Chapter IV
BOUNDARY BEHAVIOR

In the present chapter we shall study the behavior of qc and qr mappings near the
boundary of the domain of definition. There is a fundamental difference in the study
of these two classes of mappings: in the case of qr mappings the maximal multiplicity
of the mapping may be infinite even in every neighborhood of a given boundary point.
Consequently, one cannot apply the important K,—-inequality to the qr case in the
same way as to the qc case because of the presence of a multiplicity factor which may
be infinite. Many differences in the theories of qc and qr mappings are more or less
directly connected with this fact.

The fundamental problem which we are going to study in this chapter is the

following.

Problem. Let f: B® — R"™, n > 2, be a qc or gr mapping, b € dB", and
let E C B™ be aset with b € E and f(z) — a as z — b, z € E. Under which

conditions on f and F is « in fact an angular limit of f at b7?

By Lindel6f’s well-known result this is the case if f is a bounded analytic function
and E is a curve terminating at b. We shall show by exploiting the K, —ineQuality
that if E is thick enough at b in the sense of n—capacity and if f is qc, then f has
an angular limit « at b. We give an example to show that the thickness condition is
in a sense best possible.

We shall also discuss the case where f is qr. Under the additional assumption
that f be Dirichlet-finite we shall extend the above result about qc maps to the case
of qr mappings. We shall investigate also some other properties of Dirichlet—finite qr

mappings.
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14. Some properties of quasiconformal mappings

We shall introduce some notation and terminology, useful in the discussion of
boundary behavior, and then prove some results about qc mappings. The presentation
is aimed to be self-contained also in this chapter. Those readers who wish to find some
background, motivation, or further results on boundary behavior of analytic functions
are referred to [CL], [NO], [LOH], or [PO]|. Of these, [LOH]| contains an extensive
bibliography. For the boundary behavior of qc mappings see [N1]| and [N3].

14.1. Definition. Let f: H® — R"™ be continuous. The mapping f is said to
have

(1) a sequential limit o € R™ at O if there exists a sequence (b;) in H" with
by — 0 and f(bx) — a;

(2) an asymptotic value a € R™ at 0 if there exists a curve v:[0,1) — H",
termed an asymptotic curve, such that «(t) — 0 and f(y(t)) - ¢ as t — 1;

(3) an angular limit o € R™ at O if, for each ¢ € (0,17), f(z) approaches
a as z tends to 0 in C(p) (for the definition of the cone C(p) see the
definition preceding Theorem 11.17);

(4) alimit a € R™ at O through a set E,if 06 E CH"U{0} and f(z) — a

as z—0 and z€ F.

The set C(f,b) of all sequential limits of f at a boundary point b is termed the
cluster set of f at b. If A C JH" is non—empty, we denote C(f, A) =y, C(f,).
In the literature an angular limit is sometimes called a non-tangential or (if
n > 3) a conical limit. It is clear that C(f,b) is always a compact non—empty subset
of fH". From the well-known fact that one-to—one mappings preserve open sets, it

follows that C(f,b) C 3fH™ for one-to—one mappings f (see also 9.12).

14.2. Remarks. (1) The cluster set of f: H® — R™ at b € dH" can
alternatively be defined as '

c(f,b)=[\fUNH")
U _
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where U runs through all neighborhoods of b. From this definition it follows that
C(f,b) is connected whenever f is a continuous mapping of H". (More generally,
C(f,b) is connected if f is defined on a domain G which is locally connected at
be dG [CL, p. 3].)

(2) For z€R", ¢ >0,let E*={z€ G: q(f(2),z) <e}. A second equivalent
definition of C(f,b) is

C(f,b)={z€R": bc E? forall e>0}.

(3) It is clear that q(f(:z:),C(f, b)) — 0 as ¢(z,b) — 0, z € H". In particular,
C(f,b) = {b'} iff f has a limit b’ at b.

14.3. Examples. (1) By the Riemann mapping theorem there exists a confor-

mal mapping f: H? — D, where D is as pictured.

Diagram 14.1.

