Chapter I
CONFORMAL GEOMETRY

This chapter is devoted to a study of some geometric quantities that remain
invariant under the action of the group of Mobius transformations or under one of its
subgroups. Examples of such subgroups are (1) translations, (2) orthogonal maps, (3)
self-maps of R} = {z € R" : z, > 0}, and (4) spherical isometries. The M&bius
invariance of the absolute (cross) ratio is of fundamental importance in such studies.

The following three metric spaces will be central to our discussions: (a) the
euclidean space R", (b) the Poincaré half-space R? = H™, and (c) the M&bius
space R* =R" U {oo} . Each of these metric spaces is endowed with its own natural
metric that is invariant under rigid motions of the space. In the particular case of
R , the invariant (hyperbolic) metric is often convenient in computations.

This chapter is partly expository in character. Some results, for instance vari-
ous well-known properties of Mébius transformations in R"™, are presented without
proofs. For these results and further information on Mébius transformations the reader
is referred to Chapter 3 in A. F. Beardon’s book [BE| as well as to L. V. Ahlfors’ lecture
notes [A5].

1. Mobius transformations in n-space

For z€ R™ and r >0 let
B"(z,r)={zeR":|z—z|<r},
§" Yz,r)={z€R":|z—2| =1}
denote the ball and sphere, respectively, centered at z with radius r. The abbrevia-
tions B™(r) = B"(0,r), S""1(r) = S*"(0,r), B" = B"(1), S"~! = S""1(1) will



be used frequently. For t € R and a € R™\ {0} we denote
Pla,t)={z€R”:z-a=1t}U{co}.

Then P(a,t) is a hyperplane in R™ = R™ U {co} perpendicular to the vector a, at

distance t/|a| from the origin.

1.1. Definition. Let D and D’ be domains in R™ and let f: D — D' be a
homeomorphism. We call f conformal if (1) f € C', (2) J¢(z) #0 forall z€ D,
and (3) |f'(z)h| = |f'(z)||h| for all z € D and all h € R*. If D and D’ are
domains in R", we call a homeomorphism f: D — D’ conformal if the restriction of
f to D\ {co, f~1(c0)} is conformal.

1.2. Examples. Some basic examples of conformal mappings are the following
elementary transformations.
(1) A reflection in P(a,t):

f1(:1:) =x—2(:c-a,——t)1zaﬁ, f1(c0) = c0 .

(2) An inversion (reflection) in S™~!(a,r):
r?(z—a
falz) = a+—1—5———-}, f2(@) = 00, fafo0) = a.
z — al
(3) A translation f3(z) =z+a, a€R", fz(oo) =c0.
(4) A stretching by a factor £ > 0: fs(z) = kz, fi(c0) = co.

(5) An orthogonal mapping, i.e. a linear map f5 with

|[fs(z)| = |2|, f5(c0) = oo

1.3. Remark. The translation z +— z + a can be written as a composition of
reflections in P(a,0) and P(a,z|a|?) . The stretching z — kz, k > 0, can be written
as a composition of inversions in S"~!(0,1) and S™~1(0,v%) . It can be proved, that
an orthogonal mapping can be composed of at most 7 4 1 reflections in planes (see
[BE, p. 23, Theorem 3.1.3]).

1.4. Exercise. Let f be an inversion in S™ !(a,r) as defined in 1.2(2). Show
that f~! = f and that |z — a||f(z) —a| =72 forall z € R™\ {a}. By considering
similar triangles show that the following identity holds for z,y € R"\ {a} :

r2lz — y|
[z ally—af

(1.5) |f (=) — flw)| =



1.6. Exercise. For z,y € R"\ {0} let p(z,y) = |z — y|?/(|z||ly|) . Applying
(1.5) show that p(z,y) = p(f(z), f(y)) if f is a stretching or an inversion in S™!(r),
r>0,

1.7. Definition. A homeomorphism f: R" — R" is called a Mébius transfor-
mation if f =g;0---0g, where each g; is one of the elementary transformations in
1.2(1)-(5) and p is a positive integer. Equivalently (see 1.3) f is a Mobius transfor-
mation if f = hjo-.-oh,, whereeach h; is a reflection in a sphere or in a hyperplane

and m is a positive integer.

It follows from the inverse function theorem and the chain rule that the set of all
conformal mappings of R™ is a group. It is left as an easy exercise for the reader to
show that the set of all M&bius transformations constitutes a subgroup of the group of

conformal mappings, and we denote it by GM(R™) or GM . Further, we shall write
GM(D)={feGMR"): fD=D}

for D c R™. We denote by O(n) the set of all orthogonal maps in R®. A map f in
GM with f(oo) = oo is called a similarity transformation if |f(z) — f(y)| = c|z — y|

for all z,y € R™ where ¢ is a positive number.

1.8. Definition. Let D and D’ be domains in R". We call a C!-homeomor-
phism f: D — D' sense-preserving (orientation—preserving) if J;(z) > 0 for all
z € D\ {oo, [ (o0)}. I Jp(z) <O forall z € D\ {0, !(c0)} then we call f

sense-reversing (orientation—reversing).

One can show that reflection in a hyperplane or in a sphere is sense-reversing and
hence the composition of an odd number of reflections. The composition of an even
number of reflections is sense-preserving. For these results the reader is referred to
[RR, pp. 137-145]. The set of all sense-preserving Mdbius transformations is denoted
by M(R") or M. Alsowelet M(D)={feM:fD=D} if DcR".

1.9. Remark. One can extend Definition 1.8 so as to make it applicable to a
wider class of mappings (including quasiregular mappings). This extended definition
makes use of the topological degree of a mapping, which will be briefly discussed in

Section 9.



It will be convenient to identify R™ with the subset {z € R™ : z,,; = 0}U{oco}
of R**!. The identification is given by the embedding

~

(1.10) z— = (T1,...,Zn,0); z=(Z1,...,2p) ER".

We are now going to describe a natural two-step way of extending a Mobius
transformation of R™ to a M&bius transformation of R"*+!. First, if f in GM(R™)
is a reflection in P(a,t) orin S™ 1(a,r), let ? be a reflection in P(ga", t) or S”'(ﬁ, r),

respectively. Then if z € R™ and y = f(z), by 1.2(1)-(2) we get

——

(1.11) 7(x1,...,xn,0) = (Y1,.--,Yn,0) = f(z) .

By (1.11) we may regard 7 as an extension of f. Note that 7 preserves the plane
Zp+1 = 0 and each of the half spaces z,4+; > 0 and z,4+1; < 0. These facts follow
from the formulae 1.2(1)—(2). Second, if f is an arbitrary mapping in GM(R™) it
has a representa.tlon f= f1 o---0 fy, where each f; is a reflection in a plane or a
sphere. Then f f 10+:0 f m is the extension of f, and it preserves the half spaces
Tpt1 > 0, Tpy < 0, and the plane z,4; = 0. In conclusion, every f in Q.M(R“)
has an extension f in GM@R" ). It follows from 1 [BE, p. 31, Theorem 3.2.4] that
such an extension f of f is unique. The mapping f is called the Poincaré extension
of f. In the sequel we shall write z, f instead of 7, f , respectively.

Many properties of plane Mobius transformations hold for n—dimensional Mé&bius
transformations as well. The fundamental property that spheres of R™ (which are
spheres or planes in R"™, see Exercise 1.25 below) are preserved under Mébius trans-

formations is proved in [BE, p. 28, Theorem 3.2.1].

1.12. Stereographic projection. The stereographic projection m: R" —
S™(%en+1,3) is defined by

T — €pil

.13 =  EE—
(1.13) 7(z) = ept1 + o eni?’

z€R"; m(c0) = ept1 -
Then 7 is the restriction to R™ of the inversion in S™(eny1,1). In fact, we can
identify 7 with this inversion. Because f~! = f for every inversion f, it follows that
7 maps the “Riemann sphere” S"( €n+1, 2) onto R™.

The spherical (chordal) metric ¢ in R™ is defined by

(1.14) 4(z,y) = |n(z) —7(y)|; z,y € R,



where 7 is the stereographic projection (1.13). From the definition (1.13) and by (1.5)

we obtain

_ |z - y] ,
(1.15) ) ¢Lqﬂ2VLHm2’%#m#y’

I, Oo0) == ——rmrmmm— |
1220 = T

Diagram 1.1. Formulae (1.13) and (1.14) visualized.

For z € R™\ {0} the antipodal (diametrically opposite) point Z is defined by

~ T
1.16 = ————
and we set & =0, 0 = oo . Then, by (1.15), ¢(z,%) =1 and hence m(z),n(Z) are

indeed diametrically opposite points on the Riemann sphere.

1.17. Exercise. It follows from (1.15) that ¢(z,y) < min{1,|z —y|} is always
true. Applying (1.5) show that

T oy |z — y|
Ty} = P <
() = (5 ) < o)
holds for z,y € R™\ {0}. Show also that
|z -y 2|z —y|

Traa ) = Y < TF R 1)

for all z,y € R™. Show that ¢(z,y) > %]z —y| for z,y € B® and that ¢(z,y) =
1|z —y| for z,y € 6B™.



1.18. Exercise. (1) For 0 < t < 1 let w(t) = t/v/1—t2. Show that
g(0,w(t)e;) =t and that

for O<s<t<-%\/§.
(2) Let z,y € B™® with s =¢(0,z), ¢t = ¢(0,y) . Show that

q(z,y) < sV1—t2+t/1—52 < t+s.

(8) Let z,y € R™\ {0} with ¢(0,z) > ¢(0,y). Show that the strict inequality

g(z,y) > ¢(0,z) — ¢(0,y) holds.
(4) Show that for z,y,z € B", z # 2,

1 |le—yl _ al=y) V3 lz=ul

V2 |z—2 7 a(z,2) T T |z—a”

1.19. Definition. Let (X;,d:) and (X3, ds) be metric spaces and let f: X; —
X, be a homeomorphism. We call f an isometry if da(f(z), f(v)) = d1(z,y) for all
T,y € X;. Amap f in GM(R") is called a spherical isometry if q(f(z), fly)) =
g(z,y) forall z,y € R". A similarity transformation f is called a euclidean isometry
if |f(z) - f(y)| =|z—y| forall z,y eR™.

