Turku Analysis Seminar


This is homepage of Turku Analysis Seminar.

Autumn 2014

  • 20.11. S. Chen: Characterizations of Hardy-type, Bergman-type and Dirichlet-type spaces on certain classes of complex-valued functions

    Autumn 2013

  • 5.8. X. Zhang: Riemann mapping theorem and comparison principle
  • 14.8. The Second Chinese-Finnish Seminar and Workshop on Modern Trends in Classical Analysis and Applications
  • 22.8. P. Hariri: Covering theorems
  • 28.8. I. Efraimidis: Variational Methods For Coefficient Problems
  • 29.8. P. Hariri: Simply connected regions
  • 5.9. P. Hariri: Homotopy
  • 12.9. P. Hariri: Local Homeomorphisms
  • 3.10. P. Hariri: Covering spaces
  • 10.10. M. Glader: Subdomain geometry of quasihyperbolic metric
  • 19.10. C. Yang: Analysis in the hyperbolic plane
  • 31.10. J. Chen: Fundamental group of an annulus
  • 7.11. J. Chen: Topological classification of Doubly connected regions
  • 21.11. J. Chen: Properties of cover transformations
  • 27.11. J. Chen: Orbit spaces
  • 5.12. J. Chen: Free homotopy and 3 way conditions

    Summer 2013

  • 28.6. M. Glader: Ahlfors' fundamental theorem
  • 4.7. M. Glader: Hyperbolic regions and the hyperbolic metric
  • 11.7. M. Glader: Classification of Hyperbolic regions
  • 18.7. M. Glader: Normal families, the hyperbolic metric of a punctured disk
  • 19.7. G. Wang: Hyperbolic metric in rectangles
  • 26.7. M. Glader: a negatively curved metric on C\{0,1}

    Spring 2013

  • 13.2. V. Ala-Mattila: Kleinian groups and John domains
  • 20.2. X. Zhang: Estimates for hyperbolic metric
  • 7.3. N. Marola: Aspects of local to global results
  • 8.3. J. Talponen: Smoothness of quasihyperbolic geodesics in Banach spaces
  • 26.4. H. Koivusalo: Dimension of uniformly random self-similar fractals

    Autumn 2012

  • 1.8. V. Ala-Mattila: Patterson-Sullivan measures and geometry of limit sets of geometrically finite Kleinian groups I
  • 2.8. G. Wang: Elliptic Partial Differential Equations VII
  • 8.8. V. Ala-Mattila: Patterson-Sullivan measures and geometry of limit sets of geometrically finite Kleinian groups II
  • 9.8. G. Wang: Elliptic Partial Differential Equations VIII
  • 13.8. X. Zhang: Elliptic Partial Differential Equations IX
  • 15.8. V. Ala-Mattila: Patterson-Sullivan measures and geometry of limit sets of geometrically finite Kleinian groups III (Notes for V. Ala-Mattila's talks)
  • 17.-18.8. The First Chinese-Finnish Seminar and Workshop on Modern Trends in Classical Analysis and Applications
  • 23.8. X. Zhang: Elliptic Partial Differential Equations X
  • 24.8. Y. Li: On quasimöbius maps and bilipschitz extensions in real Banach spaces
  • 31.8. X. Zhang: Elliptic Partial Differential Equations XI
  • 7.9. X. Zhang: Elliptic Partial Differential Equations XII
  • 4.10. D. Kalaj: Cauchy transform and Poisson equation
  • 1.11. D. Aalto: Stability of Muckenhoupt weights using Gurov-Reshetnyak functions
  • 8.11. L. Ihnatsyeva: Hardy inequalities for functions in Triebel-Lizorkin spaces
  • 29.11. V. Ala-Mattila: Patterson-Sullivan measures and rank one symmetric spaces

    Spring 2012

  • 13.1. L. Ruotsalainen, S. Hokuni: Problems in Function Theory with Python and MATLAB
  • 19.1. X. Zhang: Quasihyperbolic geometry of planar domains I
  • 26.1. X. Zhang: Quasihyperbolic geometry of planar domains II
  • 2.2. I. Prause: Rectifiability of quasispheres
  • 9.2. X. Zhang: Quasihyperbolic geometry of planar domains III
  • 16.2. E. Harmaala: On Ptolemy's theorem, Jordan arcs, the Lic. thesis of Pasi Seittenranta, and related results
  • 27.2. H. Koivusalo: Estimating the Hausdorff dimension
  • 1.3. G. Wang: Sharp Lipschitz constant for the distance ratio metric
  • 7.3. T. Iwaniec: Harmonic Mappings and the Dirichlet Integral
  • 15.3. S. Hokuni: Fundamentals of image processing
  • 22.3. V. Manojlovic: Gromov hyperbolicity and quasihyperbolic geodesics
  • 29.3. L. Ruotsalainen: Intensity transformations
  • 5.4. L. Ruotsalainen: Spatial filtering
  • 12.4. S. Hokuni: Fuzzy techniques
  • 19.4. E. Harmaala: Image restaration I
  • 20.4. H. Hakula: On Numerical Approximation of Moduli of Quadrilaterals and Ring Domains, abstract
  • 27.4. E. Harmaala: Image restaration II
  • 9.5. J. Gong: Differentiable Structures on Metric Spaces
  • 24.5. K. Fässler: Hausdorff dimension and projections in the Heisenberg group, abstract
  • 8.6. G. Wang: Elliptic Partial Differential Equations-Lect. I
  • 12.6. G. Wang: Elliptic Partial Differential Equations-Lect. II
  • 21.6. G. Wang: Elliptic Partial Differential Equations-Lect. III
  • 12.7. G. Wang: Elliptic Partial Differential Equations-Lect. IV
  • 19.7. G. Wang: Elliptic Partial Differential Equations-Lect. V
  • 26.7 G. Wang: Elliptic Partial Differential Equations-Lect. VI
  • 18.7 Xiaohui Zhang: Distortion of quasiconformal mappings with identity boundary values
  • 25.7 Manzi Huang: On quasisymmetric maps and uniform domains in real Banach spaces