It follows from the theory of prime ends (cf. [CL], [D], [PO], [NO]) that the segment
A corresponds to a single point b € 8H? under f,ie. C(f,b) = A. In this case f
has no asymptotic value, hence no angular limit at b.

(2) A conformal mapping f: H? — G with C(f,0) = B, where G is the domain
and B the segment pictured, has an angular limit but not an ordinary limit at 0 (cf.
cL, [0)).

Diagram 14.2.
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(3) It seems difficult to give an explicit expression for the conformal mapping f
in (2). We now exhibit an example of a real-valued function with properties somewhat
analogous to those of (2), i.e. this function will have an angular limit but not a limit
at a boundary point. Let u: H? — (0,00) be defined by u(z,y) = (22 + y?)/y for
(z,y) € H?. Then u has no limit at 0, in fact C(f,0) = [0,00], but it does have
an angular limit 0 at 0 and an asymptotic value ¢ > 0 through the circular arc
{(z,y) eH?: 22+ (y—2c)? = 1c%, 2> 0}.

(4) The harmonic function u: H? — (0,7), u(z,y) = arctan(y/z), (z,y) € H?,
has a constant value on each ray in H? emanating from the origin.

(5) The function v: H? — [0,1], v(z,y) =sin®(1/y/z2 + y2) has no asymptotic
value at 0, hence no angular limit at 0. The function vi: H? — [0,1], vi(z,y) =
v(z,y)y/ \/m has an asymptotic value 0 at O but no angular limit at 0.

A conformal mapping of H? may fail to have an angular limit at a boundary point
b€ dH? (cf. 14.3(1)). However, the set of all such points of dH? is very small; it is
of capacity zero by Beurling’s theorem (see 14.7 below). A bounded analytic function
of the unit disc B? has an angular limit at each point of dB? except possibly for a
subset of dB? of linear measure zero (Fatou’s theorem [CL, p. 17]).

A set E C H™ is said to be non-tangential at 0,if 0 € E Cc H* U {0} and
E C C(p) for some ¢ € (0,1r), and tangential at 0 if 0 € E C H” U {0} and
E ¢ C(p) for each € (0, 3m).

14.4. Remark. Suppose that a.‘ma,pping f: H® — R"™ has an angular limit
o at 0. It follows almost immediately from the definition of an angular limit that
f approaches a not only through each non-tangential set but also through a set
E which is tangential at 0. In fact, by the definition 14.1(3), for each k = 1,2,...
there exist rg, rg+1 € (0, %rk) ,suchthat z € Ey, E; = C(-zT,’;'—f-_—l-)-)ﬂB"(rk) , implies
¢(f(z),) < 1/k. Clearly f approaches a through the tangential set E = |Jp, Ey.

However, the “degree of contact” between F and dH" depends on f.

In the preceding discussion we have considered real- or vector—valued continu-
ous mappings of H™. Some of the above definitions have natural counterparts for
mappings of an arbitrary domain G in R™, which we shall use if necessary. Now
we are going to consider normal mappings (cf. 13.1). The following lemma should be

compared to 13.21.



177

14.5. Lemma. Let f: H® — R™ be normal, let b, € H*, b, — 0, and let
f(bx) — B . For every € > 0 there exist M € (0,00) and p > 1 such that
q(f(z),8) <e for z€ Ey = U D(bg, M) .
k>p

Moreover, if there exists an angle ¢ € (0, %7{') such that by € C(p) for all k, then
my ([0, bk] N Epg) > d(p, M) > 0.

Proof. The first part follows from the definition of a normal function. For the

second part note that
B™ (b, bk (1 — M) C D(bg, M)

by (2.11), where by, is the nth coordinate of by. Since by € C(p), we see that
bkn > |bx|cosp, and the assertion follows with d(p,M) = (1 — e M)cosp. O

14.6. Lemma. If f: H® — G' = fH" is a qc mapping then the following
assertions hold.

(1) The set G’ = C(f,0H") is a non-degenerate continuum.

(2) If E;CcH", 0€ E;,and fE;NfE; =0, then M(A(Ey, E2; H")) < oo.