Orthogonal mappings and inversion in S™~! are examples of spherical isometries,

while the translation =z — =z + e; and the stretching z — —é-:z: are not spherical
isometries (see 1.54). Reflection in a hyperplane and translations are examples of

euclidean isometries.

1.20. Remark. The inversion

2(z — en+1)

o= enil? €R™; mao0) = eny1,

T2(z) = ent1 +

is also sometimes called the stereographic projection. It maps R"™ onto S™ so that
79(0) = —ent1, T2(00) = €py1 and wp(S™!) = S™~!. From (1.5) it follows that the
spherical metric ¢ in (1.14) can be defined in terms of 73 as ¢(z,y) = |m2(z)—m2(¥)|,
z,y € R®. We can identify 7, with the inversion in S™(en41,v2). We see that
7, maps the half space z,11 < 0 onto B™*! in such a way that ws(—e,y;) =0,

7!'2(0) = —€pn41 .



€n-1

7o(z)

—€n41

Diagram 1.2.

1.21. Balls in the spherical metric. For z € R® and r € (0,1) we define
the spherical ball

(1.22) Q(z,r) ={z€R™: q(z,2) <r}.

Its boundary sphere is denoted by dQ(z,r) . From the Pythagorean theorem it follows
that (cf. (1.16))

(1.23) Q(z,r) =R"\ Q(F,V1—r2?).

€n4-1

(Z)
R™
z 0 z  Q(z,r)

Diagram 1.3.

To gain insight into the geometry of spherical balls @(z,r) it is convenient to

study the image mQ(z,r) under the stereographic projection 7 (see the diagram).
Indeed, by definition (1.14) we see that

7Q(z,r) = B" ' (n(z),r) N S™(Sent1, 3)-



Either by this formula or more directly by the definition of the spherical metric (plus
the fact that Mdbius transformations preserve spheres) we see that in the euclidean
geometry, Q(z,r) is a point set of one of the following three kinds

(a) an open ball B"(u,s),

(b) the complement of B" (v,t) in R",

(c) a half-space of R™.

Clearly, 0Q(z,r) is either a sphere or a hyperplane of R™. Formula (1.23) shows,
in particular, that 7Q(z,1/+/2) is a half-sphere of the Riemann sphere S "(ent1,3) -

1.24. Remark. In complex analysis, the spherical metric is often defined in the

following way. If v is a rectifiable curve in R"™ set

_ |dz|
o) = L 1+ |z|2

o(z,y) = i%f o(v)

and for z,y € R™ define

where ~ runs through the collection of all rectifiable curves v with z € ~ and
y € v. In a natural way this definition is extended then to all z,y € R™. It is
easy to show that o(z,y) is a metric on R™. Making use of (1.15) one can show that
o(z,y) = a(h(z),h(y)) if h is a spherical isometry. This spherical metric is equivalent
to the metric ¢ . In fact, the two relationships

o(z,y) = 2arcsin¢(z,y) ,
1< o(2,9) < =4arctanl,
a(z,y)

hold for all distinct z,y € R".

1.25. Exercise. (1) Show that {z € R* : z, > 0} = Q(e,, 1/v/2), B" =
Q(0,1/v2), R™\ B® = Q(c0, 1/v2), Q(0,r) = B*(r/v/1—r%), and B"(t) =
Q0,t/v/1+¢2). f t € (0,1), z =te;, y = i_{_iel, show that =z, T, eg, —ea €
8Q(y, 1/v3)

(2) Show that Q(te;, 1/v/2) = B™(uey, r) , where u = 2t/(1 —¢%), r
(1+t2)/(1 —¢?), provided t € (0,1) . Discuss also the case ¢ € (1,00).

(8) Find ¢(Q(z,r)) and ¢(@Q(z,r)), the spherical diameters of Q(z,r) and
dQ(z,r) , respectively, for z € R®, r € (0,1). [Hint: Consider first the case r <

1/v2 ]

il
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(4) Show that if z € R™, then there exists ¢ € S®™! such that ¢ and —e are
in 8Q(z, 1/v/2). Conclusion: If Q(z, 1//2) = B*(a,r), then r2 = 1+ |a|®. Show
conversely that ¢(B™(b,1/1+[b[?)) =1 forall b€ R".

1.26. Absolute ratio. For an ordered quadruple a,b,c¢,d of distinct points in
R" we define the absolute (cross) ratio by

q(a, c) g(b, d)
q(a,b) q(c,d) ~

It follows from (1.15) that for distinct a,b,c,d in R™

(127) l a, b7 ¢, d l =

ja—cl]p—d

|a,b,e,d| = e =b[c=d "

One of the most important properties of M6bius transformations is that they preserve
absolute ratios, i.e. if f € GM, then

(1.28) | 7(a), 7(8), f(c), f(d) | = | a,b,c,d]

for all distinct a,b,¢,d in R™. As a matter of fact, the preservation of absolute ratios
is a characteristic property of Mdbius transformations. It is proved in [BE, p. 72,
Theorem 3.2.7] that a mapping f: R® — R" is a M&bius transformation if and only
if f preserves all absolute ratios. It follows from (1.28) that |a,b,¢,d| = X if and
only if there exists an f in GM with

(1.29) fla) =0, f(b)) =e1, f(d) =0, |f(c)| =A.

By property (1.28), the absolute ratio is §M(R™)—invariant. Besides the absolute
ratio we shall consider later some other GM(R")- or GM(D)-invariant quantities.
For instance, |a—b|/|a—c| and d(E)/d(0,E), E C R™\{0}, are M(R")~invariant

quantities.

1.30. Remark. The absolute ratio depends on the order of the points. In fact,

1
0 - I ——
! 3813$700|' |$t ‘0,.’8,81,00; ’
1
0 = — R —
I 731,00,"51 I:’B ell |0,00,61,.'Bl’
|z| 1

0 = = .
0,00, 7, €1 |z —e] ]0,z,00,¢1|

A thorough discussion of the complex cross-ratio can be found in [BE, pp. 75-78].
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1.31. Exercise. Let f bein GM such that f(0) =0, f(e;) =e;, and
f(c0) = co. Show that f is an orthogonal mapping. [Hint: Apply (1.28).]

1.32. Exercise. For a,b,c,d € R" let
q(a,d)* g(b, c)?
(a,b) q(b,d) g(a,¢) g(e,d) °’
sf(a,b,¢,d) = s(f(a),f(b),f(c),f(d)) .
Then s is symmetric: s(a,b,¢,d) = s(d, b,¢,a) = s(b,a,d, c) = s(a,c,b,d) . Show that

s is GM(R"™) —invariant, i.e.

s(a,b,¢,d) = .

(1.33) sf(a,b,c,d) = s(a,b,c,d)

whenever a,b,c,d € R® and f € M. Applying (1.15) show that s(0,z,y,00) =
|z — y|?/(|zlly|) . It should be noted that the invariance property in Exercise 1.6 is
a special case of (1.33). [Hint: Show that s(a,b,c,d) is the product of two absolute

ratios.|

1.34. Automorphisms of B™. We shall give a canonical representation for
the maps in M(B™). Assume that f is in M(B") and that f(a) = 0 for some
a € B™. We denote

(1.35) ot = -i—:—lg , a € R"™\ {0}

and 0* = 0o, co* =0. Fix a € B®\ {0} . Let
(1.36) oa(z) = a* +r¥(z —a*)*, r¥ = |a|72 -1

be an inversion in the sphere S™~!(a*,r) orthogonal to S™!. Then o¢,(a) =0,

oa(a*) = 0.

Diagram 1.4.
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Let p, denote the reflection in the (n — 1)-dimensional plane P(a,0) through the
origin and orthogonal to a and define a sense—preserving Mébius transformation by
Ty =pgaoo, . Then, by (1.36), T,B® =B", T,(a) =0, and with e, = a/|a|] we have
Tolea) = €a, To(—€a) = —eq. For a = 0 we set Tp = id, where id stands for the
identity map. The proof of the following fundamental fact can be found in [A5, p. 21],
[BE, p. 40, Theorem 3.5.1].

1.37. Lemma. If g € GM(B"), then there is k € O(n) such that g = ko T,
where a = ¢g~1(0).

1.38. Definition. Let (Xi,d;), (X2,d2) be metric spaces, let f: X; — X3 be
continuous and let L > 1. We say that f is L-Lipschitz if

d2(f(x): f(y)) S Ld1(x,y)

for all z,y € X;. The least constant L with this property is denoted by Lip(f). If,

in addition, f is a homeomorphism and

di(z,y)/L < dy (£(2), f(y)) < Ldi(z,y)

for all z,y € X3, we say that f is L-bilipschitz or that f is an L—quasitisometry.
We call f a Lipschitz (bilipschitz) mapping if it is L-Lipschitz (resp. L-bilipschitz)

for some L >1.
If h€ GM and z € R™ we sometimes write hz instead of h(z).

1.39. The Lipschitz constant of T,|B". Let T, = p, oo, be as in 1.34,
a € B™\ {0}. Since p, is a reflection in a plane and hence preserves euclidean
distances, it follows that [Tz —T,y| = |6ez—0ay|. As |a|"! =1 < |z—a*| < |a|~! +1
for all z € B™, using (1.5) we get

|Tuz — Tay| < (1_|i1|!a|>2(|a|—2_1)|93—y| = Tl

lal N2/ -2 1 — |af
- > - —yl = —
}Ta.x Tayl = (1 T |al) (ia'l 1)}‘73 yl 1+ Ia'l I yi
for all z,y € B™. Hence
) |Toz — Toy| 1+ |al
B") = FI- AR —— A n <
Lip(T,|B") sup{ P z,y€B ,x;éy} S 107l
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In fact,

1+ |al

(1.40) Lip(To|B") = Lip(Ta[s™) = 1715

as we see by applying (1.5) to a pair of points =,y € S™! with |z — a*| = |y — a*|
and then letting |z —a*| — |a|7' —1. As Ty =T, it follows from (1.40) that
T.|B™ is bilipschitz with the constant (1 + |a|)/(1 — |a]).

1.41. Exercise. (1) Show that

|z -yl

Toy| = —— 2
=91 = Gy ==

for all z,y € B™. [Hint: Apply (1.5).]

