Effects of a Global Rule on Interacting Cellular Automata

Alyssa Adams1,4, Hector Zenil2,4, Eduardo Hermo Reyes3, Joost Joosten3,4

1Beyond Center, Arizona State University, Tempe, AZ, USA
2Department of Computer Science, University of Oxford, UK
3Department of Logic, History and Philosophy of Science, University of Barcelona, Spain
4Algorithmic Nature Group, LABoRES, Paris, France
Outline

• Motivation
• Cellular automata with a global rule
• Characterizing Complexity
• Results & Discussion
• Future explorations
Motivation

Same initial conditions…

Same two rules…

But different global rule!
Cellular Automata with a Global Rule

With some initial condition…

ECA 1 has:
• Alphabet \{0, 1\}
• Rule \(r_1\) with rule table \(R_1\)

ECA 2 has:
• Alphabet \{0, 2\}
• Rule \(r_2\) with rule table \(R_2\)

Interacting CA has:
• Mixed neighborhood with alphabet \{0, 1, 2\}
• Global rule \(GR\) with rule table \(\{R_1 \cup R_2 \cup MRT\}\)
• \(MRT :=\) mixed rule table
Cellular Automata with a Global Rule

• Mixed Rule Table
 – Outcomes for all possible mixed neighborhoods
 – Neighborhoods not in R_1 nor R_2

• 12 possible mixed neighborhoods
• $3^{12} \approx 5 \times 10^5$ possible outcome combinations,
 5×10^5 possible global rules (GRs)
Methods

• Only 25% of GRs were studied
• 5 initial conditions
 – Initial conditions that already include mixed neighborhoods
 – De Bruijn sequences of order $n = 3$ (for mixed alphabet size $\{0, 1, 2\}$) and of size $k = 5$
 – 242 bits long (periodic boundaries)
• 4 different interacting ECA rules
 – ECA rules 32, 108, 30, 54
 – 10 possible interactions, avoiding redundancy
• 8.8 million cases total, 100 time steps
Characterize Results

• Capture resulting CA output in terms of Wolfram classes with...

• Kolmogorov-Chaitin complexity of a dynamic system\(^1, 2\)

\[
K(r) = \lim_{t \to \infty} \max K(s(i, t))
\]

\[
K(s(i, t)) := \min \text{length}(p) \mid U_t(p(i)) = s
\]

• \(K(s)\) is approachable from below

\(^1\) Zenil 2010, \(^2\) Zenil & Villarreal-Zapata, 2013
Characterize Results

Class 1: Evolution has asymptotic compressibility ratio $= 0$

Class 2: Evolution has compressibility ratio $\leq \frac{1}{2}$

Class 3: Evolution has compressibility ratio $= 1$

Class 4: Evolution has asymptotic compressibility ratio $= 1$

Lempel-Ziv-Welch compression algorithm
Characterize Results

11 segments, each 22 bits long
- Roughly capture regions of different complexity values (low resolution)

Measure asymptotic compression values and compression values at multiple time steps
Interactions of Interest
Future Directions

• Explore the effects of all possible global rules
 – All rule interactions (88)
 – 100 initial conditions
 – 400 billion outputs

• Are there set of GRs that *always* increase/descrease complexity?

• Identify complexity drivers

• Sensitivity to initial conditions