Proof. (1) Because one-to—one continuous maps (and their inverses) preserve
open sets the set—theoretic equality G’ = C(f,dH™) is clear. It follows easily from
14.2 that

C(f,0H") = fU; ; U; =H"\D(en,j) .
=2

Because f is continuous, the sequence { fU;: j =2,3,...} is a decreasing sequence
of connected compact sets of R™ and thus C(f,dH") is connected by a well-known
topological result. By 8.6(1), (7.31), (2.6), and 10.19

0 < 2" ¢, log2 < pppn(€ns 2e) < Ko (f) Hyan (f(en)s f(2en)) ,

and hence C(f,0H™) contains more than two points; that is, C(f,dH") is non-
degenerate.

(2) Because f is one-to-one fA(E;,Eq;;H™) = A(fEy, fE2; fH™) and thus by
5.23 or by 6.20 and (10.11)

M(A(Ey, E2;H)) < Ko(f) M(A(FEy, FEy; fHY)) <00, O

The following result is a generalization of Beurling’s theorem on conformal map-
pings (see [CL, p. 56, Theorem 3.5], [N3]).
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14.7. Lemma. Let f: B® — G’ be qc and
E ={bedB" : f has no asymptotic value at b} .

If F C E is compact, then capF =0.

Proof. Assume that F C E is compact and cap F > 0. Let K =B"(%) and
I' = A(K, F;B"). Denote by T', the family of all rectifiable paths in ' and by I’
the family of all rectifiable paths in fT',. Then by 5.8, 5.20, 6.1(5)

M(T%) = M(/T,) > M(T,)/K(f) = M(T)/K(f) > 0

because cap F' > 0. Hence T', # 0. Thus there exists a rectifiable path v € T', such
that f o~ is rectifiable, i.e. f has a limit through |y|. This contradicts the choice

of F. O

14.8. An open problem. This problem, due to F. W. Gehring, has been studied
by P. Caraman [C2|. Let f: B® — G’ be a qc mapping and E,, = {b € dB" :
f13b,b) is non-rectifiable } . For a Borel set A C Ep, let T, = {[35,b) : be A}.
Then every path in fT', is non-rectifiable and hence M(fT ) =0 by 5.8. It follows
from (5.13) that also

M(T ) = mp—1(A4)(log2)*"™ =0

and hence my_;(A) =0 whenever A C E,, is a Borel set. Problem: Is it true that
cap F = 0 for every compact subset F' of E,,?

For the following chapters we shall need a convenient criterion for the thickness
of aset E C R™ at a point £ € R®. The lower and upper capacity densities of E
at = are defined by (cf. [VU2], [VU3])

capdens(E, z) = lim iélf M(E,r,z),

.
14.9 —
(14.9) cap dens(E, z) = limsup M(E,r,z) ,

r—0
where M(E,r,z) is as in (6.2). Set A, = {r > 0 : S*Y(z,7)NE # 0} for
z€R". If A, is measurable we define the lower and upper radial densities of E at
z , respectively, by

0,7)N A
rad dens(E, z) = limicr)lf ma(( :) 2) )
_— ' 0,r)NA
rad dens(E, z) = limsup ma (( :) J ,
r—0

(14.10)

where m; is Lebesgue measure on R.. It is not difficult to see that A, is measurable

for every z € R™ if E is open or closed.
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14.11. Lemma. If E is a compact subset of R™ with rad dens(%,0) > 6 >0,
then cap dens(E,0) > ¢(n,6) > 0, where ¢(n,6) depends only on n and §.

The proof of this lemma is a straightforward application of spherical symmetriza-
tion. The details can be found in [VUS3]. It is clear that a similar result holds also for

upper densities.

14.12. Examples. (1) Let Sx =S (2~ *)n{z:2, >0}, k=1,2,...,and
let E = {0} U (|JSk). It follows from 5.34 that capdens(¥,0) > 0, while clearly
rad dens(E,0) = 0 = rad dens(E, 0) .