(2) Let r € (0,1). Find the “Mdbius center” of the segment [0,re;], i.e. the
point a € (0,re;) such that To(0) = —Ta(rey) where T, is as in 1.39. [Hint: First
observe that |Tu(a) — T,(0)| = |Tu(re1) — To(a)| and hence, by the definition of T,
a similar equality holds with ¢, in place of T,. Next apply (1.5) to o, to obtain
la| = r/(14++/1 = rZ) . Note that the point & can be found by a geometric construction,
as in the next diagram.]

—e1 €1

Diagram 1.5.

1.42. Exercise. (1) Show that if ¢ € (0,37), z, = (cosip, sinp), y, =

(cosp, —siny) then there exists a Mdbius transformation T,: B2 — B2 with The; =
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e1, Ta(—e1) = —e1, To(zy,) = €2 = —Ta(y,) , and Lip(T,|B2) = cot %go. [Hint: By
1.39 we see that a* = ]}%,Tel and eg, z,,, & must be collinear. Now I—;—[ = tan(m+2p),
i—f{% = cot 2y, and the result follows from (1.40).]

(2) Let p € (0,37), Fpo={z€ 8" !:2y =cosp},and let T, € M(B™) with
T.F, = F,. Show that a = (cot %w)zel . Assume next that 0 < a < g8 < %ﬂ' and
TyFo = Fs. Find b.

1.43. Exercise. (1) Let 0 <s < 1. Applying (1.5) as in 1.39 show that

L o=yl < [Tao—Tugl < ——lo—y]
(1"{"32)2:6 .TI i al be ...1_32 y
for all a,z,y€ B (s).

(2) For a,z € B™ with a# 0 and e, = a/|a| show that

|Taz| < |To(-l|z]ea)] .

1.44. Spherical isometries. We are now going to study the action of spherical
isometries, proving a representation for them similar to that of GM(B™) in 1.37. By
(1.40) and 1.37 we see that g € GM(B"*?!) is a euclidean isometry iff g(0) = 0. Next
we we shall reformulate this fact for maps in GM(R"). Let p be the reflection in the
hyperplane z,4; = 0 and f; the inversion in S"(en+1,\/_2_) ,andset f = fiop. Then
R =B and f(eny1) =0, q(z,y) = 1f(z)—f(y)| for all z,y € R". Assume

o~

now that h € GM(R") is given and that h € GM(R"+!) is its Poincaré extension.

o~

We see that © = foho f~! € GM(B™1) is a euclidean isometry if and only if
%(en+1) = ép+1 . One can show that A is a spherical isometry iff %(en.H) = ept1
(see [BE, p. 42, Theorem 3.6.1]). In particular, the inversion in S*~(a,r) C R" isa

spherical isometry iff e 41 € S™(@,r) C R*H1, ie. iff
(1.45) r? =1+ |al?

We recall (see (1.23), 1.25) that by virtue of (1.45) B"(a,r) = Q(z, 1/v/2) for some
zeR™.

We define a spherical isometry ¢, in M(ﬁ”) which maps a given point z € R"
to O as follows. For 2z = 0 let t; = id and for z = 0o let t, = po f, where f
is inversion in S™~! and p is reflection in the (n — 1)-dimensional plane z; = 0.
For z € R"\ {0} let s, be inversion in S™~!(—z/|z[%,r), where r = /1 + |2[~2.
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According to the criterion (1.45) the inversion s, is a spherical isometry and it is

easy to show that s,(z) =0. Let p, be reflection in the plane P(z,0). Defining
(1.46) ty=psos,

we see that ¢, € M(R") is a spherical isometry with tz(2) = 0. Hence

t2(Q(z,7)) = Q(0,r) = B™ (r/\/ 1- r2) ,

el = T2

(1.47)

for all z,z € R™, r € (0,1).
In the above discussion we showed that the inversion s, is a spherical isometry

by exploiting a result from [BE]. Next we shall show this by a direct computation.

1.48. Lemma. For a point z € R™\ {0} let s, be the inversion in the sphere
S™=1(—z/|2|%,4/1+ |2|=2) . Then s.(z) =0 and s, is a spherical isometry.

Proof. It is easy to show that s.(z) =0. By (1.5) we obtain for =,y € R™

I ¢ ol e 1 | I ¢ 0 7 i |
|z +2/2]*] ly + 2/1=1?]  |=—Zlly -2

|s2(z) — s2(v)|

]

where Z = —z/|z|? as in (1.16). Further by (1.5)

) — gy At [ANE =2 |z

|y — 2|
S\ YN =1 -
Iz( )I tzHy__z‘

Substituting these identities into (1.15) we obtain

B lsz(ﬂ_l_) — $2(y)|
0(s2(2), 2(v)) = —= +Js2(z)[7 V1 + [sx(y)?
_ (1 +]z)ls—y] :
VIl =27 + o= 2P /2Py — 27 + |y — 2°

(1.49)

By the Pythagorean theorem |7 (z) — 7(2)|® + |7(z) — 7(Z)|?> = 1 or, equivalently,
q(z,2)% + q(z,7)2 =1 or

|z — 2|2 EE¥ik

AP+ A+ =P+l
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Diagram 1.6.
This yields
Lol Je=F _Joal | sflo— P2
(1.50) 14+ 22 14272 1+ 2|2 1+ |22
1_|_Iy|2 — ly—:z:lz Izlzly'—le

1+ |2|? 14|22

By substituting (1.50) into (1.49) we obtain

a(s2(z),8:()) = a(z,y) ,

showing that s, preserves the spherical distance between points z,y in R™. It is left

as an exercise for the reader to prove the case when z or y equals co. (O

1.51. Lemma. A Mobius transformation h is a spherical isometry if and only
if tygyoh€ O(n).

Proof. Assume that ~ € GM is a spherical isometry. Then [ = th(o) oh €
GM(B™) with f(0) =0, and hence f &€ O(n) by 1.37. The converse implication is

trivial. O

In some questions it is useful to apply the following tsometric decomposition of an

inversion, which follows from [BE, p. 31, Theorem 3.2.4].
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1.52. Lemma. Let a € R™, r > 0, and let b € R™, u > 0, be such that
B™(a,r) = Q(b,u). If f is the inversion in S™ '(a,r), then
f=ttofroty,

where ty is the spherical isometry defined in (1.46) and f; is the inversion in

St 1(u/v1—u?) =08Q(0,u).

€n-1

B"(a,r) = Q(b,u)

Diagram 1.7.
1.58. Exercise. Show that B"(a,r) and B™(v), where 7% < 1+ |a|?,
2r
V(L + (la] +7)2) (1 + (Ja[ = 7)) +1+]af? —r?

have equal spherical diameters. Note that v < 1. Conclusion: The inversion f; in

1.52 is in fact the inversion in a euclidean sphere with radius v and center 0.

1.54. Lemma. Each of the following Mdébius transformations is a bilipschitz
mapping in the spherical metric with the given constant:

(1) f(z)=ke, k>1: Lip(f) =k.

(2) The inversion in S™ 1(t), t € (0,1): Lip(f) =t~2.

(8) The inversion in S™ (a,r), r? <1+]al?:

tip(s) = (YLTE QLTI (=) 1o )

(4) f(z)==z+0b: Lip(f) =1+ 3(b| (]| + /4 + [B]2) .
Proof. (1) Clearly fB™(%) =B™. If 7, is the map in 1.20, then
75 'B™(L) = 8™ N B™(~ent1, 2/V1+k2) = A

and mB" =8"={z€ 8" : 2,41 <0}.
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€n+1

N
—€n41 2/ V' 1+ k2

Diagram 1.8.

Hence mgofomy;': S™ — S™ maps A onto S™. Let a be the angle between [0, ent1]
and [eny1,%€1]. Obviously tana = 4 and the Lipschitz constant of 730 for; ! in
the euclidean metric of R™*! (restricted to S™) is the same as the Lipschitz constant
of f in the spherical metric, Lip(f). It follows from 1.42(1) that Lip(f) = k.

(2) Since the proof is similar to the above proof, we indicate only the changes.
First f maps S™ 1(t?) onto S™ ! (and B"(t2) onto R"™\ B"™). As above in the
proof of part (1) we see that Lip(f) =¢"2.

(8) The proof follows from 1.52, 1.53, and part (2).

(4) Again the proof is similar to the one in (1). Observe first that g = 150 f o

Ty 1 preserves the 2—dimensional plane containing €p41, —€p+1 and —b, and that

9(ent1) = ens1, g(m2(—0)) = —€py1 .

T2(00) = ept1
ﬁ
&é§§

_ 28 mp(0) = —epnyy

Jirr

T (——b
2

Diagram 1.9.
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By 1.37 weseethat g =koT,, k€ O(n+1), T, € GM(B™*!). By elementary
geometry |a| = 1/4/1+ 4]b|~2, and hence (1.40) yields

Lip(s) = Tinlo) = 740 = VTl = 1t 4l (bl + AT

1.55. Exercise. Let z,y € R". Show that g¢(z,y) = ¢ if and only if there
exists a spherical isometry h with |h(z)| = |h(y)| =1 and |h(z) — h(y)| = 2t. Prove
that the Lipschitz constant of T,|B™ in the euclidean metric is equal to the Lipschitz

constant of T,|/R™ in the spherical metric.

1.58. Corollary. Let u € (0,1/4/2], let f be the inversion in S™1(a,r), and
let S (a,r) = 8Q(b,u) for some b € R™. Then Lip(f) =u~2 —1.

Proof. By 1.52 f and tpof otb"1 = ¢ have equal Lipschitz constants. By 1.52
g is the inversion in S~ (u/v1—u?) = 8Q(0,u). Hence by 1.54(2) and 1.25(1),
Lip(f)=v"%2-1. O

1.57. Exercise. Let z,y,w be three points in R"™. Show that
a(z,y)/c < q(z —w,y —w) < cq(z,v)
where ¢ = Lip(h) and h(z) = £ —w. [Hint: 1.54(4).]

1.58. Exercise. (Continuation to 1.18(4) and 1.53.) Assume that z,y,z €
B"(a,r) with z # z. Show that

Llz—yl o adzy) _ |2—yl
clz—z| ~ q(z,z) T |z—2z|’

where ¢ depends only on ¢(B"(a,r)).

1.59. Exercise. Let f be the inversion in S"~1(r), where r € (0,1]. Given an

integer m = 2,3,... show that there are fi,...,f;, in GM with the two properties

f=fio--ofyn and Lip(f) =Lip(f1)...Lip(fm) .

