Defect theorem

- A folklore result. Skordev and Sendov (1961)
- Linear algebra: notion of dimension. Do sets of words possess dimension properties of some kind?
 - If a set of n words satisfies a nontrivial relation, then these words can be expressed as products of at most $n-1$ words.
- Partly generalizes to infinite words. (A recent topic.)

We need a result, which is interesting on its own.

Theorem 1. If $S_i (i \in I)$ are free semigroups of A^+, then

$$S = \bigcap_{i \in I} S_i$$

is free or it is empty.

Proof. Suppose $S \neq \emptyset$.

Then S is closed:

- If $u, v \in S$, then there is an index i such that $u, v \in S_i$. Hence also $uv \in S_i$ and $uv \in S$.

But

$$u, v, uv, wv \in S \implies \forall i \in I : u, v, uv, wv \in S_i$$

By Criterion, $w \in S_i$ for all $i \in I$, that is, $w \in S$. The claim follows by our criterion. □
By Theorem 1, for any $X \subseteq A^*$,

$$\hat{X} = \bigcap \{S \mid X \subseteq S, \text{ } S \text{ is a free semigroup} \}$$

is a free semigroup.

Theorem 2. Every set $X \subseteq A^+$ of words has a unique smallest semigroup \hat{X} such that $X^+ \subseteq \hat{X}$

The above definition of \hat{X} as an intersection tells nothing of the structure of the free hull. For instance,

- If X is finite, then \hat{X} is finitely generated.

- If a word $w \in S$ can be written as

 $$w = uxv \text{ where } u, ux \in S \text{ and } xv, v \in S \quad (x \neq \lambda)$$

 then x is called an **overflow** of S.

Theorem 3. A semigroup $S \subseteq A^+$ is free iff every overflow of S is in S.
Example

Let $A = \{a, b\}$ and

$$X = \{bb, bbaba, abaa, baaba, baa\}.$$

Consider any free S with $X^+ \subseteq S$.

X^+ is not free, since $bbaba \cdot abaa = bb \cdot abaa \cdot baa$.

- $bbaba|a.baa$
- $bb|aba,a|baa$

The words aba and a are overflows in S, and hence aba, $a \in S$ (as well as the elements of X).

Also, $baaba \cdot abaa = baa \cdot baa \cdot baa$, and hence ba is an overflow in S. So also $ba \in S$.

Hence $\{a, ba, bb\} \subseteq S$, and since $\{a, ba, bb\}$ is a code with $X \subseteq \{a, ba, bb\}^*$,

$$\hat{X} = \{a, ba, bb\}^+, \quad \text{base}(\hat{X}) = \{a, ba, bb\}.$$

Note that

$$\text{rank}(X) = |X| = 5 > 3 = \text{rank}(\hat{X}).$$

Defect theorem

Theorem 4. [Defect theorem]

Let $X \subseteq A^+$ be finite. If X is not a code, then

$$\text{rank}(\hat{X}) \leq |X| - 1.$$

Theorem 5.

Let $X \subseteq A^+$ be finite. If X^+ is not free, then

$$\text{rank}(\hat{X}) \leq \text{rank}(X) - 1.$$

Hence if a set of words X satisfies a nontrivial identity, then X can be expressed with fewer words (than $|X|$).
Proof. Define $\alpha: X \to \text{base}(\hat{X})$:

\[
\alpha(u) = v \quad \text{if} \quad u \in v \cdot w \quad \text{for} \quad v \in \text{base}(\hat{X}), \ w \in \hat{X} \cup \{\lambda\}.
\]

Thus α picks the first factor out of $u \in X$.

Claim 1. α is well defined.

Claim 2. α is not injective.

Claim 3. α is surjective.

Conclusion:

\[
\text{rank}(\hat{X}) = |\text{base}(\hat{X})| = |\alpha(X)| < |X|.
\]

□

Algorithm

Define for all Y:

\[
C(Y) = \{(u, v) \in Y \times \hat{X} \mid u \neq v, \ uY^* \cap vY^* \neq \emptyset\}.
\]

Let $X \subset A^+$ be finite.

Initialize: Set $X_0 = X$, $j = 0$.

1. find $(u, v) \in C(X_j)$ if exists; else stop and return $\hat{X} = X_j$

2. let w be such that $u = vw$

3. if $w \in X_j$, set $X_{j+1} = X_j - \{u\}$; if $w \notin X_j$, set $X_{j+1} = (X_j - \{u\}) \cup \{w\}$; $j := j + 1$

goto (1)
The algorithm works: it returns the free hull of every finite set.

For this consider the sizes

\[s(X_j) = \sum_{u \in X_j} |u| \]

of the sets \(X_j \).

They decrease strictly when \(j \) grows.

Also, \(\widehat{X} = \widehat{X}_0 \) and
\(\widehat{X}_j = \widehat{X}_{j+1} \) for all \(j \geq 0 \).

Some corollaries

A word \(w \in A^+ \) is primitive, if it is not a proper power of another word, that is,

\[w = u^k \implies k = 1 \text{ and } u = w. \]

Corollary 1. Each word \(w \in A^+ \) is a power of a unique primitive word.

Proof. Let \(w = u^n = v^m \) for some \(u \neq v \in A^+ \) and \(n, m \geq 1 \).

Then \(X = \{u, v\} \) is not a code, since \(w \) has two different factorizations over \(\{u, v\} \).

Defect Thm \(\implies 1 = \text{rank}(\widehat{X}) < |X| = 2. \)

Hence base(\(\widehat{X} \)) = \{z\} for some \(z \in A^+ \).

