Definitions and Predictions of Integrability for Difference Equations

Jarmo Hietarinta

Department of Physics, University of Turku, FIN-20014 Turku, Finland

1D

Symmetries and Integrability of Difference Equations SMS School June 9-21, 2008

Top down:

- Choose some high level mathematical structure.

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.
- Result: A list of equations with good properties (or at least a method for generating them).

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.
- Result: A list of equations with good properties (or at least a method for generating them).

Bottom up:

- Equation is given: "In my application I found this equation, what can you say about it?"

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.
- Result: A list of equations with good properties (or at least a method for generating them).

Bottom up:

- Equation is given: "In my application I found this equation, what can you say about it?"
- Toolbox of (algorithmic) methods that can be applied.

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.
- Result: A list of equations with good properties (or at least a method for generating them).

Bottom up:

- Equation is given: "In my application I found this equation, what can you say about it?"
- Toolbox of (algorithmic) methods that can be applied.
- The desired result: Identify the equation as integrable/partially integrable/chaotic. Maybe we can construct solutions, conserved quantities...

Top down:

- Choose some high level mathematical structure.
- Derive its consequences/manifestations for dynamical equations.
- Result: A list of equations with good properties (or at least a method for generating them).

Bottom up:

- Equation is given: "In my application I found this equation, what can you say about it?"
- Toolbox of (algorithmic) methods that can be applied.
- The desired result: Identify the equation as integrable/partially integrable/chaotic. Maybe we can construct solutions, conserved quantities...

Although complete integrability is structurally unstable, many properties persist in nearby non-integrable systems.

Points of view on integrability

Why discrete?

Why discrete?

- Perhaps discrete things are more fundamental than continuous

Why discrete?

- Perhaps discrete things are more fundamental than continuous
- Many mathematical constructs can be interpreted as difference relations, e.g., recursion relations.

Why discrete?

- Perhaps discrete things are more fundamental than continuous
- Many mathematical constructs can be interpreted as difference relations, e.g., recursion relations.
- Need to discretize continuous equations for numerical analysis

Why discrete?

- Perhaps discrete things are more fundamental than continuous
- Many mathematical constructs can be interpreted as difference relations, e.g., recursion relations.
- Need to discretize continuous equations for numerical analysis
- Interesting mathematics in the background, e.g., elliptic functions.

Why discrete?

- Perhaps discrete things are more fundamental than continuous
- Many mathematical constructs can be interpreted as difference relations, e.g., recursion relations.
- Need to discretize continuous equations for numerical analysis
- Interesting mathematics in the background, e.g., elliptic functions.
- Continuum integrability is well established, all easy things have already been done. Discrete integrability relatively new, still new things to be discovered.

Assume an equation of the form

$$
x_{n+1}+x_{n-1}=f\left(x_{n}\right) .
$$

Given x_{0}, x_{1} we can compute x_{n} for all $n \in \mathbb{Z}$. So what's the problem? What is integrability?

Assume an equation of the form

$$
x_{n+1}+x_{n-1}=f\left(x_{n}\right) .
$$

Given x_{0}, x_{1} we can compute x_{n} for all $n \in \mathbb{Z}$. So what's the problem? What is integrability?
More detailed questions:

- Can we say anything about x_{n} without actually computing every intermediate step?

Assume an equation of the form

$$
x_{n+1}+x_{n-1}=f\left(x_{n}\right)
$$

Given x_{0}, x_{1} we can compute x_{n} for all $n \in \mathbb{Z}$. So what's the problem? What is integrability?

More detailed questions:

- Can we say anything about x_{n} without actually computing every intermediate step?
- Can we find formulae like $x_{n}=\phi\left(x_{0}, x_{1} ; n\right)$ where ϕ is some reasonable function?

Assume an equation of the form

$$
x_{n+1}+x_{n-1}=f\left(x_{n}\right)
$$

Given x_{0}, x_{1} we can compute x_{n} for all $n \in \mathbb{Z}$. So what's the problem? What is integrability?

More detailed questions:

- Can we say anything about x_{n} without actually computing every intermediate step?
- Can we find formulae like $x_{n}=\phi\left(x_{0}, x_{1} ; n\right)$ where ϕ is some reasonable function?
- How does the error in the initial values propagate? Does the resulting ambiguity grow as n^{2}, or as 2^{n} ?

Assume an equation of the form

$$
x_{n+1}+x_{n-1}=f\left(x_{n}\right)
$$

Given x_{0}, x_{1} we can compute x_{n} for all $n \in \mathbb{Z}$.
So what's the problem? What is integrability?
More detailed questions:

- Can we say anything about x_{n} without actually computing every intermediate step?
- Can we find formulae like $x_{n}=\phi\left(x_{0}, x_{1} ; n\right)$ where ϕ is some reasonable function?
- How does the error in the initial values propagate? Does the resulting ambiguity grow as n^{2}, or as 2^{n} ?

In these lectures: we take a look on various meanings of integrability for difference equations, and the possible associated algorithmic methods to identify (partial) integrability.

Map or functional equation

Typical 1-dimensional 3-point difference equation:

$$
y_{n+1}+y_{n-1}=\frac{a_{n}}{y_{n}}+b_{n}, \quad n \in \mathbb{N}
$$

Map or functional equation

Typical 1-dimensional 3-point difference equation:

$$
y_{n+1}+y_{n-1}=\frac{a_{n}}{y_{n}}+b_{n}, \quad n \in \mathbb{N}
$$

y_{n} is sequence of numbers, $y: \mathbb{Z} \rightarrow \mathbb{C}$, if y_{0}, y_{1} are given we can trivially compute $y_{n}, \forall n>1$.

Map or functional equation

Typical 1-dimensional 3-point difference equation:

$$
y_{n+1}+y_{n-1}=\frac{a_{n}}{y_{n}}+b_{n}, \quad n \in \mathbb{N}
$$

y_{n} is sequence of numbers, $y: \mathbb{Z} \rightarrow \mathbb{C}$,
if y_{0}, y_{1} are given we can trivially compute $y_{n}, \forall n>1$.
Another point of view:

$$
y(z+d)+y(z-d)=\frac{a(z)}{y(z)}+b(z)
$$

$y(z)$ is an analytic function, $y: \mathbb{C} \rightarrow \mathbb{C}$
y satisfies the above functional equation for all $z \in \mathbb{C}$.

Map or functional equation

Typical 1-dimensional 3-point difference equation:

$$
y_{n+1}+y_{n-1}=\frac{a_{n}}{y_{n}}+b_{n}, \quad n \in \mathbb{N}
$$

y_{n} is sequence of numbers, $y: \mathbb{Z} \rightarrow \mathbb{C}$,
if y_{0}, y_{1} are given we can trivially compute $y_{n}, \forall n>1$.
Another point of view:

$$
y(z+d)+y(z-d)=\frac{a(z)}{y(z)}+b(z)
$$

$y(z)$ is an analytic function, $y: \mathbb{C} \rightarrow \mathbb{C}$
y satisfies the above functional equation for all $z \in \mathbb{C}$.
Formally we can set $y_{n} \equiv y(z), y_{n+k} \equiv y(z+d k)$, but:

Map or functional equation

Typical 1-dimensional 3-point difference equation:

$$
y_{n+1}+y_{n-1}=\frac{a_{n}}{y_{n}}+b_{n}, \quad n \in \mathbb{N}
$$

y_{n} is sequence of numbers, $y: \mathbb{Z} \rightarrow \mathbb{C}$,
if y_{0}, y_{1} are given we can trivially compute $y_{n}, \forall n>1$.
Another point of view:

$$
y(z+d)+y(z-d)=\frac{a(z)}{y(z)}+b(z)
$$

$y(z)$ is an analytic function, $y: \mathbb{C} \rightarrow \mathbb{C}$
y satisfies the above functional equation for all $z \in \mathbb{C}$.
Formally we can set $y_{n} \equiv y(z), y_{n+k} \equiv y(z+d k)$, but:
Different settings bring in different properties, tools and results.