(2) There exists a compact set E of zero Hausdorff dimension such that
capdens(E,0) > 0. By a well-known result, see 7.15(1), there exists a compact
Cantor-type set E; C B"(2) \ B" of positive capacity and zero Hausdorff dimen-
sion. Exploiting this fact we construct a set E with the desired property. Let
h: R® — R" be the mapping h(z) = 1z, z € R", and denote Exy; = hE. The
set E = {0}U(U Ek) is compact and of zero Hausdorff dimension. Since cap E; > 0,
also M(E,,4,0) =6 > 0 (see 6.1(5)). Hence also capdens(F,0) > §.

14.13. Remarks. (1) It is possible to construct a compact Cantor set E on the
positive z;-axis such that m(E) =0, capdens(E,0) > 0, and raddens(E,0) =0.
Therefore, in some cases there are no positive lower bounds for the capacity density
in terms of the radial density. Sometimes one can exploit other lower bounds for the
capacity densities, see [M4].

(2) The condition capdens(E,0) > § > 0 is sometimes used in the following
way. First fix ro > 0 such that M(E,r,0) > %6 for r € (0,79). Next choose
X = A(n,6) > 2 such that wy—_1(log2))!~™ = 16. Then

M(B"(r/)), r, 0) < wyp_1(log2))}~" = 1§

1
4

for all » € (0,70) . Let Ey = EN(B"(r)\B™(r/})) and E, = ENB™(r/}) . Further,
by 5.9,
M(E,r,0) < M(E,r,0) + M(E,,r,0)

and hence M(Ey,r,0) > -;—6 .

The next lemma gives a condition for a curve family to have infinite modulus
generalizing 5.33 (cf. [VU2]).



180

14.14. Lemma. If capdens(F;,0) = §; > 0 and capdens(E;,0) = §; > 0,
then M(A(El,E’z)) =00.

Proof. Fix ro € (0,1) such that M(E;,r,0) > 26 for all r € (0,r9) and let
A1 = A1(n,61) be the number in 14.13(2). Fix a sequence ry > rp > ... such that
r1 € (0,79) and M(E,,r;,0) > -2-52 for j =1,2,... and let Az = A2(n,62) be asin
14.13(2). Denote A = max{A;,A;}. Then

14.15 wr—1(log2X)1™"™ = 1 min{ 6, 62} .
4

Fix j and denote F; = E; N (B"(r;) \ B™(r;/})), ¢ = 1,2, F3 = S"~1(2r;).
Applying 5.41 to the triple Fy,F,,F5 we obtain as in 14.13(2)

M(A(F1,F2)) Z Zd(n) min{ 51, 52}

where d(n) = 27237 min{l, ¢, (log 2)" /w,_1} . Next we are going to select a positive

number p = p(n,b1,62) such that
(14.16) M(A(F1, Fa; RY)) > d(n) min{ &, 63 }

where R} = B"(2ur;)\ B"(r;/(2Ap)) . Since Fy,F, C B™(r;) \ B"(r;/}) it follows
from 5.9 and (5.14) that it suffices to choose y so that

(14.17) 2wp_1(log2u)~™ < d(n) min{ 6y, 65 } .

We shall next find an upper bound for 4 in terms of A and n. It follows from (14.15)
that
wn—1(log(2A)?) =" < 10 ™" min{é;, 6} .

Hence (14.17) is fulfilled as soon as 2u > (2A)P and 1p'~™ < d(n). Let po > 1 be
the least integer satisfying this last inequality and set p = (2A)P°. With this choice
of p (14.17) holds. By passing to a subsequence of (r;), if necessary, we may assume
that the rings R;-" are separate and that (14.16) holds for all j. It follows from 5.4
and (14.16) that '

M(A(El,Ez)) Z i M(A(El,Ez;R‘,”‘)) =o00. O
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14.18. Example. There exist sets E and F with capdens(Z,0) > 0,
cap dens(F,0) > 0 and M(A(E,F)) < 1: Let ro = 1 and choose r;4; € (0,1r;)

such that
r: 1—n
2 Wy <log J ) <1.
Z " 41

Set B =jo, 8" Hry;—q) and F =72, S™(ry;) . By 5.9 and (5.14)

i M(A(E, Fy))

j=1

< an 1[(log ————-) o + (log r];___l)l—n] <1.