    Autumn 2011

  • 25.7. D. Kalaj: Harmonic maps between annuli
  • 25.7. S. Ponnusamy: Bohr´s inequality
  • 26.7. X. Zhang: Quasihyperbolic metric and Möbius transformations
  • 26.7. G. Wang: Bisection of Geodesic Segments in Hyperbolic Geometry
  • 26.7. B. Bhayo: Inequalities for eigenfunctions of the p-Laplacian
  • 4.8. R. Klén: Quasihyperbolic geometry
  • 9.8. M. Huang: Decomposition properties of uniform domains and John domains In Banach space
  • 9.8. A. Rasila, J. Talponen: Convexity properties of quasihyperbolic balls on Banach spaces
  • 26.8. S. Ponnusamy: Introduction to Hamronic Mappings
  • 30.8. P. Hästö: Structural Similarity Index
  • 30.8. M. Huang: On quasimöbius maps and uniform domains in real Banach spaces
  • 1.9. S. Ponnusamy: Harmonic mapping II
  • 8.9. S. Ponnusamy: Harmonic mapping III
  • 15.9. S. Ponnusamy: Harmonic mapping IV
  • 20.9. J. Lehrbäck: Hardy's inequality
  • 6.10. S. Ponnusamy: Harmonic mapping V
  • 11.10. S. Simic:
  • 4.10. Á. Baricz: An Orthogonal Polynomial Approach to the Generalized Marcum Q-function
  • 20.10. S. Ponnusamy: Harmonic mapping VI
  • 27.10. V. Manojlovic: Boundary modulus of continuity and quasiconformal mappings
  • 27.10. Y. Li: Local properties of quasihyperbolic and freely quasiconformal mappings
  • 10.11. B. Bhayo: On the generalized trigonometric functions
  • 1.12. G. Wang: Apollonian metric in strip
  • 8.12. B. Bhayo: Inequalities involving generalized trigonometric functions

    Spring 2011

  • 12.1. Barkat Bhayo Preliminaries
  • 20.1. Barkat Bhayo General properties
  • 27.1. Barkat Bhayo Convex regions
  • 3.2. Xiaohui Zhang Convex regions I
  • 17.2. Xiaohui Zhang Convex regions II
  • 24.2. Xiaohui Zhang
  • 23.3. Riku Klén: Inclusion relations of hyperbolic type metric balls III
  • 27.4. Barkat Bhayo Harmonic univalent functions
  • 4.5. Barkat Bhayo Extremal problems
  • 11.5. Barkat Bhayo Extremal problems II
  • 20.5. Xiaohui Zhang Mapping problems
  • 25.5. Xiaohui Zhang Mapping problems II
  • 1.6. Xiaohui Zhang Additional topics

    Autumn 2010

  • 9.9. Toshiyuki Sugawa: On hyperbolic metric of the sphere with four conic singularities
  • 23.9. Barkat Bhayo: Norm inequalities for vector functions
  • 7.10. Xiaohui Zhang: Holder concavity and inequalities of the Jacobian elliptic functions
  • 14.10. David Kalaj: On Lipschitz continuity quasiconformal maps and PDE
  • 11.11. Vladimir Dubinin: On majorization principles for meromorphic functions
  • 2.12. Barkat Bhayo: Generalized trigonometric functions

    Spring 2010

  • 13.1. Daniel Aalto: A generalization of a maximal operator result by Hardy and Littlewood
  • 20.1. Lizaveta Ihnatsyeva: Brezis type characterizations of Sobolev spaces
  • 10.2. Barkat Bhayo: Equivalence of the Apollonian and its inner metric I
  • 17.2. Barkat Bhayo: Equivalence of the Apollonian and its inner metric II
  • 24.2. Barkat Bhayo: Equivalence of the Apollonian and its inner metric III
  • 10.3. Riku Klén: Inclusion relations of hyperbolic type metric balls I
  • 28.4. Riku Klén: Inclusion relations of hyperbolic type metric balls II
  • 4.5. Ville Suomala: Thick and thin sets for doubling measure
  • 6.5. Vesna Manojlovic: Distortion of two point normalized quasiconformal mappings
  • 26.5. Lizaveta Ihnatsyeva: Traces of Sobolev spaces to Ahlfors regular subsets

    Contact person: Riku Klén