1.60. Remark. As shown e.g. by the Riemann mapping theorem, the class

of conformal mappings in the plane is extremely large. According to a deep classical
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theorem of Liouville the multidimensional case is radically different: If D is a domain
in R", n >3,and f: D - fD C R"™ is conformal, then f can be written in
the form f = g|D where ¢ € GM(R"™). This result was proved by Liouville for
C3®-mappings, and a similar result under weaker hypotheses was obtained by F. W.
Gehring in 1962 [G2, Theorem 16] and by Yu. G. Reshetnyak in 1967 (see [R13] for
more details). A new proof was recently given by B. Bojarski and T. Iwaniec [BI1].
Further generalizations of these results were obtained by Yu. G. Reshetnyak (see [R13]

and the references therein). For additional references see [WI, p. 437].

1.61. Notes. A.F.Beardon [BE] has given a thorough account of the theory of
Mdbius transformations in R™ . See also L. V. Ahlfors [A5] and J. B. Wilker [WI]. An
illuminating representation of the stereographic projection and the spherical metric is
contained in the classical book of D. Hilbert and S. Cohn—Vossen [HCV]. A thorough
discussion of two—dimensional Mobius transformations is contained in the books of C.
Carathéodory [CA], L. R. Ford [FO], and H. Schwerdtfeger [SC]. The book of M. Berger

[BER] contains numerous excellent illustrations related to the topic of this section.

2. Hyperbolic geometry

Hyperbolic geometry can be developed in the context of two spaces or, as they
are sometimes called, models. These two models of the hyperbolic space are the unit
ball B® and the Poincaré half-space

H" =R} = {(z1,...,22) ER" : 2, >0} .

These two models can be equipped with a hyperbolic metric p that is unique up
to a multiplicative constant in either model. In either model the metric is normalized

(by giving the element of length of the metric) in such a way that for all z,y € B®

px~ (h(<), h(y)) = ppn(z,v)

whenever h € GM and AB™ = H" . Therefore both models are conformally compati-
ble in the sense that the two metric spaces (B",p) and (H",p) can be identified. This
compatibility is very convenient in computations because we may do a computation
in that model in which it is easier, without loss of generality. In what follows we shall

use the symbols R} and H"™ interchangeably.
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For ACR" let Ay = {z € A:z, > 0}. We define a weight function
w:RY =Ry ={zc€R:z2>0} by

1
(2.1) w(x):;——, T = (z1,...,%,) ERT .

n

If 4: [0,1) — R% is a continuous mapping such that +[0,1) is a rectifiable curve with
length s = £(v), then ~ has a normal representation ~°: [0,8) — R parametrized
by arc length (see J. Vaisdld [V7, p. 5]). The hyperbolic length of ~[0,1) is defined by

ld=|
Ty

(2.2 a(0,1)) = [ |0PY0)]w(r0 )t =

it

If ACRY is a (Lebesgue) measurable set we define the hyperbolic volume of A by

(2.3) mn(A) = /A w(z) dm(s)

where m stands for the n-dimensional Lebesgue measure and w is as in (2.1). If
a,b € R% , then the hyperbolic distance between @ and b is defined by

d
(2.4) p(a,b) = inf £p(e) = inf ldz| ,

aerab aepab o Ty

where T',; stands for the collection of all rectifiable curves in R joining a and b.
Sometimes the more complete notation PRz (a,b) or pgn(a,b) will be employed. The
infimum in (2.4) is in fact attained: for given a,b € R there exists a circular arc
L perpendicular to dR7} such that the closed subarc J[a,b] of L with end points a

and b satisfies

(2) pad) = talla ) = [ 122
Jla,b] "
d
Je, d J(a, 8]
H" c b

Diagram 2.1.
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If @ and b are located on a normal of AR , then J[a,b] = [a,b] = { (1 —t)a +tb:
0<t<1} (cf. [BE, p. 134]). Because of the (hyperbolic) length-minimizing property
(2.5), the arc J[a,b] will be called the geodesic segment joining a and b.

Knowing the geodesics, we calculate the hyperbolic distance in two special cases.

[, =lost]

Second, if ¢ € (0, 37) we denote u, = (cosp)e; + (sinp)e, and calculate

First, for r,s > 0 we obtain

| (2.6) p(ren,se,) =

/2
da da
2.7 , = - = =] tip.
(2.7) plens 1) _/ sin & / sine | Bt 2¥
Tty ,en] ]
€n
H" X sin a
1
!
5 up = (cosp)e; + (sinp)e,
a <P;1
0
Diagram 2.2.

We shall often make use of the hyperbolic functions shz = sinhz, chz = cosh z,
thz = tanhz, cthz = cothz and their inverse functions which are listed in 2.12. The

above formulae (2.6) and (2.7) are special cases of the general formula (see [BE, p. 35|)

|z — y|?

2.8 h y =144
(2.8) ch p(z, y) T

’ xiyeanRi'

Note that by this formula the hyperbolic distance p(z,y) is completely determined
once the euclidean distances z, = d(z,0H"), y, = d(y,0H"), and |z—y| are
known. For another formulation of (2.8) let z,w € H", let L be an arc of a circle
perpendicular to H™ with 2,w € L and let {z.,w.} = LN 8H", the points being
labelled so that z.,z,w,w. occur in this order on L. Then (cf. [BE, p. 133, (7.26)])

(2.9) p(z,w) = log | z., z,w,w, | .
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p(z,w) = log |2z, 2, w, w, H"

oH"

Zx W

Diagram 2.3.

Note that (2.6) is a special case of (2.9) when 2. = 0 and w, = co because
|0,2,w,00| = |w|/|2| for z,w € H". The invariance of p is apparent by (2.9) and
(1.28): Given f in GM(H") and z,y € H", then

(2.10) p(z,y) = p(f(2), f(y)) -

For a € H™ and M > 0 the hyperbolic ball {z € H" : p(a,z) < M} is denoted
by D(a,M). It is well known that D(a,M) = B"(2,r) for some z and r (this also
follows from (2.10)!). This fact together with the observation that Ate,, (t/A)e, €
OD(ten, M), A =eM (cf. (2.6)), yields

D(ten, M) = B™((tch M)en,tsh M) ,
(2.11) B™(ten,rt) C D(ten, M) C B"(te,, Rt) ,
r=1—-e™M R=eM_1,

(eMt)en

(tch M)e,
tsh M

te D(ten, M) = B"((t ch M)e,,,tsh M)
n

(e™Mt)e, H"

Diagram 2.4. The hyperbolic ball D(te,, M) .



23

2.12. Remark. The hyperbolic functions shz, chz, thz, cthz and their in-
verse functions arshz, archz, arthz, arcthz (denoted by some authors as sinh™! z,

cosh™ z etc.) occur often in what follows. Recall that

(arshz =log(z ++vz2+1), >0,
archz =log(z+vz2—-1),z>1,

1
T o<z<1,

1—=z

| arthz = -;-log

— 1y, TE1
\arcthx—-z-log——-——l,x>1.

For easy reference we record the following inequalities, whose proofs we leave as

exercises:

(2.13) log(1+z) < arshz < 2log(l+z),z>0,"
(2.14)  2log(1+4/3(z—1)) <archz < 2log(1++/2(z—1)) , z>1.

So far we have discussed only the hyperbolic geometry of H" = R% . Now we are

going to give the corresponding formulae for B"™ . The weight function w: B® — R
is now defined by '

2
(2.15) U)(.’B) = m , zEB™,

(cf. (2.1)). The hyperbolic distance between a and b in B™, denoted by pg.(a,b) =
p(a,b) , is defined by a formula analogous to (2.5) ; the same is true about the hyperbolic
volume of a measurable set A C B™. For a,b € B" the geodesic segment J|a,b]
joining a to b is an arc of a circle orthogonal to S™~!. In a limiting case the points

a and b are located on a euclidean line through 0.

Diagram 2.5.
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In particular, J[0,te;] = [0,te;] for 0 <t < 1 and we have

¢
_ 2|dz| _/ 2ds 14+t '
(2.186) p(0,te1) = / TR To = log T 2artht.
[O,tel]

It follows from (2.16) that for s € (—t,t)

1+1¢ 1—s>

2.17 ter) =1 (
(2.17) p(se1,ter) = log 1= 11a

A counterpart of (2.8) for B" is

|z -y
(1 —1]=?)(1 - |y[2)

(2.18) sh®(30(z,y)) = , T,y € B™,

(cf. [BE, p. 40]). As in the case of H", we see by (2.18) that the hyperbolic distance
p(z,y) between z and y is completely determined by the euclidean quantities |z — y|,
d(z,0B"™), d(y,0B"). Finally, we have also

(2.19) p(z,y) =log |z, T, ¥, yul

where z., y« are defined as in (2.9): If L is the circle orthogonal to S™~! with
z,y € L, then {z,,y.} = LN S™ !, the points being labelled so that =z., z, y, y.
occur in this order on L. It follows from (2.19) and (1.28) that

(2.20) p(z,y) = p(k(z), h(y))

for all z,y € B™ whenever % is in GM(B"). Finally, in view of (1.28), (2.9), and
(2.19) we have

(2.21) pB~ (2, Y) = prn(9(2),9(y)) , z,y€B",

whenever g is a Mobius transformation with ¢gB™ = H™.

It is well known that the balls D(z, M) of (B",p) are balls in the euclidean
geometry as well, i.e. D(z,M) = B™(y,r) for some y € B® and r > 0. Making use
of this fact, we shall find y and r. Let L, be a euclidean line through 0 and z and
{z1,22} = L,N3D(z,M), |z1| <|22| . We may assume that z # 0 since with obvious
changes the following argument works for z =0 as well. Let e = z/|z| and z; = se,
zz =ue, u € (0,1), s € (—u,u). It follows from (2.17) that
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1+2] 1-s _
ples,2) = o (T 152) = M,

1+u 1-—|z
p(zz,z)—log<1_u- 1—{—{2}) -

Solving these for s and u and using the fact that
D(2,M) = B™(3(21 + 22), 2|u — s|) one obtains the

following formulae (Exercise: Verify the computation.):

Diagram 2.6.