Ti+1 J

14.19. Exercise. Applying 14.6(2) and 5.33 show that a qc mapping of H"
cannot have two distinct asymptotic values at a point & € dH"™ . Applying 14.6(2)
and 14.14 one can generalize this observation as follows. If a q¢ mapping of H™ has
a limit «; through aset- E; at 0, j=1,2, and if a; # as, then it is not possible
that both capdens(E;,0) >0 and capdens(Es,0) >0 hold.

14.20. Exercise. Let F C H™ be non-tangential at 0 and let f: R®™ — R"
be a K—qc mapping with fH"™ = H" and f(0) = 0. Show that fE is non—tangential
at 0. [Hint: Apply 12.12 to f|R™\ {0} and make use of the fact that f(GH") =
OH™ .] See also [MOR2].

15. Lindelof-type theorems

From a result of E. Lindeldf it follows that a conformal mapping of B? having
an asymptotic value o at a boundary point b also has an angular limit o at 5. A
similar result was proved by Gehring [G3, p. 21] in the case of gc mappings in R3,
and the same proof applies to the n—dimensional case. The following result weakens

the hypothesis about the existence of an asymptotic value.

15.1. Theorem. Let f: H® — G' be a qc mapping, and let E C H" be such
that 0 € E and capdens(E,0) >0. If f(z) - a as £ — 0, z€ E, then f has an

angular limit o at 0.
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Proof. Suppose, on the contrary, that there exist ¢ € (0,37) and a sequence
(bx) in C(p) with f(by) — B and a # B. By performing an auxiliary Mdbius
transformation we may assume that «, § # co. Let 3r = |a — |. As a qc mapping
of H®, f is normal (cf. 13.7(1)) and it follows from 14.5 that there exist numbers
M >0 and rg >0 such that

{fE'l C B*(a,r), E;=B"(rq)NE;
(15.2)

fE, C B*(B,r), E;=B"(ro)n (UD(bx, M)) .

We denote T' = A(Ey, E2;H™). By (5.14) and (5.2) M(fT) < oo . Since b € C(p)
it follows from 14.5 that rad dens(E2,0) > 0. On the other hand we get by 5.22,
14.11, and 14.14 that

M(T) > 2 M(A(E1, E;R™)) = 00 .
This inequality contradicts (15.2) and M(T) < Ko(f)M(fT). O

15.3. Remarks. (1) The condition capdens(¥,0) > 0 in 15.1 cannot be
replaced by ca,p-&é—n:s—(E,O) > 0. To prove this statement we consider a conformal
mapping f: H2 — G' having no limits along the y-axis at 0. For the existence
of such a mapping the reader is referred to the theory of prime ends‘(cf. references
given in 14.3). Let C,(f,0) be the cluster set of f at 0 along the y-axis and
fix « € C,(f,0). By the definition of C,(f,0) there are numbers ¢, \, 0 with
f(tre2) = a. By 13.23 f(z) — a as z — 0, z € |J D(txez,1), and we see by 14.5
(or more directly, by (2.11)) that

rad dens(|J D(txe2,1),0) >0,

and hence also the upper capacity density is positive by the proof of 14.11. The
function f has the desired properties, since it fails to have an angular limit at 0.
(2) The main interest in 15.1 lies in the case of a tangential set E. If E is
non-tangential at 0 and if capdens(F,0) > O then, as we shall show in 15.7, E
contains a sequence (bg) with by — 0 and limsup p(b,bx+1) < co. From this fact
and from 13.21 and from Gehring’s result [G3] one gets a simple proof of 15.1 in case

E is tangential at 0.

To ensure the measurability required for the definition (14.10) of a radial density

we assume in the following theorem that E is either open or closed. This is no
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restriction of generality, since from the fact that f(z) = a, £ — 0, z € E it follows
by elementary properties of continuous mappings that f has a limit a at 0 through
an open set F with E C F whether E is open or not. A result analogous to 15.4(1)
for bounded analytic functions is due to T. Hall [H].

