Folding and Unfolding in Graphs and DNA

Tero Harju

Work done together with
A. Ehrenfeucht, I. Petre, and G. Rozenberg
Folding / unfolding

- **Folding and unfolding** problems are popular in many pure and applied areas:
 - **Protein folding**
 - **Map folding**: given creases can you fold the map
Life is Hard (for a geometrician)

Shephard 1975: Is it true that every (convex) polyhedra can be cut along edges and unfolded to form a simple polygon in the plane?

The inverse problem: Characterize polygons that (re)fold to polyhedra.
There are concave polygons that cannot be so folded.
Can you have a sequence of foldings of a square paper so that you obtain larger perimeter than the original one?
Here: a graph theoretic model for the splicing process motivated by recombination in ciliates.
Here: a graph theoretic model for the splicing process motivated by recombination in ciliates.

- circular DNA molecule \leftrightarrow recombined molecule
- Cycle \leftrightarrow folding \leftrightarrow unfolding
Consider graphs having possibly **multiple edges and loops**, with **edge colouring** and **edge labelling**.

Each edge is **oriented** in the opposite directions:
Consider graphs having possibly multiple edges and loops, with edge colouring and edge labelling.

Each edge is oriented in the opposite directions:

In general: the colours are 1, 2, ..., k.

Bicolouring with green and blue edges corresponds to MDS and IES regions in micronuclear genome of ciliates.
With(out) labels

Labels are complementary strings: DNA double strands

\[
\begin{align*}
\text{AGTC} & = \text{GACT} \\
\text{TCAG} & = \text{CTGA}
\end{align*}
\]

string \(s \)

inverse \(\bar{s} \)
With(out) labels

Labels are complementary strings: DNA double strands

\[
\begin{align*}
\text{AGTC} & = \text{GACT} \\
\text{TCAG} & = \text{CTGA}
\end{align*}
\]

For simplicity, we usually suppress the labels.

However, they are important for the directions.
With(out) labels

Labels are complementary strings: DNA double strands

\[
\begin{align*}
\overline{AGTC} & = GACT \\
TCAG & = CTGA
\end{align*}
\]

string \(s \)

inverse \(\bar{s} \)

Draw only \(e \) or \(\bar{e} \).
Valency

- **valency** $\text{val}(x)$: the number of edges entering x.

- The c-valency:

$$\text{val}(x, c) = \left| \{e = (y, x) \in E \mid e \text{ has colour } c \} \right|$$
Valency

- **valency** \(\text{val}(x) \): the number of edges entering \(x \).

- The **\(c \)-valency**:
 \[
 \text{val}(x, c) = |\{e = (y, x) \in E \mid e \text{ has colour } c\}|
 \]

- **Balanced** at a vertex \(x \): for each colour \(c \in [1, k] \),
 \[
 \text{val}(x, c) \leq \frac{\text{val}(x)}{2}
 \]
 For **bicoloured**: equality

- The graph is **balanced**, if balanced at each vertex.
Example

- **bicoloured**
- **balanced**
- **val**(*x, c*) is 1 or 2 for each *x*.
Genes

All edges of certain colour(s) are to be spliced together
in predetermined order and direction
(determined by pointers = pairs of vertices)
to form contiguous monochromatic paths representing assembled genes.
Kotzig’s theorem

- An alternating Euler tour in γ:
 - a closed walk visiting each edge exactly once
 - consecutive edges have different colours.
- γ is even, if all valencies are even.

THEOREM (Kotzig)

A graph has an alternating Euler tour if and only if it is connected, even and balanced.
Reorientations

Exchange operation transforms closed walks:

\[\pi_1 \pi_2 \pi_3 \pi_4 \pi_5 \rightarrow \pi_1 \pi_4 \pi_3 \pi_2 \pi_5 \]

where \(\pi_2 \) and \(\pi_4 \) have the same ends.
Reorientations

- **Exchange operation** transforms closed walks:
 \[\pi_1 \pi_2 \pi_3 \pi_4 \pi_5 \rightarrow \pi_1 \pi_4 \pi_3 \pi_2 \pi_5 \]
 where \(\pi_2 \) and \(\pi_4 \) have the same ends.

- **Reflection operation** transforms closed walks:
 \[\pi_1 \pi_2 \pi_3 \rightarrow \pi_1 \pi_2 \pi_3 \]
 where \(\pi_2 \) is a closed walk.
THEOREM (Pevzner)

Let γ be bicoloured with alternating Euler tours T_1 and T_2. Then T_1 is obtained from T_2 by applying exchange and reflection operations preserving alternating closed walks.
Pairing functions in even graphs γ

A pairing ψ_x of a vertex x is a bijection on edges:

\[
\begin{align*}
\text{incoming} & \iff \text{outgoing} \\
\begin{array}{c}
\uparrow \\
\text{e}
\end{array} & \leftrightarrow \\
\begin{array}{c}
\downarrow \\
\psi_x(e)
\end{array}
\end{align*}
\]

respect inverses: $\psi_x(\psi_x(e)) = \overline{e}$

and so also loops: $\psi_x(e) = \overline{e} \iff e = (x, x)$
Pairing functions in even graphs γ