D(z,M) = B™(y,r),
(222 _s(=8) (= |a)

g - = =thi
YT ape T e T HEM,
and
B™(z, a(1 —|z|)) C D(z,M) B"(z, A(1—|z]) ,
2.23
(223) oo t0ERD el e
1+ |zt 1— |zt 2

We shall often need a special case of (2.22):
(2.24) D(0,M) = B*(th1 M) .

A standard application of formula (2.24) is the following observation. Let T, bein
M(B™) as defined in 1.34 with Ty(z) = 0. Fix z,y € B"® and z € J[z,y] with
p(z,z) = p(2,y) = 3p(z,y) . Then T,(z) = —Tx(y) and (2.24) yields

{ |T2(y)| = th 1p(z,y) ,
|Tz(2)| = th 3p(z,y) .

T, T,
. TN 1 TN
N N
[

Diagram 2.7.

(2.25)
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We next derive a few inequalities from (2.23). By studying the expression for the

radius r in (2.23) we see that
(2.26) d(D(z,M)) < d(D(0,M)) =2thiM

for all z € B™ and all M > 0. This yields a sharp inequality between the euclidean
and hyperbolic distances as follows. For given z,y € B"™ choose z € J [z,y] with
p(z,2) = p(z,y) = Lp(z,y). Then with M = 1p(z,y) (2.26) yields the useful
inequality

(2.27) |z —y| < 2th ip(z,y) .

Equality holds here if £ = —y. Because th4 < A, (2.27) yields also the crude

estimate

(2.28) |z —y| < 30(z,v)
for z,y € B™.

2.29. Exercise. Verify the following elementary relations.
(1) 1-e*<ths<1—e"2 for s>0.
(2) If s >0, then

ths = th2s
1+V1-th®2s
Further, if u € [0,1] and 2s = arthu, then
ths = — = < L(u+u?).
1++v1—u?
(3) logths = —2arthe™2%, s> 0.
(4) I _t " <l1—-e®<z,for z> -1 [AS, 4.2.32].

(5) Show that

1+thpz (1+tha:>11
1—thpr \l1—thz
for p=1,2,... and z > 0.

2.30. Exercise. Show that for z, y € B"

2|z — y|
o(z,y) < min{1 — |m], 1- Iyl} .
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2.31. Exercise. Applying (2.23) show that if D(z,M) = B™(y,r), then r

admits an estimate

where b and B depend only on M . Show also that the numbers ¢ and A in (2.23)
have lower and upper bounds depending only on M . In particular, A/a has an upper

bound depending only on M .

2.32. Exercise. Let zo € B®", M >0 and

v =min{ |z — zo| : p(z0,2) =M},

V = max{ |z — zo| : p(z0,2) =M} .
Find an upper bound for V/v by applying 1.43(1).

2.33. Exercise. Rewrite (2.8) and (2.19) using the identity 2sh’A4 =
ch24—1.

Given distinct points z and y in B™ or H™ one can express the Poincaré dis-
tance p(z,y) in terms of the absolute ratio |z.,z,y,y«| by virtue of the formulae
(2.9) and (2.19) where z. and y. are the “end—points” of a geodesic segment contain-
ing z and y. Sometimes it will be convenient to express p(z,y) in a different way
without refering to the points z, and y. at all. Such an expression can be achieved
by exploiting an extremal property of p(z,y) as we shall show in the next section (see
also Section 8).

The formulae (2.8) and (2.18), which give explicit expressions for py.(z,y) and
pgn(Z,Yy) , respectively, are of fundamental importance for hyperbolic geometry. As a
matter of fact, many formulae of this section can be derived directly from these for-
mulae. For many applications it would be formally adequate to define the hyperbolic
distance in terms of (2.8) and (2.18) without any reference to the geometric interpre-
tation involving elements of lengths or the length-minimizing property of geodesics.
These geometric notions and their invariance properties are, however, the reason why
the hyperbolic metric is so useful and natural in many applications.

The reader may show as an exercise that (2.23) follows from (2.18). The explicit
expressions (2.8) and (2.18) for p(z,y) are somewhat complicated. Often it will be
sufficient to give bounds for p(z,y) in terms of simple comparison functions. We now

introduce such a function.



28

For an open set D in R™, D # R"™, define d(z) =d(z,8D) for z€ D and

|z —yl )
min{d(z), d(y)}

for z,ye D. If A C D is non—empty define

(2.34) Jp(z,y) =log (1 +

(2.35) Ip(A) =suwp{jp(z,y) 1z, yc A}.
An elementary (but lengthy) argument shows that j,(z,y) is a metric on D.

2.36. Lemma. The following inequalities

(1) dp(zy) 2 llogg%l :

(2) Jplz,y) < ] log ig%! + log (1 + l—%(%)y—l) <27p(z,y)

hold for all z,y€ D.

Proof. (1) The proof follows because d(y) < d(z) + |z —y|.

(2) I d(z) < d(y), the proof is obvious in view of (2.34). If d(z) > d(y),
. _ d(z) d(z) |z —y|\ .
iole) =los(1+ e ) < tos(Gy + 36y ) )

d(z) | —yl

=log3(—g—/7+log(1+——a—@-—) < 2ip(z,v) ,

where in the last step the inequality in part (1) was applied. O

|z — y]

2.37. Exercise. For an open set D C R"™ with D # R"™ and for a non-empty
set A in D with d(4,3D) >0 put

_ _d(4)
"ot4) = 34,60y -

Show that

3log(1+rp(4)) <log(1+ 3rp(A)) < jp(4) < log(l+rp(4)) .

2.38. Exercise. Let G and G’ be proper subdomains of R™ with G' C G.
Show that jg(z,y) < jo(z,y) for all z,y € G'. For w € R™ set R, = R"\ {w}
and define

hg(z,y) = sup{Jjg,(z,y) : w € 8G }
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for all z,y € G. Show that if w € dG

(2.39) . Jo(z,y) = hgl(z,y) > llog -}-Z——:—-E)—I-I i L,y EG.

w|

Moreover, if d(z) < d(y) and z € G with |z — 2| = d(z) prove that

|y — 2|
|z — 2|

> %(exp Jolz,y) — 1) .

2.40. Exercise. (1) Let B=S5""Y(e,,1)N{z€H" : 2, >1} . Find
max{ pgn(€n,z) : £ € B} and min{ pgn(en,z) : € B}.
(2) For an open set D C R"™, D # R", define

Ip(z,y) = logKl + %{#) (1 + ’Z(‘y)y[)] .

Show that for all z,y € D

jD(zvy) S ;D(xay) S ZJ.D(z’y) .
In the next lemma we show that j, yields simple two-sided estimates for p,
both when D = B™ and when D =H".

2.41. Lemma. (1) jg(z,y) < ppn(z,y) < 47g.(z,y) for z,y € B™.
(2) Jmn(z,9) < pgn(3,9) < 2Jgn(z,y) for z,y e H".

Proof. (1) By (2.19)

271 — |$“yl2 - 2 [z = 4] ’
0 (oo =) = G oy = ()

and hence by (2.14)

ppn(2,y) < 4log(l+1t) < 47ga(2,Y) -

For the proof of the lower bound we may assume that |z| > |y| and |z| > 0. Let L be
a euclidean line through 0 and z and fix y’ € B*(|z|)NL such that |z—y'| = |z—y].
Because |y’| < |y| it follows from (2.19) and (2.18) that

1+jz| 1—lg[+]|z—y|
1=|z| 1+]z|-|z -y

pan(2,Y) > ppn(z,¥') > log( ) > jg=(z,Y) .
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(2) Denote u =1+ |z — y|?/(2z,y,) . By (2.8) and (2.14) we get

prn(z,y) < 2log(1+1/2(u — 1)) —2log<1+H) < 2jgn(z,y) -
n n

For the proof of the lower bound we may assume that z, <y, and z = z,e,. Let
Yy = (zn + |z — y|)en . Because (y')n >y, it follows from (2.8) and (2.6) that

pen (2,Y) > pg= (2, y’)>log(1+l - yl) =Jjgn(z,y). O
n

2.42. Exercise. Solve 1.41(2) with the help of the hyperbolic metric. [Hint:
Because of (2.17) the requirement that p(0,a) = 1p(0,re;) leads to (_1_-}__—131)2 = 1dr

1—]|a] — 7
ie. |a|=r/(1+vV1—-1r2)]

2.43. Exercise. For an openset D in R™, D # R", let

- 2
goD(:z:,y)::log<1+ma.x{ yl |z~ o] }), z,ye D.

Vd(z)d(y) * d(z)d(y)

Show that jp(z,y) < ep(z,y) < 27p(z,y) . (See also 3.30.)

2.44. Exercise. (1) Observe first that, for ¢ € (0,1),

Pyn (tena en) = Ppygn (ten, gn-t (zens ;))

(cf. (2.8)). Making use of this observation and (2.11) show that

B" (:146,,,,2 U D(tey, log )
te(0,1)
(2) For p > 0 and ¢t > 0 let A(f) = pga((0,t?), (t,¢?)). Find the limits
lim¢ 0 A(t) and lim; oo A(t) in the three cases p<1, p=1,and p>1.

2.45. Exercise. The stereographic projection 7, (see 1.20) provides a connec-
tion between the hyperbolic geometries (B",p) and (R™*!,p_) and the spherical
geometry of (R”,q). Verify that p(0,ae;) = p_ (7r2(0),7r2 (ael)) , a € (0,1), by com-
puting the absolute ratios | —e1,0,ae1,e; | and | m2(—e;1), 72(0), 72 (ae1), ma(e1) | (see
(2.9) and (2.20)). Note that 2q(0,ae1) = |m2(0) — w2(ae1)|. Let be; be the orthogo-
nal projection of mp(ae;) onto the z;-axis. Show that p(0,be;) = 2p(0,ae;) . [Hint:
See the diagram 1.5 in 1.41(2).]
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2.46. Exercise. (Continuation of 2.45.) Show that m(ae;) € S™ N S™(=z,r)

where S™(z,r) is a sphere orthogonal to S™ with ae; € S™®(z,r). Find z and r.