15.4. Corollary. Let f: H® — G’ be a qc mapping, let E C H™ be an open
or closed set with 0 € E and f(z) = a, £— 0, £ € E. Then f has an angular
limit o at O if one of the following conditions is satisfied.

(1) E is a curve terminating at 0 or, more generally, E is a set with

rad dens(E,0) > 0.
(2) E={bg: k=1,2,...} where by € H" and by — 0, and
lim sup p(bg, bgt1) < oo .
(8) capdens(Ey,,0) >0, where Ey, = |J,cp D(z,M) and M € (0,00) .

Proof. Part (1) follows from 14.11 and 15.1. For the proof of (2) suppose that
p(bk,bk+1) < M for k > ko. Then the set E,, = Ukao D(bg, M) is connected and
f has the same limit « through E,, by 13.21 (or by Exercise 13.23). After this
observation, part (2) follows from (1). Part (3) follows from 13.23 and 15.1. O

When we compare the above condition 15.4(1) with (3), the following question
arises. Suppose (1) holds. Does there exist M € (0,00) and a sequence (bg) in E
with br — 0 and p(bk,br+1) < M ? The answer is negative, as the following example

shows.

15.5. Example. There exists a set E C H" with raddens(F,0) = 1 such
that

(15.6) limsup p(bg, bx+1) = oo

for every sequence (by) in E with by — 0. Set Ejy = [27%1e;,27%e;]+tre,, , where
tk/tk+1 =k, and E =|J Er. Then it follows from (2.11) that

p(Ek, UE_,) —r00 as k— 0.
J#k
Hence (15.6) is clearly satisfied, and E has the desired properties.

An essential feature of the above example is that the set E is tangential at 0.

Indeed, we shall show that such an example is impossible if E is non-tangential.
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15.7. Non—tangential sets. Let theset £ C H"™ be non-tangential at 0 with
cap dens(F,0) =26 > 0 and ¢ € (0,37) such that E C C(p). Choose ry € (0,1)
such that M(E,r,0) > é for r € (0,r9) and A > 1 such that

wn—1(log2X)17" < %6 .

Then it follows from Remark 14.13(2) that for each r € (0,75) there exists a point
b, € ENR(r,r/),0) where R(r,r/),0) = B*(r) \ B*(r/)). Let r = ro/(2)*) and
by = by, . By 4.23 we get

p(br,br+1) < p(Cp) N R(r,r/A%,0)) = ¢(p,n,6) < oo .
This inequality shows that (bg) is the desired sequence.
We shall next compare the hypotheses of 15.1 with those of 15.4(1).

15.8. Example. If the dimension n > 3, then there exists a set £ C H” such
that capdens(F,0) > 0 but raddens(E,,,0) =0 for all M > 0. For simplicity let
n = 3 and define E by

E = U {(z,y,2) eH3: 2+ 2 =272 z=2"F/k} .
k=1
Fix M > 0. Let Epy = U,cp Dz, M) and A = {r > 0: S*1(r) N Ey # 0}.
Clearly capdens(F,0) > 0 (the dimension n > 3). By (2.11) the lengths of the com-
ponents of A have an upper bound e™2~*/k and it follows that rad dens(E;;,0) =0
(for more details, see [VU2, 6.9(3)]). It seems to be an open question whether a set

with similar properties can be constructed in H? , too.

We shall next prove a generalization of the above Lindel6f-type theorem 15.1,
which is motivated by a theorem of J. L. Doob [D]. Consider a qc mapping f: H® — G’
with 0 € C(f,0) (this condition is just a normalization). We want to find a condition,

as general as possible, which implies that f has an angular limit 0 at 0. Denote
(15.9) E.=f"'B"(), 6= capdens(E.,0),

for e > 0. We are going to prove a theorem, which shows that f has an angular limit
0 provided that the numbers &, satisfy either (1) liminfé. > 0 or (2) liminfé, =0
with 6. tending to O sufficiently slowly as ¢ — 0. A result of this character was

proved by J. L. Doob [D] in the case of bounded analytic functions.
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15.10. Theorem. Let f: H® — G’ be a qc mapping, ¢ >0, E. = f~1B"(¢),
and 6. = capdens(F,0). If

lim sup 6, (log %) " =00,

€~+0

then f has an angular limit 0 at the origin.