Solvability is not integrability

Integrability is basically regularity or predictability.

Solvability is not integrability

Integrability is basically regularity or predictability.
A closed form explicit solution is not equivalent to integrability:
Logistic map

$$
y_{n+1}=4 y_{n}\left(1-y_{n}\right) .
$$

Explicit closed form solution for all n :

$$
y_{n}=\frac{1}{2}\left[1-\cos \left(2^{n} c_{0}\right)\right] .
$$

Solvability is not integrability

Integrability is basically regularity or predictability.
A closed form explicit solution is not equivalent to integrability: Logistic map

$$
y_{n+1}=4 y_{n}\left(1-y_{n}\right)
$$

Explicit closed form solution for all n :

$$
y_{n}=\frac{1}{2}\left[1-\cos \left(2^{n} c_{0}\right)\right]
$$

Sensitive dependence on the initial value:

$$
\frac{d y_{n}}{d c_{0}}=\frac{1}{2} 2^{n} \sin \left(2^{n} c_{0}\right)
$$

Thus error grows exponentially: "chaotic".

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

Example: ODE

with solution

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u), \tag{*}
\end{equation*}
$$

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

Example: ODE

with solution

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u), \tag{*}
\end{equation*}
$$

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

Example: ODE

with solution

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u), \tag{*}
\end{equation*}
$$

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?
Naive discretization:

$$
\begin{align*}
\frac{d u}{d t} \approx \frac{u(t+\Delta t)-u(t)}{\Delta t} & \Rightarrow \\
u(t+\Delta t)-u(t) & =\Delta t \alpha u(t)(1-\beta u(t)) \tag{d1}
\end{align*}
$$

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

Example: ODE

with solution

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?
Naive discretization:

$$
\begin{align*}
\frac{d u}{d t} \approx \frac{u(t+\Delta t)-u(t)}{\Delta t} & \Rightarrow \\
u(t+\Delta t)-u(t) & =\Delta t \alpha u(t)(1-\beta u(t)) \tag{d1}
\end{align*}
$$

Let $u(t)=u(n \Delta t)=\frac{a}{\alpha \beta \Delta t} x_{n}, a=1+\alpha \Delta t$, then we get

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right)
$$

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

Example: ODE
with solution

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?
Naive discretization:

$$
\begin{align*}
\frac{d u}{d t} \approx \frac{u(t+\Delta t)-u(t)}{\Delta t} & \Rightarrow \\
u(t+\Delta t)-u(t) & =\Delta t \alpha u(t)(1-\beta u(t)) \tag{d1}
\end{align*}
$$

Let $u(t)=u(n \Delta t)=\frac{a}{\alpha \beta \Delta t} x_{n}, a=1+\alpha \Delta t$, then we get

$$
x_{n+1}=a x_{n}\left(1-x_{n}\right)
$$

This is the logistic equation which can be chaotic.

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

with solution

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?

Integrable discretization? $(\mathrm{O} \Delta \mathrm{E})$

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

with solution

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

How to discretize $(*)$ in order to get similar behavior?
Second attempt:

$$
\begin{equation*}
u(t+\Delta t)-u(t)=\Delta t \alpha u(t+\Delta t)(1-\beta u(t)) \tag{d2}
\end{equation*}
$$

or after solving for $u(t+\Delta t)$

$$
u(t+\Delta t)=\frac{u(t)}{(1-\alpha \Delta t)+\alpha \beta \Delta t u(t)}
$$

Why should we even consider this?

The original equation

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

can be linearized with $u=1 /(w+\beta)$ to

$$
\frac{d w}{d t}=-\alpha w
$$

with solution $w=c e^{-\alpha t}$.

The original equation

$$
\begin{equation*}
\frac{d u}{d t}=\alpha u(1-\beta u) \tag{*}
\end{equation*}
$$

can be linearized with $u=1 /(w+\beta)$ to

$$
\frac{d w}{d t}=-\alpha w
$$

with solution $w=c e^{-\alpha t}$.
Discretize the linearized equation as

$$
w(t+\Delta t)-w(t)=-\alpha \Delta t w
$$

and then substituting $w=-\beta+1 / u$ we get

$$
\begin{equation*}
u(t+\Delta t)-u(t)=\alpha \Delta t u(t+\Delta t)(1-\beta u(t)) \tag{d2}
\end{equation*}
$$

The difference equation for w

$$
w(t+\Delta t)-w(t)=-\alpha \Delta t w(t)
$$

is solved by

$$
w(t+n \Delta t)=(1-\alpha \Delta t)^{n} w(t)
$$

and therefore

$$
u(t) \equiv u(n \Delta t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right)(1-\alpha \Delta t)^{n}}
$$

The difference equation for w

$$
w(t+\Delta t)-w(t)=-\alpha \Delta t w(t)
$$

is solved by

$$
w(t+n \Delta t)=(1-\alpha \Delta t)^{n} w(t)
$$

and therefore

$$
u(t) \equiv u(n \Delta t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right)(1-\alpha \Delta t)^{n}}
$$

Now the discrete solution samples the continuum solution.

$$
u(t)=\frac{u_{0}}{\beta u_{0}+\left(1-\beta u_{0}\right) e^{-\alpha t}} .
$$

Examples and continuum limits

The discrete Painlevé I equation ($\mathrm{d}-\mathrm{PI}$) is given by

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b .
$$

Examples and continuum limits

The discrete Painlevé I equation ($\mathrm{d}-\mathrm{PI}$) is given by

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b .
$$

Why should this be called a discrete Painlevé equation?

Examples and continuum limits

The discrete Painlevé I equation ($\mathrm{d}-\mathrm{PI}$) is given by

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b .
$$

Why should this be called a discrete Painlevé equation?
Let us take the continuum limit: set

$$
\epsilon n=z, x_{n}=f(z), x_{n \pm 1}=f(z \pm \epsilon), \quad \epsilon \rightarrow 0, n \rightarrow \infty, \epsilon n \text { fixed }
$$

Examples and continuum limits

The discrete Painlevé I equation ($\mathrm{d}-\mathrm{PI}$) is given by

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b .
$$

Why should this be called a discrete Painlevé equation?
Let us take the continuum limit: set

$$
\epsilon n=z, x_{n}=f(z), x_{n \pm 1}=f(z \pm \epsilon), \quad \epsilon \rightarrow 0, n \rightarrow \infty, \epsilon n \text { fixed }
$$

This yields

$$
3 f+\epsilon^{2} f^{\prime \prime}=\frac{\alpha+\beta z / \epsilon}{f}+b
$$

The get rid of the denominator we must take

$$
f(z)=c_{1}+c_{2} \epsilon^{\kappa} y(z)
$$

and expand. The power $\kappa>0$ is to determined.