But now \(X \subseteq z^* \). Thus \(u, v \) are powers of \(z \). \(\square \)
Corollary 2. Two words \(u, v \in A^* \) commute, \(uv = vu \) iff they are powers of a common word.

Proof. \(uv = vu \implies X = \{u, v\} \) is not a code.

Defect thm \(\implies \) \(\text{rank}(\hat{X}) < |X| = 2 \).

So \(u \) and \(v \) are powers of a common word. \(\square \)

Example. Let \(X = \{u, v, w\} \subseteq \{a, b\}^+ \).

Suppose that

\[
\begin{cases}
 uvw = vwu \\
 uuv = wvu
\end{cases}
\]

Now \(X \) is periodic:

\[
\text{rank}(X^+) = 1
\]

That is, \(u, v, w \) are all powers of a common word.

Graph lemma

The defect theorem has a generalization in terms of graphs (TH and Karhumäki 1986).

Let \(X \subseteq A^+ \) be finite. Define a \(G_X = (X, E) \) on the set \(X \) of nodes, called the dependency graph of \(X \):

\[
(u, v) \in E \iff \exists s, t \in X^*: \ u s = v t.
\]

Theorem 6. [Graph Lemma] Let \(X \subseteq A^+ \) be a finite set that is not a code. Then

\[
\text{rank}(\hat{X}) \leq c(X) < |X|,
\]

where \(c(X) \) is the number of the connected components of \(G_X \).
Example. Let \(X = \{ab, aba, abb, bab\} \). Then the graph \(G_X \) is given below:

\[
aba \cdot bab = ab \cdot ab \cdot ab \\
abb \cdot ab = ab \cdot bab.
\]

Problem. Which conditions force \(X \) to have rank at most \(|X| - k \) for some \(k \geq 2 \)?

Tilings in the plane

We consider two examples of 2-dimensional words in connection to the defect theorem.

A figure is a partial function \(\tau : \mathbb{Z} \times \mathbb{Z} \to A \) consisting of a finite number of unit squares of integer points labelled by letters of an alphabet.

We consider each point \((i, j)\) as a square of unit length centred at \((i, j)\).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

There are some changes in the two dimensional case (if you want):

- A letter \(\leftrightarrow \) coloured square
- A word \(\leftrightarrow \) coloured figure
- Factorizations \(\leftrightarrow \) coloured tilings of figures
Tiles

Let \(X = \{T_1, T_2, \ldots, T_n\} \) be a set of figures (called tiles). We say that a figure \(F \) has a tiling from \(X \), if

- \(F \) can covered with (copies of) the tiles without overlapping. The tiles can be translated but not rotated or reflected.

There are similar problems for tilings where one allows rotations and/or reflections.

Problem

A set of tiles \(X \) is decomposable, if there exists a set \(Y \) of tiles such that

(1) \(|Y| < |X| \),

(2) every \(T \in X \) has a tiling from \(Y \).

Problem. Does the defect effect hold for set of tiles? That is, given a set \(X \) of \(n \) tiles:

- Is it true that if there exists a figure \(F \) that has two different tilings from \(X \), then \(X \) is decomposable?

The answer to this general questions is **No**:

Figures in the plane do **not** satisfy the defect theorem even in some very simple cases.
Example

The three tiles are:

The below figure has two different tilings, but the tiles cannot be expressed by less than three tiles.

Open problem

Problem. Does the defect effect hold for sets of two tiles?

That is,

let \(X = \{T_1, T_2\} \) be a set of two tiles.

Is it true that if there is a figure \(F \) with two different tilings in \(X \) then there exists a tile \(T \) such that both \(T_1 \) and \(T_2 \) can be tiled with \(T \).
Vectors and rectangular figures

- Consider vector tiles (that resemble words!) of the form $1 \times m$ and $m \times 1$.

- The defect effect does hold for sets of two vector tiles: If a (any!) figure has two different tilings from a set of vector tiles, then the tile set is decomposable.

- The defect effect does not hold for sets of four vector tiles:

 Let $X = \{ab, cd, (ac)^T, (bd)^T\}$. Then there is a figure F, namely the square with rows ab and cd, that has two different factorizations over X, but the defect effect does not apply to X.

Three tile problem

Problem. Does the defect effect concern sets $X = \{T_1, T_2, T_3\}$ of three vector tiles?

Squares

- A square is a tile (figure) of the form $n \times n$.

- Easy: the defect effect holds for two squares, $X = \{T_1, T_2\}$.

 If a figure F can be tiled in two different ways in X, then there is a square T such that both T_1 and T_2 can be tiled with T.

Three squares

The above does not hold for three squares.

The squares are:

\[
\begin{array}{ccc}
\text{a} & \text{a} & \text{a} \\
\text{b} & \text{c} & \text{b} \\
\text{a} & \text{a} & \text{a} \\
\text{a} & \text{a} & \text{a} \\
\end{array}
\quad
\begin{array}{ccc}
\text{a} & \text{a} & \text{a} \\
\text{b} & \text{c} & \text{b} \\
\text{a} & \text{a} & \text{a} \\
\text{a} & \text{a} & \text{a} \\
\end{array}
\quad
\begin{array}{ccc}
\text{a} & \text{a} & \text{a} \\
\text{b} & \text{c} & \text{b} \\
\text{a} & \text{a} & \text{a} \\
\text{a} & \text{a} & \text{a} \\
\end{array}
\]