- A pairing ψ_x of a vertex x is a bijection on edges:

\[
\begin{align*}
\text{incoming} & \leftrightarrow \text{outgoing} \\
\psi_x(e) & \quad \psi_x(e) \\
\end{align*}
\]

- respect inverses: $\psi_x(\psi_x(e)) = \overline{e}$
- and so also loops: $\psi_x(e) = \overline{e} \iff e = (x, x)$

- A pairing function ψ of the full graph $\psi: x \mapsto \psi_x$:
 ψ_x is a pairing for each vertex x.

\[\text{diagram} \]
Tucker’s theorem

For each \(e_1 \in E \), let \(\pi_\psi(e_1) = e_1 e_2 \ldots e_k \) with \(e_i = (x_i, x_{i+1}) \) be a maximal trail such that \(\psi_{x_i}(e_{i-1}) = e_i \) for all \(i \).
Tucker’s theorem

For each $e_1 \in E$, let $\pi_{\psi}(e_1) = e_1e_2 \ldots e_k$ with $e_i = (x_i, x_{i+1})$ be a maximal trail such that $\psi_{x_i}(e_{i-1}) = e_i$ for all i.

THEOREM (Tucker)

Maximal trails $\pi_{\psi}(e)$ are well defined and closed. The edge sets of the maximal trails partition E.
Recombination graphs

In gene assembly we are interested in recombination graphs:

- **bicoloured**
- \(\text{val}(x) = 2 \) or \(4 \) for each \(x \).
- Balanced at vertices of valency \(\text{val}(x) = 4 \).

- **Green** edges make a gene
- **Blue** edges are
 - IESs or introns or ...
Pairing recombination graphs

Each recombination graph γ has natural pairing function:

- ψ_x matches edges with the same colour if $\text{val}(x) = 4$
- the only possible edges for $\text{val}(x) = 2$.

\begin{itemize}
 \item \begin{tikzpicture}
 \path[每边宽度=5pt, 每边颜色=red]
 (0,0) edge (0.5,0.5)
 (0,0) edge (0.5,-0.5)
 (0.5,0) edge (1,0.5)
 (0.5,0) edge (1,-0.5)
 \end{tikzpicture}
 \begin{tikzpicture}
 \path[每边宽度=5pt, 每边颜色=green]
 (0,0) edge (0.5,0.5)
 (0,0) edge (0.5,-0.5)
 (0.5,0) edge (1,0.5)
 (0.5,0) edge (1,-0.5)
 \end{tikzpicture}
 \begin{tikzpicture}
 \path[每边宽度=5pt, 每边颜色=blue]
 (0,0) edge (0.5,0.5)
 (0,0) edge (0.5,-0.5)
 (0.5,0) edge (1,0.5)
 (0.5,0) edge (1,-0.5)
 \end{tikzpicture}
\end{itemize}
Graph theoretical framework

The process of gene assembly is divided to two stages:

- **Folding** circular graphs (circular DNA).
 - Folding is determined by **pointer sets**.
 - A pair \(p = \{x, y\} \ (x \neq y) \) is a **pointer**.
 - A set \(P \) of **disjoint** pointers is a **pointer set**.
Graph theoretical framework

The process of gene assembly is divided to two stages:

- **Folding** circular graphs (circular DNA).
 Folding is determined by pointer sets.
 - A pair $p = \{x, y\} \ (x \neq y)$ is a pointer.
 - A set P of disjoint pointers is a pointer set.

- **Unfolding** graphs by splitting vertices.
 Unfolding is determined by a pairing function ψ.

Actin I gene in *O.nova*

The parts of the gene are numbered: 1, 2, ..., 9. The ends of these are enumerated around the cycle.
Actin I gene in O.nova

The pointers p_1, \ldots, p_8 are:

$\{13, 1\}$, $\{2, 3\}$, $\{4, 7\}$, $\{8, 5\}$,
$\{6, 9\}$, $\{10, 17\}$, $\{18, 11\}$, $\{16, 14\}$
Let $p = \{x, y\}$ be a pointer.

The p-folded graph $\gamma \ast p$ on $V' = (V \setminus \{x, y\}) \cup \{p\}$

is obtained by identifying the elements of p.

\[\begin{array}{cc}
\text{a} & \text{x} & \text{b} \\
\text{c} & \text{y} & \text{d} \\
\end{array}\quad \begin{array}{cc}
\text{a} & \text{p} & \text{b} \\
\text{c} & \text{d} \\
\end{array}\]
Remark

The p-folded graph $\gamma \ast p$ has

- the same set of edges (with different ends),
- the same labelling and colouring as γ.
- But $|V_{\gamma \ast p}| = |V_{\gamma}| - 1$.
- Edges may become loops or parallel in $\gamma \ast p$.

\[\text{Diagram:}\]

- Graph γ with nodes a, x, y, and d.
- Graph $\gamma \ast p$ with an additional node p and edges connecting it to other nodes.
Commutation

LEMMA

Let \(\{p, q\} \) be a pointer set of \(\gamma \). Then
\[
(\gamma * p) * q = (\gamma * q) * p.
\]
LEMMA