Points of view on integrability

$$
3 c_{1}+3 c_{2} \epsilon^{\kappa} y(z)+3 c_{2} \epsilon^{2+\kappa} y^{\prime \prime}=b+\frac{1}{c_{1}}(\alpha+\beta z / \epsilon)\left(1-\frac{c_{2}}{c_{1}} \epsilon^{\kappa} y+\left(\frac{c_{2}}{c_{1}}\right)^{2} \epsilon^{2 \kappa} y^{2} . .\right.
$$

$$
3 c_{1}+3 c_{2} \epsilon^{\kappa} y(z)+3 c_{2} \epsilon^{2+\kappa} y^{\prime \prime}=b+\frac{1}{c_{1}}(\alpha+\beta z / \epsilon)\left(1-\frac{c_{2}}{c_{1}} \epsilon^{\kappa} y+\left(\frac{c_{2}}{c_{1}}\right)^{2} \epsilon^{2 \kappa} y^{2} \ldots\right.
$$

To balance terms we must take $\kappa=2$, then we get

$$
\begin{aligned}
& \epsilon^{0}: 3 c_{1}=b+\frac{1}{c_{1}} \alpha \\
& \epsilon^{2}: 3 c_{2}=-\frac{c_{2}}{c_{1}^{2}} \alpha
\end{aligned}
$$

leading to

$$
c_{1}=\frac{b}{6}, \quad \alpha=-\frac{b^{2}}{12}
$$

$3 c_{1}+3 c_{2} \epsilon^{\kappa} y(z)+3 c_{2} \epsilon^{2+\kappa} y^{\prime \prime}=b+\frac{1}{c_{1}}(\alpha+\beta z / \epsilon)\left(1-\frac{c_{2}}{c_{1}} \epsilon^{\kappa} y+\left(\frac{c_{2}}{c_{1}}\right)^{2} \epsilon^{2 \kappa} y^{2} \ldots\right.$
To balance terms we must take $\kappa=2$, then we get

$$
\begin{aligned}
& \epsilon^{0}: 3 c_{1}=b+\frac{1}{c_{1}} \alpha \\
& \epsilon^{2}: 3 c_{2}=-\frac{c_{2}}{c_{1}^{2}} \alpha
\end{aligned}
$$

leading to

$$
c_{1}=\frac{b}{6}, \quad \alpha=-\frac{b^{2}}{12}
$$

Finally at ϵ^{4} we get the first Painleve equation

$$
y^{\prime \prime}=6 y^{2}+z
$$

if we choose

$$
c_{2}=-\frac{b}{3}, \quad \beta=-\frac{b^{2}}{18} \epsilon^{5}
$$

Constants of motion for continuous ODE

Definition of Liouville integrability:
A Lagrangian $L(\dot{q}, q)$, where q is N-dimensional, is integrable if there are N constants of motion (CM) $I_{k}(\dot{q}, q)$ (L one of them) such that the I_{k}
(1) are independent
(2) are regular
(3) $d l / d t=0$ (using equations of motion).

Constants of motion for continuous ODE

Definition of Liouville integrability:
A Lagrangian $L(\dot{q}, q)$, where q is N-dimensional, is integrable if there are N constants of motion (CM) $I_{k}(\dot{q}, q)$ (L one of them) such that the I_{k}
(1) are independent
(2) are regular
(3) $d l / d t=0$ (using equations of motion).

The role of a CM (in continuous and discrete world): it restricts the available phase space and thereby makes the motion more predictable.

Relation of CM to the equation:

$$
\frac{d l(\dot{q}, q)}{d t}=\sum_{i} \frac{\partial I}{\partial \dot{q}_{i}} \ddot{q}_{i}+\sum_{i} \frac{\partial I}{\partial q_{i}} \dot{q}_{i}
$$

The RHS should vanish when we impose the equations of motion of the type

$$
\ddot{q}_{i}=\ldots
$$

Relation of CM to the equation:

$$
\frac{d l(\dot{q}, q)}{d t}=\sum_{i} \frac{\partial I}{\partial \dot{q}_{i}} \ddot{q}_{i}+\sum_{i} \frac{\partial I}{\partial q_{i}} \dot{q}_{i}
$$

The RHS should vanish when we impose the equations of motion of the type

$$
\ddot{q}_{i}=\ldots
$$

How to find constants of motion for a given equation?
Use the Ansatz: I a polynomial in \dot{q}_{i}, with coefficients depending on q. Derive equations for the coefficients and solve them.

Relation of CM to the equation:

$$
\frac{d l(\dot{q}, q)}{d t}=\sum_{i} \frac{\partial I}{\partial \dot{q}_{i}} \ddot{q}_{i}+\sum_{i} \frac{\partial I}{\partial q_{i}} \dot{q}_{i}
$$

The RHS should vanish when we impose the equations of motion of the type

$$
\ddot{q}_{i}=\ldots
$$

How to find constants of motion for a given equation?
Use the Ansatz: I a polynomial in \dot{q}_{i}, with coefficients depending on q. Derive equations for the coefficients and solve them.
$N=1$: Any given $I(\dot{q}, q)$ is a CM for some equation $\ddot{q}=\ldots$.

The basic difficulty in the discrete case

$N=1$: Any given $I(\dot{q}, q)$ is a CM for some equation $\ddot{q}=\ldots$.
Consider the discrete equivalent, a 3-point equation in $x \equiv u_{n+1}, y \equiv u_{n}, z \equiv u_{n-1}$.
The equation relating x, y, z should be linear in x and z to guarantee well defined evolution.

The basic difficulty in the discrete case

$N=1$: Any given $I(\dot{q}, q)$ is a CM for some equation $\ddot{q}=\ldots$.
Consider the discrete equivalent, a 3-point equation in

$$
x \equiv u_{n+1}, y \equiv u_{n}, z \equiv u_{n-1}
$$

The equation relating x, y, z should be linear in x and z to guarantee well defined evolution.

Guess a CM $K(x, y)$, then require

$$
K(x, y)-K(y, z)=0
$$

The basic difficulty in the discrete case

$N=1$: Any given $I(\dot{q}, q)$ is a CM for some equation $\ddot{q}=\ldots$.
Consider the discrete equivalent, a 3-point equation in $x \equiv u_{n+1}, y \equiv u_{n}, z \equiv u_{n-1}$.
The equation relating x, y, z should be linear in x and z to guarantee well defined evolution.

Guess a CM $K(x, y)$, then require

$$
K(x, y)-K(y, z)=0
$$

How could this produce an equation linear in x, z if K is nonlinear?

The lack of Liebnitz rule bites us again!

Biquadratic invariant

$$
K(x, y)-K(y, z)=0 .
$$

What if K is symmetric? Then the above equation has the factor $x-z$.

Biquadratic invariant

$$
K(x, y)-K(y, z)=0
$$

What if K is symmetric? Then the above equation has the factor $x-z$.

Then we may try a biquadratic K :
$K(x, y):=c_{5} x^{2} y^{2}+c_{4} x y(x+y)+c_{3} x y+c_{2}\left(x^{2}+y^{2}\right)+c_{1}(x+y)$.

Biquadratic invariant

$$
K(x, y)-K(y, z)=0
$$

What if K is symmetric? Then the above equation has the factor $x-z$.

