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A note on primes of the form p = ag® + 1

Kaisa Matoméaki* (Egham)

Abstract

We prove that for any € > 0 there are infinitely many primes of
the form p = ag® + 1, where a < p*/2t€ and ¢ is a prime.

1 Introduction

It is a long-standing conjecture that there are infinitely many primes of the
form n?+1. Several approximations to this problem have been made. Baier
and Zhao [1, Theorem 5’] showed that for any € > 0, there are infinitely
many primes of the form p = ag® + 1, where a < p*9+¢. We improve this

result as follows.

Theorem 1. Let € > 0. There are infinitely many primes of the form

1/2+€

p=aq’+1, where a <p and q 1s a prime.

Baier and Zhao obtained their result as a corollary to their Bombieri-
Vinogradov type theorem for sparse sets of moduli. Our improvement comes
from using the sieve method of Harman [3, 4, 5].

We notice that in the interval [1, X] there are O(X?/4+/2) numbers of
the form ag® + 1 with a < XV?*¢, so the set we are considering is quite
sparse.

Throughout the paper the symbol p is reserved for a prime variable and
P is the set of primes. Theorem 1 is an immediate consequence of the
following stronger result.

Theorem 2. Let ¢ > 0, X > 1 and Q € [X?, XV?>~]. Then for all but

O(QY2X /) prime squares ¢*> ~ Q, we have for any k € {1,2,...,¢> -1},
a1tk

{ag> + k| a~X/Q}NP > L

¢(¢?) log X

*Current address: Department of Mathematics, 20014 University of Turku, Finland
MSC(2000): 11N13, 11N36.
Keywords: primes in quadratic progressions, sieve methods




The exponent 1/2 is the limit of the current method as it is in the
Bombieri-Vinogradov prime number theorem. In both cases the limit arises
from a large sieve result, more precisely from the term corresponding to the
number of points in outer summation in the large sieve (Q*? in Lemma 3
below leading to a critical term (X@Q)'/? in the end of the proof of Theorem
2).

2 The method

First we introduce some standard notation. Let £ be a finite subset of N.
Then we write |£] for the cardinality of &,

Es={m|dnel}

and
S(E,z)={me & | (m, P(z)) =1},

P(z)=]]»

<z

where

The elementary Buchstab’s identity states that

S(€,2) =S(Ew) = Y S(&,p),

w<p<z

where z > w > 2.
We write, for ¢ ~ Q, AQ = X,

Alg, k) = {ag® + k| a~ A}

and
A(g) ={n | n € [A¢* + k,2A¢* + k], (n,¢*) = 1}.

Here A(q, k) is the set to be sieved and A(g) is the comparision set. We
notice that the number of primes in A(q, k) is S(A(q, k), 3X"/2). We write
0 = 3/8+2¢ and z = X%, Then we use Buchstab’s identity to decompose

S(A(q, k), 3X1/?%)
= S(Alg.k).2) = > SAg k)2 — Y. S(Alg.k)p.p)

z<p<X? XO0<p<3Xx1/2

+ Z S(A(Qa k)p1p2ap2)

2<pa<p1 <X?

= Sl(q, ]{3) — Sz(q, k)) — Sg((], ]{7) + 54((], /{?)
> Si(q, k) — Sa(q, k) — S3(q, k).



We write S;(q) for the sum S;(q, k) with A(q, k) replaced by A(q). We will
show in the next section that

Si(q) Xl—e/?) o
E ax, Si(q, k) — o) < oE for i =1,2,3. (1)
q€eP HC
¢~ 7

As in [5, Section 3.5], this implies that we have

S(Alg, k),3X'1?) > (S(A(),3X"?) = Sy()) (1 + o(1))

?(q?)

- (1 + o 1) mln{a1 dOéQdCYl

— log X o 2) ( //4/1 a1a2(1—a1—042)>
o X(L+o(1)) (1 5o E) _ 2X(1+4o0(1))

= log X¢(q?) 768 5)  3log X¢(qg?)

for almost all prime squares ¢ ~ @Q and all appropriate k. This implies
Theorem 2.

3 Proof of the bound (1)

Proving (1) reduces to showing that for type I sums

1 Xl—e/2 5
m - m << 9
domax | D an— gy DL e < om ()

q€eP “qlk mneA(q,k) mnéeA(q)
*~Q m~M m~ M

and for type II sums

1 X1- €/2
Domax | ) amby—orgs D uby) € Tap (3)

mneA(q)

where |an|,|bm| < 7(m). Indeed, by [4, Lemma 2], and handling cross-
conditions using the Perron formula as in the proof of that lemma, we need
to show only that (2) holds for any M < X? and that (3) holds for any
M e [X9 X179

We get type I information by the following elementary argument. Since

|A(q, k)l = [{a ~ A | ag® = —k (mod d)}| = {3“)(1) if (d,¢*) =
0 else
1
= MM(Q)dl +0(1),
we have X
dm = am + O(M(log X)©)
m”;‘l k) ¢<q2) ’m’r;(q)



which gives a sufficient bound for M < X!'=<Q~!, and hence, in particular,
for M < X°.
To get type II information we use the following large sieve result for

square moduli.
Lemma 3. Let n > 0. Then

2 )C

?~Q a=1 |m~M

Proof. This follows from [2, Theorem 1]. O

2

< (QM)(Q? + MQYY) Y Janl>  (4)

m~M

Remark 4. Since the outer summation in (4) goes over approximately Q3/2

points a/q?, the expected form of the large sieve would be

%5 |5 e ()

?~Q a=1 |m~M

2

< QP+ M) > am|*,

m~M

A crucial point here is that Lemma 3 implies this apart from (QM )"-factor
for M < Q°/*. We have in our type II sums max{M, X/M} < Q°/* in the
most difficult case Q = X/?~.

With standard techniques Lemma 3 implies

Lemma 5. Let n > 0. Then

2 *
Z¢q—2> Z max Zambnx(mn)

?~Q (g x (modg?) ﬁnf]\f[
1/2
2 (s X i V2 2 2
3/2 1/4 A
<X (@ 4+ M@ (@4 30" ) (T lan X I
m~M n<X/M
Using this and the classical large sieve, we have
DR DRI I S
1<k ¢(q°)
qE J(k mn€eA(q,k) mneA(q)
q N m~M mNM
<Tam T | % wbaom
X (mod ¢2) [mn€eA(q)
S meM (5)

+ Z Z Z Apmbpx (mn)

X (mod q) |mneA(q)

q ~Q m~M
X 1/2 X1/2 X X1- €/2
1/2 €/4
<0X@/+<M+M> o T o XM < = G



for M € [X? X'79 and Q € [X3, X'/27¢], which completes the proof of
(1). O
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