PARTIALLY ORDERED SETS - POSETS

A poset is a set *P* with a relation $R \subseteq P \times P$, denoted by

$$R = \leq_P$$
 or just $R = \leq$

such that

- $a \leq_P a$ reflexive
- $a \leq_p b$, $b \leq_p a \implies a = b$ antisymmetric
- $a \leq_P b$, $b \leq_P c \implies a \leq_P c$ transitive

We write $x <_p y$ if $x \leq_p y$ and $x \neq y$.

HASSE DIAGRAMS

The cover relation in *P*:

 $x \prec y \iff x \leq_p y$ and $x <_p z <_p y$ for no z

For a (finite) poset *P*, itsHasse diagram: there is a line upwards from *x* to *y* if $x \prec_P y$.

Hence there is a path upwards from x to y if and only if $x \leq_P y$. **Example.** Let $P = \{x_1, \dots, x_5\}$ with $x_1 \leq_P x_i$ for all $i \in [2, 5]$, $x_2 \leq_P x_4, x_2 \leq_P x_5, x_3 \leq_P x_5$. (And $x_i \leq_P x_i$ for all i.)

LOCALLY FINITE POSETS

For $x \leq_p y$ the set

$$[x,y]_P = \{z \mid x \leq_P z \leq_P y\}$$

is the interval of x and y.

A poset *P* is said to be **locally finite** if all its intervals are finite. **Example.**

- All finite posets are locally finite.
- The poset of subsets (powerset) 2^X is a poset w.r.t. \subseteq . $2^{\mathbb{N}}$ is not locally finite since $[\emptyset, \mathbb{N}]$ is infinite.

SPECIAL POSETS

A poset *P* is a chain if it is totally ordered: for all $a, b \in P$, either $a \leq_P b$ or $b \leq_P a$.

Example.

- (\mathbb{N}, \leq) with the usual order is locally finite chain.
- (\mathbb{Q}, \leq) is a chain but not locally finite.

The divisor poset D_n

 $(\mathbb{N}_+, |)$ is a locally finite poset of positive integers with the divisor relation.

For each positive integer $n \in \mathbb{N}_+$, the set of divisors of *n* form a poset

 $D_n = \{k \in [1, n] : k | n\}.$

TREES

A rooted tree is a poset T = (V, E), where E satisfies

$$x \leq_T z$$
 and $y \leq_T z \implies x \leq_T y$ or $y \leq_T x$

and T has a smallest element r, its root, such that

 $r \leq_T x$ for all x.

MIN MAX

- $x \in P$ is a minimum element or a zero, if $x \leq_P y$ for all $y \in P$.
- $x \in P$ is the maximum element of P, if $y \leq_P x$ for all $y \in P$.
- These elements may not exist in a poset. If they do exist, they are usually denoted by 0 and 1.

Example. The poset $(2^X, \subseteq)$ has minimum element \emptyset , and it has maximum element *X*. It is locally finite only if *X* is a finite set.

SUBWORD POSET

Consider the set of all words A^* over an alphabet A. Write $u \le v$ if

 $v = v_1 u_1 v_2 u_2 \cdots v_n u_n v_{n+1}$ $u = u_1 u_2 \cdots u_n,$

where (some of) u_i and v_i can be the empty word.

Then (A^*, \leq) is a locally finite poset with a zero element (the empty word).

Theorem [Higman] The poset (A^* , \leq) is well-ordered:

Let $X \subseteq A^*$ be an infinite subset of words. Then there are $u, v \in X$ such that $u \leq v$.

In particular, the set of minimal elements if finite for each $X \subseteq A^*$.