Then we may try a biquadratic K :
$K(x, y):=c_{5} x^{2} y^{2}+c_{4} x y(x+y)+c_{3} x y+c_{2}\left(x^{2}+y^{2}\right)+c_{1}(x+y)$.
We get
$\frac{K(x, y)-K(y, z)}{x-z}=c_{1}+c_{2}(x+z)+c_{3} y+c_{4} y(x+y+z)+c_{5} y^{2}(x+z)$,
from which we get an equation having (*) as CM.

$$
x+z=\frac{c_{4} y^{2}+c_{3} y+c_{1}}{c_{5} y^{2}+c_{4} y+c_{2}}
$$

The QRT map

Can we generalize?

Yes: take a rational biquadratic:

$$
K(x, y)=\frac{c_{5} x^{2} y^{2}+c_{4} x y(x+y)+c_{3} x y+c_{2}\left(x^{2}+y^{2}\right)+c_{1}(x+y)}{d_{5} x^{2} y^{2}+d_{4} x y(x+y)+d_{3} x y+d_{2}\left(x^{2}+y^{2}\right)+d_{1}(x+y)}
$$

The QRT map

Can we generalize?
Yes: take a rational biquadratic:
$K(x, y)=\frac{c_{5} x^{2} y^{2}+c_{4} x y(x+y)+c_{3} x y+c_{2}\left(x^{2}+y^{2}\right)+c_{1}(x+y)}{d_{5} x^{2} y^{2}+d_{4} x y(x+y)+d_{3} x y+d_{2}\left(x^{2}+y^{2}\right)+d_{1}(x+y)}$
Direct computation shows that this is a CM for the symmetric version of the Quispel-Roberts-Thomson (QRT) map:

$$
x=\frac{f_{1}(y)-f_{2}(y) z}{f_{2}(y)-f_{3}(y) z}
$$

where f_{i} are certain specific quartic polynomials.
This contains almost all 3-point maps.

Some examples of QRT

$$
x=\frac{f_{1}(y)-f_{2}(y) z}{f_{2}(y)-f_{3}(y) z}
$$

Some examples of QRT

$$
x=\frac{f_{1}(y)-f_{2}(y) z}{f_{2}(y)-f_{3}(y) z}
$$

If $f_{3}=0$ get $x_{n+1}+x_{n-1}=R\left(x_{n}\right)$, with R rational
Example: the McMillan map

$$
x_{n+1}+x_{n-1}=\frac{2 a x_{n}}{1-x_{n}^{2}}
$$

Some examples of QRT

$$
x=\frac{f_{1}(y)-f_{2}(y) z}{f_{2}(y)-f_{3}(y) z}
$$

If $f_{3}=0$ get $x_{n+1}+x_{n-1}=R\left(x_{n}\right)$, with R rational
Example: the McMillan map

$$
x_{n+1}+x_{n-1}=\frac{2 a x_{n}}{1-x_{n}^{2}}
$$

One of the discrete Painlevé equation is $\mathrm{dP}_{\mathrm{III}}\left(f_{2}=0\right)$:

$$
x_{n+1} x_{n-1}=\frac{c d\left(x_{n}-a \lambda^{n}\right)\left(x_{n}-b \lambda^{n}\right)}{\left(x_{n}-c\right)\left(x_{n}-d\right)}
$$

This is a nonautonomous equation,
i.e., it contains explicit n-dependence.

The HKY generalization

The Hirota-Kimura-Yahagi (HKY) generalization: Quartic CM
Consider

$$
K(x, y)=\frac{2 x y}{x^{2}+y^{2}+\beta^{2}}
$$

Then we have

$$
K(x, y)-K(y, z)=\frac{-2 y(x-z)\left[x z-\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)\left(y^{2}+z^{2}+b^{2}\right)}
$$

leading to the 3-point equation

$$
x z=y^{2}+b^{2}
$$

The HKY generalization

The Hirota-Kimura-Yahagi (HKY) generalization: Quartic CM
Consider

$$
K(x, y)=\frac{2 x y}{x^{2}+y^{2}+\beta^{2}}
$$

Then we have

$$
K(x, y)-K(y, z)=\frac{-2 y(x-z)\left[x z-\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)\left(y^{2}+z^{2}+b^{2}\right)}
$$

leading to the 3-point equation

$$
x z=y^{2}+b^{2}
$$

But we also have

$$
K(x, y)+K(y, z)=\frac{2 y(x+z)\left[x z+\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)\left(y^{2}+z^{2}+b^{2}\right)}
$$

How can this be interpreted?

It seems that in the second case K is conserved "up to sign". Then $K(x, y)^{2}$, which is quartic, should be a genuine invariant. Indeed:

$$
\begin{aligned}
K(x, y)^{2} & -K(y, z)^{2}= \\
& \frac{-4 y^{2}(x+z)(x-z)\left[x z+\left(y^{2}+b^{2}\right)\right]\left[x z-\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)^{2}\left(y^{2}+z^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

It seems that in the second case K is conserved "up to sign".
Then $K(x, y)^{2}$, which is quartic, should be a genuine invariant. Indeed:

$$
\begin{aligned}
& K(x, y)^{2}-K(y, z)^{2}= \\
& \quad \frac{-4 y^{2}(x+z)(x-z)\left[x z+\left(y^{2}+b^{2}\right)\right]\left[x z-\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)^{2}\left(y^{2}+z^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

Thus

- $u_{n+1} u_{n+1}=u_{n}^{2}+b^{2}$ has a quadratic invariant
- $u_{n+1} u_{n+1}=-\left(u_{n}^{2}+b^{2}\right)$ has a quartic invariant

It seems that in the second case K is conserved "up to sign".
Then $K(x, y)^{2}$, which is quartic, should be a genuine invariant. Indeed:

$$
\begin{aligned}
& K(x, y)^{2}-K(y, z)^{2}= \\
& \quad \frac{-4 y^{2}(x+z)(x-z)\left[x z+\left(y^{2}+b^{2}\right)\right]\left[x z-\left(y^{2}+b^{2}\right)\right]}{\left(x^{2}+y^{2}+b^{2}\right)^{2}\left(y^{2}+z^{2}+b^{2}\right)^{2}}
\end{aligned}
$$

Thus

- $u_{n+1} u_{n+1}=u_{n}^{2}+b^{2}$ has a quadratic invariant
- $u_{n+1} u_{n+1}=-\left(u_{n}^{2}+b^{2}\right)$ has a quartic invariant

Other HKY-type invariants are known.

Generalities

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.

For ODE's two methods have often been used:

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.
For ODE's two methods have often been used:

- Local analysis (for complex time) to check whether solutions have movable singularities (Painlevé method). [Search program by Painlevé, Gambier, etc.]

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.
For ODE's two methods have often been used:

- Local analysis (for complex time) to check whether solutions have movable singularities (Painlevé method). [Search program by Painlevé, Gambier, etc.]
- Growth analysis of the solution (Nevanlinna theory)

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.
For ODE's two methods have often been used:

- Local analysis (for complex time) to check whether solutions have movable singularities (Painlevé method). [Search program by Painlevé, Gambier, etc.]
- Growth analysis of the solution (Nevanlinna theory)

What about difference equations?

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.
For ODE's two methods have often been used:

- Local analysis (for complex time) to check whether solutions have movable singularities (Painlevé method). [Search program by Painlevé, Gambier, etc.]
- Growth analysis of the solution (Nevanlinna theory)

What about difference equations?
Maybe for a discrete Painlevé test we should again study what happens at a singularity.

Algorithmic ways to identify integrable equations?