2.47. Exercise. Let z,y € B" and let T, € M(B") be as defined in 1.34. Show

that
|z —y| s

s—yF (- [P)-WP) Vits?
where s2 = |z —y|?/((1 — |z|?)(1 — |y|?)) . [Hint: By (2.25) and (2.19)

| Tzy| =
VI

1 s2
Tm 2 = thz l 9 = 1 - _ .
l yl (2/)(22 y)) chz(%p(m,y)) 1 +82 ]

Next let z € J[z,y] be the hyperbolic midpoint of J[z,y] as in (2.25). Show that

S
[Tual = Tt = =

Py
_ |z —y|
Viz=yP + 1= [P0 - TvP) + VA -T2 = TeP)

where s is as above. [Hint: Because th A =t/(14++/1—1%2), ¢t =th 24, one can apply’
(2.25) and the above computation.] Moral: Instead of using these lengthy expressions

for |Tzy| and |T,y| involving euclidean distances it will often be more convenient to

~ use the equivalent formula (2.25) involving the hyperbolic distance p(z,y) .

2.48. Exercise. Let z,y € R™ and let {; be a spherical isometry as defined in
(1.46). Show that
|z — y|
ltzy| = :
VAP A+ PR - e -y
[Hint: This follows immediately from (1.47) and (1.15).] Let a € [0,1n] be such that

sina = ¢(z,y) . Then o is the angle between the segments [e,t1, tz2] = [€nt1, O]

and [en+1, tzy] at epqy (see (1.13).) Show that the above formula can be rewritten
as

lt,y| = tan o .

Note the analogy with (2.25).

2.49. Exercise. Show that

|f(=) - f()I® o l=—yf?
A-1f@A @ =1F@PF) @ =le?) @]y

for all f in GM(B") and all z,y € B™. [Hint: Apply (2.19) and (2.21).]
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2.50. Exercise. Let 0 <t <1 and f€ GM(B"). Show that

|z —y|
@) - fWI< T3

for |z, [y| <t. [Hint: Apply 2.49.]

2.51. Remark. The inequality (2.27) together with the formulae (2.25) and 2.47
yield for z,y € B®

2|z — y|

Vie—yl2+b2 +b

|z —y| < 2th i—p(x, y) =

where b= /(1 — |z]?)(1 — |y|?) .

2.52. Exercise (Contributed by M. K. Vamanamurthy). Starting with the iden-
tity (cf. 2.47)
|z —yl
|z — 2+ (1 - [=]2)(1 — |y[?)

for z,y € B" verify the following inequalities

th p(z,y) =

|z -y 1 |z — y|
1 < th 2p(z,y) < —> ,
® T+l = P29 < Ty
= lvl _ . 2+ 9]
2 <thzp(z,y) < )
@) 1Tl = P29 S Ty
3 Lz -yl < |z — ] < thip(z,
@ e S TR ey = )
|z — y| |z — y]

= T Tallgl + ool = 2(1 = max{jf%, J9]7))

where |z|’ = y/1—[z|?>. Can you find similar inequalities for the spherical chordal
metric? [Hint: 2.48.]

2.53. Notes. The main source for this section is [BE| and the other references
given at the end of Section 1. See also [T, pp. 508-514] and [RE].
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3. Quasihyperbolic geometry

In an arbitrary proper subdomain D of R™ one can define a metric, the quasi-
hyperbolic metric of D, which shares some properties of the hyperbolic metric of
B"™ or H"™. We shall now give the definition of the quasihyperbolic metric and state
without proof some of its basic properties which we require later on. The quasihyper-
bolic metric has been systematically developed and applied by F. W. Gehring and his
collaborators.

Throughout this section D will denote a proper subdomain of R™. In D we
define a weight function w: D — R4 by

(3.1) w(z) = 5@%555 :

Using this weight function one defines the quasihyperbolic length £4(~) = EqD (7) of a
rectifiable curve 4 by a formula similar to (2.2). The quasithyperbolic distance between
z and y in D is defined by

(3.2 o(e9) = jnf ()= inf [ w(o)ida]

aEsz [+ zy

where I'y, is as in (2.4). It is clear that kp is a metric on D. It follows from
(3.2) that kp is invariant under translations, stretchings, and orthogonal mappings.
(As in (2.3) one can define the quasihyperbolic volume of a (Lebesgue) measurable set
A C D, but we shall not make use of this notion.) Given z,y € D there exists a
geodesic segment Jp[z,y] of the metric k, joining z and y (cf. [GO]). However,
very little is known about the structure of such geodesic segments Jp[z,y] when
D is given. Some regularity properties of geodesic segments have been obtained by
G. Martin [MA].

3.3. Remarks. Clearly, kg, = pyn, and we see easily that pg. < 2kg. <
2pgn (cf. (3.1),(2.15)). Hence, the geodesics of (H™,ky.) are those of (H™,pgy.),
but it is a difficult task to find the geodesics of kp when D is given. The following
monotone property of kp is clear: if D and D’ are domains with D' C D and
T,y € D', then kp.(z,y) > kp(z,v).
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In order to find some estimates for kp(z,y) we shall employ, as in the case of H"
and B"™, the metric j, defined in (2.34). The metric j, is indeed a natural choice for
such a comparison function since both k5 and jp are invariant under translations,

stretchings and orthogonal mappings. A useful inequality is ([GP, Lemma 2.1])

(3.4) kp(z,y) > jp(z,v); z,y€D.
In combination with 2.36, (3.4) yields
d(z)
. > TN == .
(3.5) bp(a:y) > |log 3|, dlz) = d(=9D)

For easy reference we record Bernoulli’s inequality
(3.6) log(1+as) <alog(l+s);a>1,s>0.
3.7. Lemma. (1) If z€ D, y € By = B*(z,d(z)), then

kp(z,y) < log(l + -&—(—g)i—%:lf—'_:zl-) .
(2) If s€(0,1) and |z —y| < sd(z), then

1 .
kp(z,y) < TS ip(z,y) -

Proof. (1) Select z € 9B, such that y € [z, 2].

Diagram 3.1.

Because [z,y] € 'y, from 3.3 we obtain

d(z)
dw dw dt
kol <kp, ) s [ s [ AL [ 2
[z,y] [2,9] d(z)~|z—y|
d(z) |z —y]
= log ————— =log| 1+
% 4(z) — |z — vl o8 i(z) - |z - yl>

( = Jrn\{2}(T: V) ) -
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(2) For the proof of (2) we apply part (1), Bernoulli’s inequality (3.6), and the
definition of j, to obtain

|z~ |
kp(2,y) < log(1+ ?1"?5)’3'(‘5)'>

1 |z —y| 1 .
<
1—-sIOg<1+ d(z) )’1-—3‘7D($’y)

<
as desired. O

We know by 2.41 and 3.3 that if D = B", then an inequality similar to 3.7(2)

holds for all z,y € D. For a general domain D this is not true, i.e. the ratio

kp(z,
A(D):sup{}:ig-’—gj)- T, yE D), z#y}

may be infinite. For instance, A(B?\ [0,e;)) = co. (For details, see 3.14.)

3.8. Definition. A domain G in R™, G # R", is called uniform, if there
exists a number A = A(G) > 1 such that kg(z,y) < Ajg(z,y) forall z,y € G.

By 2.41 the unit ball B™ and the half-space H™ = R%} are uniform domains
with the constants 4 and 2, respectively. It follows from the definition that the class
of uniform domains is invariant under translations, stretchings and orthogonal maps.
It is not difficult to show that the image of a uniform domain under a bilipschitz
mapping is again uniform.

Next we shall study the quasthyperbolic balls D,(z, M) ={z € G : kg(z,2)
<M} when € G and M > 0. It follows from (3.5) that

e~ Md(z) < d(2) < eMd(z)

holds for z € Dg(z, M) . Next, for z € B*(z, (1 — e~M)d(z)) we deduce by 3.7(1)
that kg(z,2) <M andfor z€ R™\ B™(z, (M —1)d(z)) we find by (3.4) and (3.5)
that kg(z,z) > M . In conclusion, we have proved that

B"(z, rd(z)) C Dg(z,M) C B™(z, Rd(z)) ,
(3.9) Dg(z,M) c{z€ G : eMd(z) < d(z) < eMd(z) },

r=1—-e™MM R=eM-1.

For G = H™ one can show that the numbers r and R are the best possible (see
(2.11)). We shall write D(z,M) for Dg(z,M) if there is no danger of confusion.
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Mobius transformations are hyperbolic isometries. That is, if each one of the
domains G, G’ is a ball or a half-space in R™ and if f is a Mdbius transformation

mapping G onto G’', then

pc(z,y) = per (f(2), f(¥))

for z,y € G (cf. (2.9), (2.19), (2.21)). Although the metric kg does not have this
invariance property it is not changed by more than the factor 2 under M6bius trans-

formations. (For a related Mobius invariant metric see J. Ferrand [FE].)

3.10. Lemma. If G and G' are proper subdomains of R™ and if f is a Mobius

transformation of G onto G', then

3 ka(@9) < ke (f(2), f(v) < 2kg(z,v)
for all z,y € G.

A proof of Lemma 3.10 was given by Gehring and Palka in [GP] where also a gen-
eralization to the case of quasiconformal mappings was obtained. This generalization

will also be proved below in Section 12.

3.11. Exercise. The logarithmic spiral in R? has a parametric representation
r(w) = AeP¥ in polar coordinates where A and B are constants and A > 0. It
was shown by G. Martin and B. G. Osgood [MAO] that the geodesic segments of k.,
G = R"\ {0}, can be obtained as follows. Assume that z,y € G and that the angle
¢ between the segments [0,z] and [0,y| satisfies 0 < ¢ < w. Then the triple 0,z,y
determines a 2-dimensional plane ¥ and the geodesic segment of ko connecting z

to y is a logarithmic spiral in ¥ with equation
w |z|
r(w) = |z|ex (-—-lo -——) 0<w<p.
(w) = |z|exp - gy ;

Knowing this equation show (by integrating the element of length along this curve)
that

(3.12) ka(z,y) = \[® + log? {—;i,- , G=R"\ {0},

holds for all z,y € G. Making use of (3.12) study the set {z € G: kg(er,2) =1t}.

Note the special case t = 7.
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3.13. Exercise. Show that G = R" \ {0} is a uniform domain and that
ko(z,y) < Ajg(z,y) for z,y € G where

T 2
A2 =1 (--) ~ 215 .
+ log 2

[Hint: Let z,y € G and let ¢ € [0,7] be the angle between z and y. By a property
of the bisector of an angle in a triangle, sin Z(p < J-”l——-"-’-lT and hence

|z]+|y
<,o§_28,rcsinI —yl <7r—lai:—g—/-|—
||+ lw| = =]+ [yl
7r |z -yl
<-—Io ( -+ )< ,Y) .
= fogz B\ LT ol = Togz 1Y)

By 2.36(2) and (3.12) we obtain the desired inequality.]