Proof. Suppose, on the contrary, that there exist ¢ € (0, -.}7r) and a sequence
(bx) in C(p) with b — 0 and f(bx) = F#0 as k — co. Let 0< 2rg < |B|. By
relabeling if necessary we may assume, in view of 14.5, that fD(bx, M) C R"\B™(ro),
k=1,2,... for some M > 0.

Diagram 15.1. The proof of 15.10.

For every € € (0,79) there exists ¢, such that
(15.11) M(E.,r,0) > 16 for re(0,t).

Fix e € (0,79) . For |bg| <t denote

Ff =B™(|bx|) N Ec, Fy =B"(jbx[) n (UD(bx, M)) ,
FF=5""1(20b|) , TF =A(FF,F}RY).

By (15.11) we have for |bg| < ¢,
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From 14.5 and 5.34 it follows that
M(T%;) > ¢(n, o, M) =¢c >0

for all k. Let T'c = A(Ee, U D(bg, M );H”) . By virtue of the symmetry principle

5.22 and the comparison principle 5.41 one obtains
(15.12) M(T,) > $M(T%) > 137" min{ 16, ¢, cnlog2} > A6

for |bx| < te where A is a positive number depending only on n, ¢, and M. From

(5.14) we get the upper bound

M(/T,) < wp—1 (log IE-Q-) e .

This inequality, together with (15.12) and M(T,) < Ko (f) M(fT,) , yields

l-n

48 < Ko (f) wa-1(log =2
Letting € — 0 we get a contradiction. O

15.13. Remarks. (1) Theorem 15.1 is a special case of the above result 15.10
when liminfé. > 0.
(2) Theorems 15.1 and 15.10 seem to be among the best results implying the

existence of an angular limit, even in the particular case when f is conformal and
n =2 (cf. [VUZ2], [VU3]).

15.14. An open problem. For EC H?, 0€ E, and a € R? let C(E,a)
be the class of all conformal mappings of H? into B? having limit o at 0 through

the set E . Assume now that E has the following property:
(15.15) If feC(E,a) then f has angular limit a at O.

In particular, if capdens(E,0) > 0, then E has this property by 15.1. Denote
Ey = Ugeg D(z, M), M > 0. Does it follow from (15.15) that cap dens(E,,,0) >0
for some M >07?

15.16. An open problem. For ¢>1 let

qu{ZEH" : $n2(3§+---+$i—-1)q/2}
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and Ty(z) = Tq + {2} for z€ R™ with z, =0. Let f: H® — R"™ be a qc mapping
and let ¢ > 1 be given. Does there exist z € JH"™ such that f has a limit along
Tq(z) at z? In the limiting case ¢ = 1 this is true by 14.7. See also 14.4. If n = 2,
g = 2, one can construct a conformal mapping of H? having an angular limit o at
a single boundary point O but failing to have limit o at 0 through T» [GAP]. (It
is well known that the answer is negative in the case of bounded analytic functions,
n =2 (see [CL, p. 43|).)

16. Dirichlet—finite mappings

The goal of this section is to extend Theorem 15.1 so that it applies to coordinate
functions f;, 1 <j < n,of a qc mapping f: H* - G', f = (f1,...,fn). Such an
extension is motivated by a result of F. W. Gehring and A. J. Lohwater [GL], which
reads as follows. Let f: H? — R2?, f = (fi,f2), be a bounded analytic function,
let v; be a curve in H? terminating at 0, and let f; have a limit «; along ~;,
7 =1,2. Then f has an angular limit o= (a;,a2) at 0.

It follows from an example due to S. Rickman [RI5] that a similar result is not
true for bounded qr mappings in H", if n > 3. In the present section we shall
show that the result in [GL] has a counterpart for quasiregular mappings with a finite
Dirichlet integral.