We would like to identify equations with regular behavior algorithmically, without actually solving the equation.
For ODE's two methods have often been used:

- Local analysis (for complex time) to check whether solutions have movable singularities (Painlevé method). [Search program by Painlevé, Gambier, etc.]
- Growth analysis of the solution (Nevanlinna theory)

What about difference equations?
Maybe for a discrete Painlevé test we should again study what happens at a singularity.

What about growth analysis?
Recall that difference equations can trivially be solved step by step, what is the growth of the resulting expression?

Singularity analysis for difference equations

Singularity analysis for difference equations

Grammaticos, Ramani, and Papageorgiou, [Phys. Rev. Lett. 67 (1991) 1825] proposed The Singularity Confinement Criterion as an analogue of the Painleve test.

Singularity analysis for difference equations

Grammaticos, Ramani, and Papageorgiou, [Phys. Rev. Lett. 67 (1991) 1825] proposed The Singularity Confinement Criterion as an analogue of the Painleve test.

Idea: If the dynamics leads to a singularity then after a few steps one should be able to get out of it (confinement), and this should take place without loss of information. (in contrast: attractors absorb information)

Singularity analysis for difference equations

Grammaticos, Ramani, and Papageorgiou, [Phys. Rev. Lett. 67 (1991) 1825] proposed The Singularity Confinement Criterion as an analogue of the Painleve test.

Idea: If the dynamics leads to a singularity then after a few steps one should be able to get out of it (confinement), and this should take place without loss of information. (in contrast: attractors absorb information)

This amounts to the requirement of well defined evolution even near singular points.

Singularity analysis for difference equations

Grammaticos, Ramani, and Papageorgiou, [Phys. Rev. Lett. 67 (1991) 1825] proposed The Singularity Confinement Criterion as an analogue of the Painleve test.

Idea: If the dynamics leads to a singularity then after a few steps one should be able to get out of it (confinement), and this should take place without loss of information.
(in contrast: attractors absorb information)
This amounts to the requirement of well defined evolution even near singular points.

Using this principle it has been possible to find discrete analogies of Painlevé equations. [Ramani, Grammaticos and JH, Phys. Rev. Lett. 67 (1991) 1829, and many others]

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.

The sequence continues as:

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.

The sequence continues as:

$$
x_{1}=-0-\mathrm{u}+a / 0+b=\infty
$$

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.
The sequence continues as:

$$
\begin{aligned}
& x_{1}=-0-\mathrm{u}+a / 0+b=\infty \\
& x_{2}=-\infty-0+a / \infty+b=-\infty
\end{aligned}
$$

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.

The sequence continues as:

$$
\begin{aligned}
& x_{1}=-0-\mathrm{u}+a / 0+b=\infty \\
& x_{2}=-\infty-0+a / \infty+b=-\infty \\
& x_{3}=+\infty-\infty-a / \infty+b=?
\end{aligned}
$$

Singularity confinement in practice

Consider first the autonomous case of dPI

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

Equation is singular at $x=0$. Assume that we reach the singularity at $x_{0}=0$ with a finite $x_{-1}=\mathrm{u} \neq 0$.
The sequence continues as:

$$
\begin{aligned}
& x_{1}=-0-\mathrm{u}+a / 0+b=\infty \\
& x_{2}=-\infty-0+a / \infty+b=-\infty \\
& x_{3}=+\infty-\infty-a / \infty+b=?
\end{aligned}
$$

To resolve " $\infty-\infty$ ":
assume $x_{0}=\epsilon$ (small) and redo the calculations.

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
x_{-1}=\mathrm{u}
$$

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1} & =\mathrm{u} \\
x_{0} & =\epsilon,
\end{aligned}
$$

Detailed singularity confinement calculation

$$
\begin{aligned}
& \quad x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b . \\
x_{-1} & =\mathrm{u} \\
x_{0} & =\epsilon \\
x_{1} & =\frac{a}{\epsilon}+b-\mathrm{u}-\epsilon
\end{aligned}
$$

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1} & =\mathbf{u} \\
x_{0} & =\epsilon \\
x_{1} & =\frac{a}{\epsilon}+b-\mathbf{u}-\epsilon \\
x_{2} & =-\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathbf{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1}= & \mathbf{u} \\
x_{0}= & \epsilon \\
x_{1}= & \frac{a}{\epsilon}+b-\mathbf{u}-\epsilon \\
x_{2}= & -\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathbf{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right) \\
x_{3}= & -\left[-\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathbf{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)\right] \\
& -\left[\frac{a}{\epsilon}+b-\mathbf{u}-\epsilon\right]+a /\left[-\frac{a}{\epsilon}+\mathbf{u}+O(\epsilon)\right]+b \\
= & -\epsilon+[(b-2 \mathbf{u}) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1}= & \mathbf{u}, \\
x_{0}= & \epsilon \\
x_{1}= & \frac{a}{\epsilon}+b-\mathbf{u}-\epsilon \\
x_{2}= & -\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathrm{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right) \\
x_{3}= & -\left[-\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathrm{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)\right] \\
& -\left[\frac{a}{\epsilon}+b-\mathbf{u}-\epsilon\right]+\mathbf{a} /\left[-\frac{a}{\epsilon}+\mathbf{u}+O(\epsilon)\right]+b \\
= & -\epsilon+[(b-2 \mathrm{u}) / a] \epsilon^{2}+O\left(\epsilon^{3}\right), \\
x_{4}= & \mathbf{u}+O(\epsilon)
\end{aligned}
$$

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1}= & \mathbf{u}, \\
x_{0}= & \epsilon \\
x_{1}= & \frac{a}{\epsilon}+b-\mathbf{u}-\epsilon \\
x_{2}= & -\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathbf{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right) \\
x_{3}= & -\left[-\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathbf{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)\right] \\
& -\left[\frac{a}{\epsilon}+b-\mathbf{u}-\epsilon\right]+\mathbf{a} /\left[-\frac{a}{\epsilon}+\mathbf{u}+O(\epsilon)\right]+b \\
= & -\epsilon+[(b-2 \mathbf{u}) / a] \epsilon^{2}+O\left(\epsilon^{3}\right), \\
x_{4}= & \mathbf{u}+O(\epsilon)
\end{aligned}
$$

The singularity is confined and initial information u is recovered.

Detailed singularity confinement calculation

$$
x_{n+1}=-x_{n}-x_{n-1}+\frac{a}{x_{n}}+b
$$

$$
\begin{aligned}
x_{-1}= & \mathrm{u}, \\
x_{0}= & \epsilon \\
x_{1}= & \frac{a}{\epsilon}+b-\mathbf{u}-\epsilon \\
x_{2}= & -\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathrm{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right) \\
x_{3}= & -\left[-\frac{a}{\epsilon}+\mathbf{u}+\epsilon+[(\mathrm{u}-b) / a] \epsilon^{2}+O\left(\epsilon^{3}\right)\right] \\
& -\left[\frac{a}{\epsilon}+b-\mathbf{u}-\epsilon\right]+\mathrm{a} /\left[-\frac{a}{\epsilon}+\mathrm{u}+O(\epsilon)\right]+b \\
= & -\epsilon+[(b-2 \mathrm{u}) / a] \epsilon^{2}+O\left(\epsilon^{3}\right), \\
x_{4}= & \mathbf{u}+O(\epsilon)
\end{aligned}
$$

The singularity is confined and initial information u is recovered. The singularity pattern is $\ldots, 0, \infty,-\infty, 0, \ldots$