3.14. Exercise. Show that G = B?)\ [0,¢;) is not a uniform domain. [Hint:
For ¢ € (0, —1—15) let z; = ($,t) and y = (3,-t), Y ={(0,y) :y > 0}. Show that

ka(ze,ut) 2 kg2, Y) = kga (2, Y) — o0
when ¢ — 0 (cf. (2.7)), while jg(z:,y:) = log3 for all ¢ € (0,5) .|

3.15. Exercise. Let ¢t € (0,1). Show that

Dg(z,log(1 +1t)) € B*(z,td(z)) C Dg (:c,log T i t) .
[Hint: Apply (3.9).]
3.16. Exercise. Suppose that there exists C > 1 such that for all z,y € G
ka(z,y) < C’sup{ lcRn\{z}(:c, y):z€ BG} .
Show that G is uniform. [Hint: Apply 3.13 and (2.39).]
3.17. Exercise. Let f: R® — R™ be an L-bilipschitz mapping, that is
|z —yl/L < |f(z) - f(y)| < Lz —y]

for all z,y € R™, and let G C R™ be uniform. Show that fG is uniform. [Hint:
Using the definitions show that

ka(z,9)/L* < kse(f(2), f(¥) < Lka(z,y) -
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Then deduce from (3.6) that

jG(z’ y) /L2 S ij (f(m)a f(y)) ..<... LZJ.G(xa y) ]

3.18. Exercise. Let G = R"\ {0} and f(z) = a®z/|z|? for = € @, where
a > 0. Show that

ke(f(2), f(y) = ka(z,y)
for z,y € G. [Hint: Apply (3.12).] Show also that
ic(f(2),f(¥) = ja(=,y)
for z,y € G. [Hint: Apply (1.5).] Note that these assertions do not follow from 3.10.

3.19. The symmetric ratio. For distinct points a,b,c,d in R™ define the

symmetric ratio by
(3.20) s(a,b,c,d) =|a,b,d,c||a,c,d,b] .

Then by (1.27)

q(a, d)* ¢(b,¢)*
(a,b) q(b,d) q(a,c) g(e,d) ’

(3.21) s(a,b,c,d) = .

which we recognize as the expression studied in 1.32. We recall that s is symmetric,
ie.
s(a,b,¢,d) = s(a,c,b,d) = s(d,b,c,a) = s(b,a,d,c) ,

and also §M(R™) —invariant in the sense that

(3.22) s¢(a,b,c,d) = s(fa, fb, fe, fd) = s(a,b,c,d)

forall f in GM(R"™). Let D C R™ be an open set with card(R™\ D) > 2 and define
(3.23) splb,c) = sup{ %s(a, b,¢,d) :a,d € BD} .

It follows from (3.21) and (1.15) that

I
(3.24) s(a,z,y,00) = e aly—a]
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3.25. The point—pair invariant s, . We next list some immediate properties
of the function sg(b,¢) when G CR™.

(1) se(:8) = s6(u:2)

(2) st(f(:z),f(y)) = sg(z,y) for f € GM(R™) and z,y € G,

(8) G'C G and z,y€ G imply sq(z,y) > sg(z,y),

(4) for fixed y € G, sg(z,y) =0 iff £ — y and sg(z,y) — oo iff z — G,

() sal@y) > (@(5G) a(z9))?

3.26. Lemma. sg.(b,c) =chpgn(b,c) —1 for b,c € B™.

Proof. Because this equality is GM(B")-invariant, we may assume that b =
—re; = —¢, r € (0,1). Then r = th 1p(z,y) by (2.25). It follows from (3.20) that
for a,d € S™™! we obtain
_ 4r?|a — d|? _ 4r?|a — d|?

la —b||b—d|la—c|llc—d|  |a—blla—c||d—b|ld—¢| °

s(a, b, ¢, d)
It is left as an exercise for the reader to show that
min{ |a —blja —¢c|:a € S" 1} =1~1?,

and similarly for |d — b||d — ¢|. Thus

4r222 __( 4r )2
(1—7r2)2  \1-—r2

This upper estimate is in fact attained if ¢ = —e; = —d. Hence

s = sup{ s(a,b,¢,d) :a,d € S*" 1} <

s = 16sh? (L p(b,c)) ch?® (L p(b,c)) = 4sh? (£ p(b,c)) = 2(chp(b,c) — 1)
and sgn(b,c) =chp(b,c) — 1 as desired. O

It is clear by (2.22) that Lemma 3.26 holds for the half-space H", too. Note

also that Lemma 3.26 yields a formula for p(b,c) involving the absolute ratio
(3.27) chp(b,e) =1 +sup{ -Ll;la,,b,d,c l|a,c,d,b] : a,de€ S™1}.

Recall that a different formula was given in (2.19). An advantage of (3.27) over (2.19)
is that it generalizes to any domain G in R"™ with card(R™\ G) > 2. For such a
domain G define a function pg by

(3.28) chpg(b,c) =1+ sg(b,c),

when b,c € G.
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3.29. Remark. It is an interesting question whether the function p, defined

in (3.28) is a metric. We shall discuss this below in Exercise 3.31.

3.30. Exercise. Assume that ¢ > 0 and define b by chb =1+ £a. Show
that
log (1+ma,x{a,\/5}) <b<Llog (1—}-0,—}—\/5)

< 2log (1 + max{a,va}) .

3.31. Exercise. Let G =R"\ {0} and sy as defined in (3.23). Explicitly, we

see by (3.24) that

|z —y/?
2lzlly|

Define ps as in (3.28). Applying 3.30 show that

saglz,y) = , T, YyEG.
Je(z,y) < 2pg(z,y) < 4Ja(z,v)
for z,y € G.

3.32. Exercise. (1) Let D =R")\ {0}. Show that

1+2¢(z,y) < expkp(z,y)

for z,ye D.
(2) Let z€ R™ and G =R"\ {z}. Show that

9(z,y) < e(exphg(z,y) —1)

for all z,y € G, where ¢ =1+ 1|2|(|z|+ /4 + |2|?) . [Hint: Let D =R"\ {0} and
h(z) = z — z. Then by part (1) and 1.54

ka(z,y) =kp(z—2,y—2) > log(l+2¢(z — 2z, y — 2))
> log(1 + 2 ¢(,y)/c)
where ¢ is as above.] Conclusion: If G is a proper subdomain of R™, then (cf. 3.3)
exp kg(z,y) > 1+ 2q(z,y)/A
where A depends only on min{|z|: 2z € 8G}.

3.33. Exercise. (1) Let f:[0,00) — [0,00) be increasing with f(0) =0 such
that f(¢)/t is decreasing on (0,00). Show that f(s+t) < f(s) + f(t) for s,¢>0.
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(2) Let (X,d) be a metric space and let f be as in part (1). Show that (X, fod)
is a metric space, too.

(3) Let (X,d) be a metric space and let di(z,y) = max{d(z,y), d(z,y)*},
0 < a<1. Show that (X,d;) is a metric space, too.

(4) Give an example of a metric space (Y,d) such that d’ does not satisfy the
triangle inequality for any > 1.

3.34. Notes. The quasihyperbolic metric has been developed by F. W. Gehring
and his students. Several interesting results can be found in [GP], [GOS], [MA],
[MAO]. Since 1978, when uniform domains were introduced by O. Martio and J. Sarvas
[MS2], they have found many interesting applications, e.g. in P. Jones’ works [J1], [J2]
on extension operators of function spaces. An exposition of these results occurs in
[G8], with several equivalent definitions of plane uniform domains. The above variant
of the definition of a uniform domain is suggested by [GOS| and [VU10].

4. Some covering problems

In this section we shall consider some geometric problems related to the hyperbolic
or quasihyperbolic metric. A typical question, which we are going to answer, is the
following. Let X be a compact set in B™ and let ¥ be a covering of X by hyperbolic
balls with fixed radii. The problem is to extract a subcovering 7 of 7 with X c |J#A
and to give a quantitative upper bound for card #; in terms of the parameters of the

problem.

4.1. (a,b,s)—admissible families. Let G be a proper subdomain of R" ,
a,be G,and s € (0,1). A family 7 = { B*(z;,r5):¢=1,...,p} of ballsin G is

said to be (a,b, s)—admissible if the following two conditions are satisfied:
(42) { (1) @€ B™(z1,sr1), b€ B™(zp,srp),
(2) B™(zj,sr;) N B*(zjtr1,8m41) #8, j=1,...,p—1.

We shall show that the smallest possible number of balls in an (a, b, s) ~admissible
family is roughly proportional to kq(a,b), with a constant of proportionality ¢(s) .
The case G = H"™ will be studied first. To this end note that by (2.6)

14+1¢

(4.3) p(B"(z,tzn)) = log T3 t€(0,1)
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for z = (z1,...,2,) € H".

4.4. Lemma. Let a,b € H® and s € (0,1).

(1) There is an (a, b, s) —admissible family containing at most 1+p(a,b)/ log it
balls.

(2) Every (a,b,s)~admissible family contains at least p(a,b)/log X2 balls.

Proof. (1) Choose an integer p > 1 such that

1
ik < p(a,b) < plog R .
£ 1-—s

(4.5) (p~1)log ;

Select points yo = a, y; € J{a,b] such that p(yo,y;) = jlog ii__i ,J=1,...,p—1,
and set y, = b. Let B"(z;, sz;,) be chosen so that S"~!(z;, sz;,) is perpen-
dicular to Jly;—_1,y;] and y;_1,y; € S""(z;,8%jn), J = 1,...,p. (In other
words, B"(z;, szjn) = D(2;,M), where 2M = log—i%;’} and z; € J{yj—1,y;] and
p(zj,yj-1) = p(25,y;) =M, 1 <j <p—1.) Here z;, is the nth coordinate of
zj . In view of (4.3) and (4.5) the family {B™(z;,zjn):J =1,...,p} is the desired
(a,b, s)—admissible family.

(2) Suppose that {B"(z;,r;): j =1,...,m} is (a,b,s)—admissible. By (4.3)

we get

1+s
1—s

m
?

p(a,b) < Zp(?n(z,-, 37'_7')) < Zp(-];i’_”(zj, sz,~n)) = mlog
J=1 J=1

from which the desired lower bound follows.

