersecting only at the endpoints.

SEQUENCES $(a_1, a_2, \dots, a_{2n})$ **OF INTEGERS**

$$a_i \in \{-1, +1\}$$
 where $\sum_{i=1}^k a_i \ge 0$ for all k and $\sum_{i=1}^n a_i = 0$.
$$+1+1+1-1-1-1 \\ +1+1-1+1-1$$

+1-1+1-1+1-1

Easily seen to be in bijective correspondence with the Dyck words.

+1+1-1-1+1-1

+1-1+1+1-1-1

AND OTHER ...

• Sequences $1 \le a_1 \le a_2 \le \dots \le a_n$ of n integers with $a_i \le i$. (1,1,1)(1,1,2)(1,1,3)(1,2,2)(1,2,3)

• Permutations in S_n that can be sorted to the identity by one stack.

• The number of ways 2n people sitting around a table can shake hands without crossing arms.

SCHRÖDER NUMBERS

The Schröder numbers¹ are defined by

$$s_{n+1} = \frac{1}{2} \sum_{i=0}^{n} {2n-i \choose i} c_{n-i} \text{ with } s_1 = 1,$$
 (1)

where c_n is the *n*th Catalan number.

- This number occurs in many refined enumeration problems.
- s_n equals the number of ways to put parentheses into a word of n letters without unnecessary parenthesis. For instance, there are 11 such words when n = 4:

¹Schröder (1841 - 1902)

• The Schröder numbers occur in plane trees, polygon dissections, Łukasiewicz words, ... The first ten values are:

 $s_7 = 903$, $s_8 = 4279$, $s_9 = 20793$, $s_{10} = 103049$.

tions, Łukasiewicz words, ... The first ten values are:

$$s_1 = 1$$
, $s_2 = 1$, $s_3 = 3$, $s_4 = 11$, $s_5 = 45$, $s_6 = 197$,

I am sure you noticed that the value $s_{10} = 103\,049$ was mentioned by Plutarch (50 - 120). In the *Table-Talk*:

Chrysippus says that the number of compound propositions that can be made from only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this by showing that on the affirmative side there are 103 049 compound statements, and on the negative side 310 952.)

• How the $\eta \epsilon \lambda \lambda$ did Hipparchus count s_{10} ? Or did he? Counting the different ways directly is rather impossible, and using (1) is unlikely. It is known that

$$(n+2)s_{n+2} = 3(2n+1)s_{n+1} - (n-1)s_n$$

but this requires quite a long proof. The first combinatorial proof, due to Foata and Zeilberger, appeared as late as 1997. Maybe Plutarch used the 'easier' reduction

$$s_n = \sum_{i_1+i_2+\cdots+i_{\nu}=n} s_{i_1} s_{i_2} \cdots s_{i_k}.$$

- What does "negative side" of 310 952 mean?
- For further information: R. Stanley, Hipparchus, Plutarch, Schröder, and Hough, *Amer. Math. Monthly* **104** (1997), 344 350.