PARTIALLY ORDERED SETS - POSETS

A poset is a set *P* with a relation $R \subseteq P \times P$, denoted by

$$
R = \leq_p \text{ or just } R = \leq
$$

such that

- $a \leq_{p} a$ reflexive
- $a \leq_{p} b$, $b \leq_{p} a \implies a = b$ antisymmetric
- $a \leq_{P} b$, $b \leq_{P} c \implies a \leq_{P} c$ transitive

We write $x \leq_p y$ if $x \leq_p y$ and $x \neq y$.

HASSE DIAGRAMS

The cover relation in *P*:

 $x \prec y \iff x \leq_p y$ and $x <_p z <_p y$ for no *z*

For a (finite) poset *P*, itsHasse diagram: there is a line upwards from *x* to *y* if $x \prec_p y$.

Hence there is a path upwards from *x* to *y* if and only if $x \leq_{p} y$. **Example.** Let $P = \{x_1, ..., x_5\}$ with $x_1 \leq_P x_i$ for all $i \in [2, 5]$, $x_2 \leq_P x_4, x_2 \leq_P x_5, x_3 \leq_P x_5$. (And $x_i \leq_P x_i$ for all *i*.)

LOCALLY FINITE POSETS

For $x \leq_p y$ the set

$$
[x, y]_p = \{z \mid x \leq_p z \leq_p y\}
$$

is the interval of *x* and *y*.

A poset *P* is said to be locally finite if all its intervals are finite. **Example.**

- *•* All finite posets are locally finite.
- *•* The poset of subsets (powerset) 2 *X* is a poset w.r.t. *⊆*. $2^{\mathbb{N}}$ is not locally finite since $[\emptyset,\mathbb{N}]$ is infinite.

SPECIAL POSETS

A poset *P* is a chain if it is totally ordered: for all $a, b \in P$, either $a \leq_p b$ or $b \leq_p a$.

Example.

- *•* (N,*≤*) with the usual order is locally finite chain.
- *•* (Q,*≤*) is a chain but not locally finite.

The divisor poset *Dⁿ*

 $(N_{+},|)$ is a locally finite poset of positive integers with the divisor relation.

For each positive integer $n \in \mathbb{N}_+$, the set of divisors of *n* form a poset

 $D_n = \{k \in [1, n] : k|n\}.$

TREES

A rooted tree is a poset $T = (V, E)$, where *E* satisfies

$$
x \leq_T z
$$
 and $y \leq_T z \implies x \leq_T y$ or $y \leq_T x$

and *T* has a smallest element *r*,its root, such that

 $r \leq_T x$ for all *x*.

MIN MAX

- *• x* ∈ *P* is a minimum element or a zero, if $x ≤ p$ *y* for all $y \in P$.
- *• x* ∈ *P* is the maximum element of *P*, if *y* \leq_{p} *x* for all *y* ∈ *P*.
- *•* These elements may not exist in a poset. If they do exist, they are usually denoted by 0 and 1.

Example. The poset $(2^X, \subseteq)$ has minimum element \emptyset , and it has maximum element *X*. It is locally finite only if *X* is a finite set.

SUBWORD POSET

Consider the set of all words *A [∗]* over an alphabet *A*. Write $u \leq v$ if

> $v = v_1 u_1 v_2 u_2 \cdots v_n u_n v_{n+1}$ $u = u_1 u_2 \cdots u_n$

where (some of) u_i and v_i can be the empty word.

Then (*A ∗* ,*≤*) is a locally finite poset with a zero element (the empty word).

Theorem [Higman] The poset (*A ∗* ,*≤*) is well-ordered:

Let $X \subseteq A^*$ be an infinite subset of words. Then there are $u, v \in X$ such that $u \leq v$.

In particular, the set of minimal elements if finite for each $X \subseteq A^*$.