Before formulating an analogue of Lemma 4.4 for B™ we make a few observations
about hyperbolic balls. By (2.23) D(z,M) = B"(y,r) with

r (1+]z))t
1—|y| 1+|zft?

€ [thiM, thM]; t=thiM,

for all z € B™ (see Exercise 2.31) and hence

(4.6)  B"(y, (thzM)(1-lyl)) € D(z, M) C B™(y, (thM)(1 - [y])) .
It follows from (4.6) that

1+s

<p(B"(z, s(1 - |2])) < 21og ;

(4.7) log i te
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4.8. Lemma. Let a,b € B"™ and s € (0,1).

(1) Thereis an (a,b,s) —admissible family containing at most 1+ p(a,b)/log $£2
balls.

(2) Every (a,b,s)-admissible family contains at least p(a,b)/(2log %—iﬂ) balls.

8

Proof. As in the proof of Lemma 4.4 we cover J[a,b] by {D(z;, M)
J =1,...,p}, p < 1+ 53p(a,b) where M is chosen so that D(z;,M) C
B™(y;, s(1 — |yj|)). By (4.6) we may choose M = Zlogiff. The proof of (1)
follows now as in Lemma 4.4(1). The proof of (2) is similar to the proof of part (2)
of Lemma 4.4 except that here we use the two-sided inequality (4.7) instead of the
equality (4.3). O

In the next lemma we prove a counterpart of Lemma 4.8 for an arbitrary domain.

4.9. Lemma. Let G be a proper subdomain of R", a,b€ G and 0<s< 1.

(1) There is an (a,b, s)—admissible family containing at most 1+ kg(a,b)/d1(s)
balls, dy(s) =2log(1l+s).

(2) Every (a,b,s)-admissible family contains at least kg(a,b)/d2(s) balls,
da2(s) = 2log -L

l—a*

Proof. (1) Fix a quasihyperbolic geodesic segment J[a,b]. Choose points z; €
Jgla,bl, 5 = 1,...,p with kg(a,21) = M, kg(z,2j41) =2M, j = 1,...,p—
2, zp =0, kg(2p—1,2p) < 2M, where M > 0 will be chosen soon and 2M(p —
1) < kg(a,b) . We wish to choose M such that Dg(z;, M) C B™(2;, sd(z;)), j =
1,...,p. In view of Exercise 3.15 it suffices to choose M such that log(1+s) =M.
It is clear that the family {B"(z;,d(2;)): j=1,...,p} is (a,b,s)—admissible and
that p <1+ kg(a,b)/d1(s), d1 = 2log(1+s).

(2) It follows from Exercise 3.15 that for all y € G

ke (B™(y,sd(y))) < 2log - L

The proof follows from this inequality exactly in the same way as in part (2) of Lemma
44, 0O

We shall next give an immediate application of Lemma 4.9 to positive functions

satisfying the Harnack inequality.
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4.10. Definition. Let G be a proper subdomain of R™ and let u: G — R, U
{0} be continuous. We say that u satisfies the Harnack tnequality in G if there exist
numbers s € (0,1) and C, > 1 such that

(4.11) I%axu(z) <C, r%in u(2)
holds true whenever B"(z,r) C G and B, = B"(z,sr).

The above definition does not require smoothness or any other regularity proper-
ties beyond continuity of . It is well known that non-negative harmonic functions
satisfy (4.11) [GT, p. 16].

4.12. Lemma. Let u: G — R, U {0} satisfy the Harnack inequality in G .

Then

we) < OPuy) , =T md)

for z,y € G where d1(s) = 2log(1+s). If G =H" or G =B", then we can replace
t by p(z,y)/log 1£2.

Proof. Fix z,y € G and an (z,y,s)-admissible family {B"(z;,r;) :
i =1,...,p} with p < 1+ kg(z,y)/d1(s) (see 4.8). Let z; € B; N B;y1, By =
B™(zj, srj), §=1,...,p—1. By (4.11) we get the desired inequality

u(z) < Cou(z1) < C2u(ze) <--- < CPlu(zp—1) < CPuly). O

Let v be as in Lemma 4.12. It should be noticed that, by virtue of 4.12, either

u vanishes identically or u is strictly positive in G.

4.13. Corollary. Let f: (G,ks) — (R,||) be uniformly continuous as a map-

ping between metric spaces. Then there is a number o such that

f(z) = f(W)| £ 1+ akg(z,y)
for all z,y € G.

Proof. Because f is uniformly continuous, there exists a number ¢¢ such that
|f(z) = fy)| <1 for z,y € G, kg(z,y) <to. If kg(z,y) > to we can exploit the
method of the proof of 4.9 to show that |f(z) — f(y)| < 1+ kg(z,y)/to . Hence we

may choose a =1/tg. The details are left as an easy exercise for the reader. O
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The hyperbolic volume of a (Lebesgue) measurable set E in B™ is defined by

(4.14) mn(B) = /E g%%

(cf. Section 2). Let wn—; be the (n — 1)—dimensional area of S™~!. Integration in

polar coordinates yields

n — on =
(4.15) mp(B"(s)) =2 wn-1/ (1_t2)ndt — (1—-3) '

The last inequality holds because

38

/8 tnldt <s"“1/ dt
C=ar =" ) GrgrE-or

o]
[ dt 7 (1—t)l-n
n—1 — on—1 — .
< / i-om ° / n—1
0 0

Since t"~! > 227"t for ¢t € (1,1) we obtain

8
n _ tdt 22(1=n)y,, .
(4.16) ma(B™(s)) > 2"wn_1 22" / o > et - g

1
n—1

1/2

for s € (%, 1) . Finally, for £ € B® and M > 0, by the invariance of m; under the
action of GM(B"™) and by (2.24) and (4.15) we get

ma(D(z, M) = my(D(0,M)) = my(B™(th 1))

(4.17) < ann_l( th %M )n—l
1—-thiM

n
2n1 M(n-) th* (1 M) .
n —

n—1

For what follows we shall need a lemma about coverings by families of euclidean
balls [LA, p. 197, Lemma 3.2]. We shall give such a lemma here with a slightly more
general formulation. Covering theorems of this sort are very useful in analysis. For a

related result see [GU, Theorem 1.1].

4.18. Lemma. Let (X,d) be any one of the metric spaces (R™,||), (B", pg=),
or (H", pyn), and let By(z,r) = {y € X : d(y,2) <r}. Let A be a non-empty
subset of X, ¥ = {Bx(z,7(2)) : z € A} and suppose sup{r(z) : z € A} < c©.
There exists a number c¢(n) depending only on n and a countable subfamily #; C F
such that (1) A C|J# and (2) each £ € A belongs to at most c(n) elements of 7 .
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Let ACX, A#0, where (X,d) is a metric space, and for ¢ > 0 set

k
(4.19) px(4,t) =inf{k: Ac | Bx(z;t), z€4} .
j=1

Because the space X is usually specified by the context, we write p(4,t) = px(4,1).

Note that if A C X is non-empty and compact then py(A4,t) < co and { By(z;,?) :
i=1,...,px(A,t)}, z; EA,is a covering of A.

4.20. Lemma. Let (X,d) be any one of the metric spaces in 4.18, let my =m
for X =R", my =mp if X =B" or X =H",andlet AC X, A#0, be
compact. There is a number dy = 1/my (B (y,t)) depending only on n and t such
that

dimx (4) < p(4,1) < e(n)dumx (| Bx(z,t))
2EA

where ¢(n) is as in 4.18.

The simple proof of this lemma is based on a standard volume-comparison argu-

ment and on Lemma 4.18, and left as an easy exercise for the reader.

4.21. Exercise. Show that ms (U<, D(z, M)) < d2(n, M)(1 —r)'~", where
my, is the hyperbolic measure of (B",pg.) . [Hint: U, <, D(z,M) = B"(R) where
$1E = M4 (see (2.18)). Hence 1 — R > (1 —r)e™™ | and one may apply (4.15).]

4.22. Exercise. Apply 4.20 and 4.21 to show that for » near 1
ds(1—r)'"" < p(B"(r), M) < ¢(n) dy da(1 — r)1~"
where ds depends only on n and M . [Hint: Apply also (4.16).]

4.23. Exercise. For © € (0,37) let C(p) ={z€R":z ¢, = |z|cosp} and
Af =C(p)n (B™(1) \ B"(%)), t > 1. Show that
14 u)? 1?2
pan (AY) < log [L“—@‘(\/Z’F "") J ;

4cos? p Vi
where u? = sin® p + ((3})2cos®p. [Hint: Consider the smallest euclidean ball B

containing Af , and find an upper bound for p(B) .|

4.24. Remark. For n-= 2, the hyperbolic area of D(0,r) is 4wsh®(ir) ([BE,
p. 132, Theorem 7.22]). Note that for r — O this is approximately nr?, the euclidean

area of BZ%(r).
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4.25. Exercise. In any ball B™(z,r) in R"™ one can define a hyperbolic metric
pr by making use of a formula similar to (2.20). Generalizing (2.19), we have the
equality p.(z, £ + ae;) = log }fz = for 0 < a <r. Assume that z€ B®, M >0,
and p is the hyperbolic metric of B™, and let p be the hyperbolic metric of D(z, M) .
Let a € D(2,M) with p(a, 8D(z,M)) > b > 0. Find an upper bound for 5{z,a) in
terms of p(z,a) and b. [Hint: By the invariance of 5 and p we may assume that
z=0, whence D(z, M) = B"(th1M) ]

4.26. Exercise. Let G be a proper subdomain of R™ and F a connected
subset of G with d(F,8G) > 0. Applying the covering lemma 4.18 show that

ko(F) < c(n, a—é%%%) < 0o

[Hint: See [VUS5, 2.18].]

4.27. Notes. Chains of balls similar to those in Lemmas 4.4 and 4.8, but often
without a quantitative upper bound for the number of balls, are recurrent in analysis.
With slightly different constants, 4.4 and 4.8 were given in [VUS5], [VU6]. For 4.9
see [HVU]. Some formulae for the hyperbolic volume or area are given in [BE], [A5].

Instead of balls one could use cubes in Lemma 4.18, see [GU, Theorem 1.1].