Let \(\{p, q\} \) be a pointer set of \(\gamma \). Then
\[
(\gamma * p) * q = (\gamma * q) * p.
\]

THEOREM

For a pointer set \(P = \{p_1, p_2, \ldots, p_m\} \), the \(P \)-folded graph:
\[
\gamma * P = \gamma * p_1 * \ldots * p_m
\]

If \(P_1, P_2, \ldots, P_n \) are disjoint pointer sets, then
\[
\gamma * P_1 * P_2 * \ldots * P_n = \gamma * \bigcup_{i=1}^{n} P_i
\]
Again Actin I gene

The pointers p_1, \ldots, p_8:

$$\{13, 1\}, \{2, 3\}, \{4, 7\}, \{8, 5\},$$

$$\{6, 9\}, \{10, 17\}, \{18, 11\}, \{16, 14\}$$
The folded actin I gene in O.nova
Let γ be an even graph with a pairing function $\psi: x \mapsto \psi_x$. For a vertex x, let $\psi_x(e_{i1}) = \overline{e}_{i2}$, $e_{11}, e_{12}, e_{21}, e_{22}, \ldots, e_{m1}, e_{m2}$.
Let x^1, x^2, \ldots, x^m be new vertices.

The ψ-unfolded graph at x is obtained by redirecting w.r.t. $\psi_x(e_{i1}) = \bar{e}_{i2}$:

\[\gamma \diamond \psi \ x \]
Remark

The ψ-unfolded graph has

- the same set of edges (with different ends),
- the same labelling and colouring as γ.
- Also, ψ remains as a pairing function of $\gamma \diamond \psi \ x$.
LEMMA
Let γ be an even graph with a pairing function ψ. For $x \neq y$, $(\gamma \diamond_{\psi} x) \diamond_{\psi} y = (\gamma \diamond_{\psi} y) \diamond_{\psi} x$.

This allows us to define for $A = \{x_1, \ldots, x_m\}$:

$$\gamma \diamond_{\psi} A = \gamma \diamond_{\psi} x_1 \diamond_{\psi} x_2 \diamond_{\psi} \ldots \diamond_{\psi} x_m$$
The unfolded graph

Let \(F(\gamma) = \{ x \in V \mid \text{val}(x) \geq 4 \} \)

\(\gamma \diamond \psi F(\gamma) \) is the \(\psi \)-unfolded graph of \(\gamma \).

LEMMA

If \(\gamma \) is even with a pairing function \(\psi \), then \(\gamma \diamond \psi F(\gamma) \) is a disjoint union of cyclic graphs.
Fold-and-unfold

Let γ be a graph with a pointer set P, ψ a pairing function of the P-folded graph $\gamma \ast P$. Set

$$\gamma \otimes_\psi P = (\gamma \ast P) \diamond_\psi P$$

LEMMA

If γ is a disjoint union of cycles, then so is $\gamma \otimes_\psi P$.

- p. 30/38
Example

$P: 1s$ and $2s$

$(\gamma \ast P) \diamond F(\gamma)$
Assembled graphs of genomes

Let γ be a bicoloured cyclic graph.

- **boundary vertex**: changes colour at x

- **(Gene) segment**: maximally 1-monochromatic path.
 So that its ends are boundary vertices.
A pair $G = (\gamma, P)$ is a genome, if

- γ is a disjoint union of bicoloured cyclic graphs,
- P is a pointer set of pairs of boundary vertices.

The assembled version of G is $A(G) = \gamma \ast P$ (w.r.t. the natural pairing function).

Genomes G and G' are equivalent, if $A(G) = A(G')$.

Genomes
Genes

- A segment of $\gamma \circ P$ is a noncircular gene of \mathcal{G}.

- Each 1-monochromatic cyclic component of $\gamma \circ P$ is a circular gene of \mathcal{G}.

- Genes are assembled from various (gene-) segments which may lie on different cycles of \mathcal{G}.

\[g_1 \quad g_4 \quad g_2 \quad g_3 \]

\[g_1 g_2 g_3 g_4 \]
Final genome of actin I gene in O.nova
Invariance

Every **assembly strategy** produces the same **assembled genome**:

THEOREM (Invariance theorem)

For every partition P_1, \ldots, P_m of P,

$$\gamma \odot P = \gamma \odot P_1 \odot P_2 \odot \ldots \odot P_m.$$
Intracyclic unfolding

An assembly strategy P_1, \ldots, P_m of $G = (\gamma, P)$ is intracyclic, if genes are not produced from disjoint parts:

NOT:
THEOREM

Let \mathcal{G} be a genome. There exists an **intracyclic assembly strategy** P_1, P_2, \ldots, P_m with $1 \leq |P_i| \leq 2$ for all i.

THEOREM

Let $A(\mathcal{G}')$ be connected. There is a equivalent $\mathcal{G} = (\gamma, P)$ with **connected** γ and an assembly strategy P_1, P_2, \ldots, P_m such that $1 \leq |P_i| \leq 2$ for all i, and each intermediate $\gamma \, \ast \, \bigcup_{i=1}^{j} P_i$ is connected.