Non-confined singularity

A worst case example:

$$
x_{n+1}-2 x_{n}+x_{n-1}=\frac{a}{x_{n}}+b
$$

Non-confined singularity

A worst case example:

$$
x_{n+1}-2 x_{n}+x_{n-1}=\frac{a}{x_{n}}+b
$$

We obtain

$$
\begin{aligned}
x_{-1} & =\mathrm{u} \\
x_{0} & =\epsilon \\
x_{1} & =\frac{a}{\epsilon}+b-u+2 \epsilon \\
x_{2} & =2 \frac{a}{\epsilon}+3 b-2 u+\mathcal{O}(\epsilon), \\
x_{3} & =3 \frac{a}{\epsilon}+6 b-3 u+\mathcal{O}(\epsilon),
\end{aligned}
$$

Non-confined singularity

A worst case example:

$$
x_{n+1}-2 x_{n}+x_{n-1}=\frac{a}{x_{n}}+b
$$

We obtain

$$
\begin{aligned}
x_{-1} & =\mathrm{u} \\
x_{0} & =\epsilon \\
x_{1} & =\frac{a}{\epsilon}+b-u+2 \epsilon \\
x_{2} & =2 \frac{a}{\epsilon}+3 b-2 u+\mathcal{O}(\epsilon), \\
x_{3} & =3 \frac{a}{\epsilon}+6 b-3 u+\mathcal{O}(\epsilon),
\end{aligned}
$$

In general

$$
x_{k}=k \frac{a}{\epsilon}+\ldots,
$$

and the singularity is not confined, ever.
Furthermore: there are no ambiguities.

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations.

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.
Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.
Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

$$
x_{1}=\frac{a_{0}}{\epsilon}+b-\mathbf{u}-\epsilon
$$

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.
Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

$$
\begin{aligned}
& x_{1}=\frac{a_{0}}{\epsilon}+b-\mathbf{u}-\epsilon \\
& x_{2}=-\frac{a_{0}}{\epsilon}+\mathbf{u}+\frac{a_{1}}{a_{0}} \epsilon+\frac{a_{1}}{a_{0}}(\mathrm{u}-b) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.

Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

$$
\begin{aligned}
& x_{1}=\frac{a_{0}}{\epsilon}+b-\mathbf{u}-\epsilon \\
& x_{2}=-\frac{a_{0}}{\epsilon}+\mathbf{u}+\frac{a_{1}}{a_{0}} \epsilon+\frac{a_{1}}{a_{0}}(\mathbf{u}-b) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right) \\
& x_{3}=-\frac{a_{2}+a_{1}-a_{0}}{a_{2}} \epsilon+\left(\frac{a_{1}}{a_{0}} b-\frac{a_{1}+a_{2}}{a_{0}} \mathbf{u}\right) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.

Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

$$
\begin{aligned}
& x_{1}=\frac{a_{0}}{\epsilon}+b-\mathbf{u}-\epsilon \\
& x_{2}=-\frac{a_{0}}{\epsilon}+\mathbf{u}+\frac{a_{1}}{a_{0}} \epsilon+\frac{a_{1}}{a_{0}}(\mathbf{u}-b) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right) \\
& x_{3}=-\frac{a_{2}+a_{1}-a_{0}}{a_{2}} \epsilon+\left(\frac{a_{1}}{a_{0}} b-\frac{a_{1}+a_{2}}{a_{0}} \mathbf{u}\right) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right) \\
& x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
\end{aligned}
$$

The success of singularity confinement

Use it as a guide for de-autonomizing discrete equations. Insist on the same singularity pattern, this yields equations for the free n-dependent coefficient.

Previous example but with $a_{n}: x_{-1}=\mathrm{u}, x_{0}=\epsilon$, and then

$$
\begin{aligned}
& x_{1}=\frac{a_{0}}{\epsilon}+b-\mathbf{u}-\epsilon \\
& x_{2}=-\frac{a_{0}}{\epsilon}+\mathbf{u}+\frac{a_{1}}{a_{0}} \epsilon+\frac{a_{1}}{a_{0}}(\mathbf{u}-b) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right) \\
& x_{3}=-\frac{a_{2}+a_{1}-a_{0}}{a_{2}} \epsilon+\left(\frac{a_{1}}{a_{0}} b-\frac{a_{1}+a_{2}}{a_{0}} \mathbf{u}\right) / a_{0} \epsilon^{2}+O\left(\epsilon^{3}\right) \\
& x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
\end{aligned}
$$

Problem: x_{4} should start like $u+\ldots$!

$$
x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
$$

x_{4} should start like $u+\ldots \Longrightarrow$
The condition for singularity confinement at this same step is:

$$
a_{n+3}-a_{n+2}-a_{n+1}+a_{n}=0, \forall n
$$

$$
x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
$$

x_{4} should start like $u+\ldots \Longrightarrow$
The condition for singularity confinement at this same step is:

$$
a_{n+3}-a_{n+2}-a_{n+1}+a_{n}=0, \forall n
$$

with solution

$$
\begin{equation*}
a_{n}=\alpha+\beta n+\gamma(-1)^{n} \tag{*}
\end{equation*}
$$

$$
x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
$$

x_{4} should start like $u+\ldots \Longrightarrow$
The condition for singularity confinement at this same step is:

$$
a_{n+3}-a_{n+2}-a_{n+1}+a_{n}=0, \forall n
$$

with solution

$$
\begin{equation*}
a_{n}=\alpha+\beta n+\gamma(-1)^{n} \tag{*}
\end{equation*}
$$

Recall the form of the discrete Painlevé equation ($\mathrm{d}-\mathrm{PI}$)

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b
$$

$$
x_{4}=-\frac{a_{3}-a_{2}-a_{1}+a_{0}}{a_{2}+a_{1}+a_{0}} \frac{a_{0}}{\epsilon}+\ldots
$$

x_{4} should start like $u+\ldots \Longrightarrow$
The condition for singularity confinement at this same step is:

$$
a_{n+3}-a_{n+2}-a_{n+1}+a_{n}=0, \forall n
$$

with solution

$$
\begin{equation*}
a_{n}=\alpha+\beta n+\gamma(-1)^{n} \tag{*}
\end{equation*}
$$

Recall the form of the discrete Painlevé equation ($\mathrm{d}-\mathrm{PI}$)

$$
x_{n+1}+x_{n}+x_{n-1}=\frac{\alpha+\beta n}{x_{n}}+b
$$

In general, with a_{n} as in (*) the singularity is confined, and

$$
x_{4}:=\frac{\mathrm{u}(\alpha+\gamma)+2 b \beta}{\alpha+3 \beta-\gamma}+O(\epsilon)
$$

in particular, if $\beta=\gamma=0$ (i.e., $\boldsymbol{a}_{n}=\alpha$), $\boldsymbol{x}_{4}=\mathbf{u}+\ldots$

Singularity confinement in projective space

The singularities reveal their nature best in projective space, where $(u, v, f) \approx(\lambda u, \lambda v, \lambda f), \lambda \neq 0$

Singularity confinement in projective space

The singularities reveal their nature best in projective space, where $(u, v, f) \approx(\lambda u, \lambda v, \lambda f), \lambda \neq 0$

