QUANTIFICATION OF OXYGEN CONSUMPTION IN SKELETAL MUSCLE WITH PET AND OXYGEN-15 BOLUS

1V.Oikonen, 2P.Peltoniemi, 1H.Sipilä, 1T.Tolvanen, 2P.Nuutila, 1U.Ruotsalainen
1Turku PET Centre and 2Dept. of Medicine, University of Turku, Finland

BACKGROUND

High myoglobin content and low blood flow in skeletal muscle invalidates the results of the steady-state and bolus $[^{15}O]O_2$ inhalation models developed for brain and myocardium.

THEORY

We developed a new compartmental model for muscle oxygen studies (fig. 1). Myoglobin bound $[^{15}O]O_2$, and both arterial and venous radioactivity concentrations are included in this model. The extraction of oxygen and water is assumed to be 1. Oxygen consumption i.e. muscle metabolic rate of oxygen (MMRO$_2$) is calculated as blood flow\timesOER$\times[^{15}O]O_2$ in arterial blood.

METHODS

Femoral MMRO$_2$s were estimated from 5-min bolus $[^{15}O]O_2$ inhalation PET studies of seven healthy persons. For comparison, whole leg MMRO$_2$ was estimated also from blood flow and OER measured with bolus of $[^{15}O]H_2O$ and arteriovenous oxygen difference. Four of the subjects performed constant light exercise with the knee extensors of one leg through both PET studies.

PET examinations were made with ECAT 931/08-12. Images (fig. 2) were reconstructed with a new iterative MRP method, which effectively reduces noise in the images (Ref. 1).

Parameters for model (K$_f$=flow, k$_b$, k$_3$ and V$_p$) were estimated with a non-linear least-squares method utilizing a new global minimization algorithm (Ref. 2). $[^{15}O]H_2O$ studies were analyzed as described before (Ref. 3).

RESULTS

Example radioactivity concentration curves of resting and exercising muscle from a $[^{15}O]O_2$ study are in fig. 3 and 4. Especially in resting muscle the contribution of myoglobin bound and venous $[^{15}O]O_2$ is considerable.

The results of $[^{15}O]O_2$ bolus studies from resting (left leg, n=7) and exercising (right leg, n=4) rectus femoris (Table 1) were in good agreement with the values found in literature.

<table>
<thead>
<tr>
<th>Table 1. Results of $[^{15}O]O_2$ studies in rectus femoris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (mL/min/dL)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>3.8±1.3</td>
</tr>
<tr>
<td>OER (0.35±0.18)</td>
</tr>
<tr>
<td>V$_p$ (%)</td>
</tr>
<tr>
<td>MMRO$_2$ (mL/ min/dL)</td>
</tr>
</tbody>
</table>

MMRO$_2$s in whole leg ROIs correlated well (r=0.96, p=0.0005) with the values calculated using A-V oxygen differences (fig. 5). Also the correlation (r=0.97, p=0.0002) between blood flow values from $[^{15}O]O_2$ and $[^{15}O]H_2O$ bolus studies was very good (fig. 6).

CONCLUSIONS

Oxygen consumption of skeletal muscle can be quantified with a single PET study after $[^{15}O]O_2$ bolus inhalation.

Prerequisites of successful parameter estimation are: 1) good quality PET images even with very low radioactivity concentrations, 2) the homogeneity of muscle regions of interest, and 3) a global minimization procedure, which does not fall into local minima.

REFERENCES

Fig. 2. PET images of femoral region after $[^{15}O]H_2O$ (integrated over 250 sec) and $[^{15}O]O_2$ bolus (integrated over 300 sec), including the muscle and whole leg ROIs in resting (left) and working leg (right).

Fig. 3. Measured and fitted time-activity curves from a resting muscle (left rectus femoris). Note the high contribution to overall radioactivity from venous blood.

Fig. 4. Measured and fitted time-activity curves from a resting muscle (right rectus femoris). Note that the radioactivity concentration is five times higher in resting muscle.

Fig. 5. Correlation of MMRO$_2$ from $[^{15}O]O_2$ (bolus method and from A-V oxygen differences) and $[^{15}O]H_2O$ measurements.

Fig. 6. Correlation of blood flow from $[^{15}O]O_2$ bolus method and from $[^{15}O]H_2O$ measurements.