The original system: $x_{n+1}+x_{n}+x_{n-1}=\frac{a_{n}}{x_{n}}+b$

Singularity confinement in projective space

The singularities reveal their nature best in projective space, where $(u, v, f) \approx(\lambda u, \lambda v, \lambda f), \lambda \neq 0$
The original system: $x_{n+1}+x_{n}+x_{n-1}=\frac{a_{n}}{x_{n}}+b$
Write it as a first order system

$$
\left\{\begin{array}{l}
x_{n+1}=-x_{n}-y_{n}+\frac{a_{n}}{x_{n}}+b, \\
y_{n+1}=x_{n},
\end{array}\right.
$$

Singularity confinement in projective space

The singularities reveal their nature best in projective space, where $(u, v, f) \approx(\lambda u, \lambda v, \lambda f), \lambda \neq 0$
The original system: $x_{n+1}+x_{n}+x_{n-1}=\frac{a_{n}}{x_{n}}+b$
Write it as a first order system

$$
\left\{\begin{array}{l}
x_{n+1}=-x_{n}-y_{n}+\frac{a_{n}}{x_{n}}+b, \\
y_{n+1}=x_{n},
\end{array}\right.
$$

Then homogenize by substituting $x_{n}=u_{n} / f_{n}, y_{n}=v_{n} / f_{n}$:

$$
\left\{\begin{array}{l}
\frac{u_{n+1}}{f_{n+1}}=-\frac{u_{n}}{f_{n}}-\frac{v_{n}}{f_{n}}+a_{n} \frac{f_{n}}{u_{n}}+b \\
\frac{v_{n+1}}{f_{n+1}}=\frac{u_{n}}{f_{n}}
\end{array}\right.
$$

Singularity confinement in projective space

The singularities reveal their nature best in projective space, where $(u, v, f) \approx(\lambda u, \lambda v, \lambda f), \lambda \neq 0$
The original system: $x_{n+1}+x_{n}+x_{n-1}=\frac{a_{n}}{x_{n}}+b$
Then homogenize by substituting $x_{n}=u_{n} / f_{n}, y_{n}=v_{n} / f_{n}$:

$$
\left\{\begin{array}{l}
\frac{u_{n+1}}{f_{n+1}}=-\frac{u_{n}}{f_{n}}-\frac{v_{n}}{f_{n}}+a_{n} \frac{f_{n}}{u_{n}}+b, \\
\frac{v_{n+1}}{f_{n+1}}=\frac{u_{n}}{f_{n}},
\end{array}\right.
$$

Then clearing denominators yields a polynomial map in \mathbb{P}^{2}

$$
\left\{\begin{aligned}
u_{n+1} & =-u_{n}\left(u_{n}+v_{n}\right)+f_{n}\left(a_{n} f_{n}+b u_{n}\right) \\
v_{n+1} & =u_{n}^{2} \\
f_{n+1} & =f_{n} u_{n}
\end{aligned}\right.
$$

Note: default growth of degree (= complexity): $\operatorname{deg}\left(u_{n}\right)=2^{n}$

The sequence that led to a singularity was
 $x_{-1}=\mathrm{u}, x_{0}=0, x_{1}=\infty, x_{2}=\infty, x_{3}=\infty-\infty=$?

The sequence that led to a singularity was
$x_{-1}=\mathrm{u}, x_{0}=0, x_{1}=\infty, x_{2}=\infty, x_{3}=\infty-\infty=$?
In projective space we have

$$
\left(\begin{array}{l}
0 \\
\mathrm{u} \\
1
\end{array}\right) \rightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \rightarrow\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \rightarrow\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \rightarrow\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The last term is a true singularity, since it is not in \mathbb{P}^{2}.

For the detailed ϵ study with $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ we have

$$
\left(\begin{array}{c}
x_{0} \\
x_{-1} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{0} \\
v_{0} \\
f_{0}
\end{array}\right)=\left(\begin{array}{c}
\epsilon \\
\mathrm{u} \\
1
\end{array}\right)
$$

For the detailed ϵ study with $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ we have

$$
\begin{aligned}
\left(\begin{array}{c}
x_{0} \\
x_{-1} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{0} \\
v_{0} \\
f_{0}
\end{array}\right) & =\left(\begin{array}{c}
\epsilon \\
\mathrm{u} \\
1
\end{array}\right) \\
\left(\begin{array}{c}
x_{1} \\
x_{0} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{1} \\
v_{1} \\
f_{1}
\end{array}\right) & =\left(\begin{array}{l}
a_{0}+(-\mathrm{u}+b) \epsilon+\ldots \\
\epsilon^{2} \\
\epsilon
\end{array}\right)
\end{aligned}
$$

For the detailed ϵ study with $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ we have

$$
\begin{aligned}
\left(\begin{array}{c}
x_{0} \\
x_{-1} \\
1
\end{array}\right) \approx\left(\begin{array}{l}
u_{0} \\
v_{0} \\
f_{0}
\end{array}\right) & =\left(\begin{array}{c}
\epsilon \\
\mathrm{u} \\
1
\end{array}\right), \\
\left(\begin{array}{c}
x_{1} \\
x_{0} \\
1
\end{array}\right) \approx\left(\begin{array}{l}
u_{1} \\
v_{1} \\
f_{1}
\end{array}\right) & =\left(\begin{array}{l}
a_{0}+(-\mathrm{u}+b) \epsilon+\ldots \\
\epsilon^{2} \\
\epsilon
\end{array}\right) \\
\left(\begin{array}{c}
x_{2} \\
x_{1} \\
1
\end{array}\right) \approx\left(\begin{array}{l}
u_{2} \\
v_{2} \\
f_{2}
\end{array}\right) & =\left(\begin{array}{c}
-a_{0}^{2}+\epsilon a_{0}(2 \mathrm{u}-b)+\ldots \\
a_{0}^{2}+2 \epsilon a_{0}(-\mathrm{u}+b)+\ldots \\
\epsilon a_{0}+\epsilon^{2}(-\mathrm{u}+b)+\ldots
\end{array}\right)
\end{aligned}
$$

For the detailed ϵ study with $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ we have

$$
\begin{aligned}
\left(\begin{array}{c}
x_{0} \\
x_{-1} \\
1
\end{array}\right) \approx\left(\begin{array}{l}
u_{0} \\
v_{0} \\
f_{0}
\end{array}\right) & =\left(\begin{array}{l}
\epsilon \\
u \\
1
\end{array}\right), \\
\left(\begin{array}{c}
x_{1} \\
x_{0} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{1} \\
v_{1} \\
f_{1}
\end{array}\right) & =\left(\begin{array}{l}
a_{0}+(-u+b) \epsilon+\ldots \\
\epsilon^{2} \\
\epsilon
\end{array}\right) . \\
\left(\begin{array}{c}
x_{2} \\
x_{1} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{2} \\
v_{2} \\
f_{2}
\end{array}\right) & =\left(\begin{array}{c}
-a_{0}^{2}+\epsilon a_{0}(2 u-b)+\ldots \\
a_{0}^{2}+2 \epsilon a_{0}(-u+b)+\ldots \\
\epsilon a_{0}+\epsilon^{2}(-u+b)+\ldots
\end{array}\right) . \\
\left(\begin{array}{c}
x_{3} \\
x_{2} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
u_{3} \\
v_{3} \\
f_{3}
\end{array}\right) & =\left(\begin{array}{l}
\epsilon^{2} a_{0}^{2}\left(-a_{0}+a_{1}+a_{2}\right)+\ldots \\
a_{0}^{4}+2 \epsilon a_{0}^{3}(-2 u+b) \ldots \\
-\epsilon a_{0}^{3}+\epsilon^{2} a_{0}^{2}(3 u-2 b)+\ldots
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
u_{4} \\
v_{4} \\
f_{4}
\end{array}\right)=\left(\begin{array}{l}
\epsilon^{2} a_{0}^{6} A_{3}+\epsilon^{3} a_{0}^{5}\left(b\left(4 A_{3}+a_{0}-a_{2}\right)-u\left(6 A_{3}+a_{0}\right)\right)+\ldots \\
\epsilon^{4} a_{0}^{4} A_{2}^{2}+\ldots \\
-\epsilon^{3} a_{0}^{5} A_{2}+\ldots
\end{array}\right) \\
& \left(A_{2}=a_{2}+a_{1}-a_{0}, A_{3}=a_{0}-a_{1}-a_{2}+a_{3} .\right)
\end{aligned}
$$

This is the crucial point of singularity confinement.

$$
\left(\begin{array}{l}
u_{4} \\
v_{4} \\
f_{4}
\end{array}\right)=\left(\begin{array}{l}
\epsilon^{2} a_{0}^{6} A_{3}+\epsilon^{3} a_{0}^{5}\left(b\left(4 A_{3}+a_{0}-a_{2}\right)-u\left(6 A_{3}+a_{0}\right)\right)+\ldots \\
\epsilon^{4} a_{0}^{4} A_{2}^{2}+\ldots \\
-\epsilon^{3} a_{0}^{5} A_{2}+\ldots
\end{array}\right)
$$

$$
\left(A_{2}=a_{2}+a_{1}-a_{0}, A_{3}=a_{0}-a_{1}-a_{2}+a_{3} .\right)
$$

This is the crucial point of singularity confinement.
If $A_{3}=0, A_{2} \neq 0$ then ϵ^{3} is a common factor and can be divided out and then the $\epsilon \rightarrow 0$ limit yields

$$
\left(\begin{array}{c}
u_{4} \\
v_{4} \\
f_{4}
\end{array}\right)=\left(\begin{array}{l}
\left(a_{0}(u-b)+a_{2} b\right) \\
0 \\
a_{3}
\end{array}\right) .
$$

Thus we have emerged from the singularity and in particular recovered the initial data u.

- The cancellation of the common factor ϵ^{3} removes the singularity.
- Any cancellation also reduces growth of complexity, as defined by the degree of the iterate.

These are two sides of the same phenomenon.

- The cancellation of the common factor ϵ^{3} removes the singularity.
- Any cancellation also reduces growth of complexity, as defined by the degree of the iterate.

These are two sides of the same phenomenon.
The precise amount of cancellation will be crucial.

- The cancellation of the common factor ϵ^{3} removes the singularity.
- Any cancellation also reduces growth of complexity, as defined by the degree of the iterate.

These are two sides of the same phenomenon.
The precise amount of cancellation will be crucial.

- growth is linear in $n \Rightarrow$ equation is linearizable.
- growth is polynomial in $n \Rightarrow$ equation is integrable.
- growth is exponential in $n \Rightarrow$ equation is chaotic.

Singularity confinement is not sufficient

Counterexample (JH and C Viallet, PRL 81, 325 (1999))

$$
x_{n+1}+x_{n-1}=x_{n}+\frac{1}{x_{n}^{2}}
$$

Singularity confinement is not sufficient

Counterexample (JH and C Viallet, PRL 81, 325 (1999))

$$
x_{n+1}+x_{n-1}=x_{n}+\frac{1}{x_{n}^{2}}
$$

Epsilon analysis of singularity confinement:
Assume $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ and then

$$
\begin{aligned}
& x_{1}=\epsilon^{-2}-\mathrm{u}+\epsilon \\
& x_{2}=\epsilon^{-2}-\mathrm{u}+\epsilon^{4}+O\left(\epsilon^{6}\right), \\
& x_{3}=-\epsilon+2 \epsilon^{4}+O\left(\epsilon^{6}\right), \\
& x_{4}=\mathrm{u}+3 \epsilon+O\left(\epsilon^{3}\right),
\end{aligned}
$$

Singularity confinement is not sufficient

Counterexample (JH and C Viallet, PRL 81, 325 (1999))

$$
x_{n+1}+x_{n-1}=x_{n}+\frac{1}{x_{n}^{2}}
$$

Epsilon analysis of singularity confinement:
Assume $x_{-1}=\mathrm{u}, x_{0}=\epsilon$ and then

$$
\begin{aligned}
& x_{1}=\epsilon^{-2}-\mathrm{u}+\epsilon \\
& x_{2}=\epsilon^{-2}-\mathrm{u}+\epsilon^{4}+O\left(\epsilon^{6}\right), \\
& x_{3}=-\epsilon+2 \epsilon^{4}+O\left(\epsilon^{6}\right), \\
& x_{4}=\mathrm{u}+3 \epsilon+O\left(\epsilon^{3}\right),
\end{aligned}
$$

Thus singularity is confined with pattern $\ldots, 0, \infty, \infty, 0, \ldots$.
Furthermore, the initial information u is recovered in x_{4}. OK?

No! The HV map shows numerical chaos

$$
x_{n+1}+x_{n-1}=x_{n}+\frac{7}{x_{n}^{2}}
$$

Singularity confinement \Rightarrow cancellations \Rightarrow reduced growth of complexity.

Singularity confinement \Rightarrow cancellations \Rightarrow reduced growth of complexity.
Reduction must be strong enough!
For the previous chaotic model the degrees grow as

$$
1,3,9,27,73,195,513,1347,3529, \ldots
$$

which grows asymptotically as $d_{n} \approx[(3+\sqrt{5}) / 2]^{n}$.

Singularity confinement \Rightarrow cancellations \Rightarrow reduced growth of complexity.
Reduction must be strong enough!
For the previous chaotic model the degrees grow as

$$
1,3,9,27,73,195,513,1347,3529, \ldots
$$

which grows asymptotically as $d_{n} \approx[(3+\sqrt{5}) / 2]^{n}$.
For the previous Painlevé equation the degrees grow as

$$
1,2,4,8,13,20,28,38,49,62,76, \ldots
$$

which is fitted by $d_{n}=\frac{1}{8}\left(9+6 n^{2}-(-1)^{n}\right)$. [JH and Viallet, Chaos, Solitons and Fractals, 11, 29-32 (2000).]

Summary

- Singularity confinement is necessary for a well defined evolution

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Improvements / other tests

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Improvements / other tests

- Require slow growth of complexity (Veselov, Arnold, Falqui and Viallet)

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Improvements / other tests

- Require slow growth of complexity (Veselov, Arnold, Falqui and Viallet)
- Consider the map over finite fields and study its orbit statistics (Roberts and Vivaldi)

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Improvements / other tests

- Require slow growth of complexity (Veselov, Arnold, Falqui and Viallet)
- Consider the map over finite fields and study its orbit statistics (Roberts and Vivaldi)
- Nevanlinna theory for difference equations. (Halburd et al)

Summary

- Singularity confinement is necessary for a well defined evolution
- Easy to verify
- Can be used effectively for de-autonomizing a given map
- Not sufficient for integrable evolution

Improvements / other tests

- Require slow growth of complexity (Veselov, Arnold, Falqui and Viallet)
- Consider the map over finite fields and study its orbit statistics (Roberts and Vivaldi)
- Nevanlinna theory for difference equations. (Halburd et al)
- Diophantine integrability (numerically fast) (Halburd)