Let u: H® — R be a continuous ACL"™ function. Then u is said to be Dirichlet

finite, or to have a finite Dirichlet integral, if
(16.1) Dir(u) =/ |Vu|"dm < oo .
Hn

We say that v has a locally bounded Dirichlet integral if there exist numbers B > 0,
M > 0 such that

(16.2) / Vu|*dm < B
D(z,M)

for all z € H® where D(z, M) is as in (2.11).
Let G C R™ be an open set. A continuous function u: G — R is said to be

monotone (in the sense of Lebesgue) if the equalities
(16.3) max u(z) = max u(z) and min u(z) = min u(z)

hold whenever D is a domain with compact closure D C G.
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16.4. Remark. It follows from the above definition that if ¢ € R, then each
component A # @ of the set {z € G : u(2) > t} fails to be relatively compact,
ie. ANOG # 0. A similar statement holds if > is replaced by. >, <, or <.
Hence monotone functions satisfy a weak maximum principle. The class of monotone
functions is wide: it contains harmonic functions as well as solutions of certain elliptic

partial differential equations associated with qr mappings.

16.5. Exercise. (1) The function u: H? — (0,7), u(z) = arg z, is a monotone
ACL? function. Show by computation that u fails to satisfy (16.1) but that it does
satisfy (16.2).

(2) Construct a monotone function u: H? — R which has no asymptotic value

at any point z € 9H?2.

The next result is a fundamental property of functions with locally bounded
Dirichlet integral. Some results of this kind were proved already by D. Hilbert and
H. Lebesgue in the beginning of this century (see [LF1] and the references given
there). These ideas have also found frequent application in geometric function theory

in connection with the so—called length—~area method. For further references see 5.72.

16.6. Theorem. Let u: B® — R be a monotone function with locally bounded
Dirichlet integral. Then )

lu(z) —u(@)|® < C (log %)—1(1 —r)l-n

where r = th ip(z, y) and C is a positive constant depending only on the numbers
n, M ,and B in (16.2). In particular, u: (B™,p) — (R,| ) is uniformly continuous.

Proof. Clearly we may assume that u(z) < u(y). Since the right side depends
on z and y only through the MGbius invariant quantity p(z,y), we may assume that
r=re, =—y, r=th al-p(:c, y) (see (2.25)). Let

E={z2eB":u(z)<u(z)}, F={2€B":u(z) 2u(y)},
and denote T', = A(E, F; B"(y/r)) . It follows from 16.4 and 5.32 that

1
M.(I‘r) > ¢y log 7_; .

Lemma 7.4 yields

M(T,) < Ju(z) — u(y)|" /B o, Tl



189

In view of (16.2) the integral can be estimated from above in terms of B and the

number

k
int{ & : B(vF) < | Dizs, M), Ij] < vF} .

j=1

It follows from (4.19) and 4.22 that we now obtain
/__ Vuldm < Bd(n)(1 — v/F)™" < 2" Bd(n)(1 — r)\—" .
Br(\/F)
In conclusion, the above inequalities yield
-1
lu(z) —u(y)|* < C (log l) (1—-r)l-n
r

where C =2"Bd(n)/c,. O

16.7. Corollary. Let u: B®™ — R be a monotone ACL" function. Then

1
- " < Dj =
lu(z) — u(y)|® < D1r(u)/<cn log r)
for all z,y € B™, where ¢,, is as in 5.34 and r = th ;i—p(z, y) .

Proof. Clearly we may assume that Dir(u) < co and u(z) < u(y). Define the
sets £ and F as in the proof of 16.6 and let I' = A(E, F;B"). By 8.6 and 8.7

M(T) > Agn(z,y) > %T(Sh2 1p(z,y))
> —cn logth 2p(z,y) .

Lemma 7.6 yields
M(T) < Ju(z) — u(y)| " Dir(v)

and hence the result follows. O
We remark that the upper bound in 16.6 or 16.7 is not accurate for large values

of p(z,y). A better estimate for large values of p(z,y) can be derived from 16.6 and

the fact that u» is uniformly continuous, see 4.13.

16.8. Theorem. Let u: H® — R be a monotone Dirichlet finite function and
let E C H™ be a set with 0 € E C H" U {0} and capdens(E,0) > 0. If u(z) — «

as £ —+0, z € E, then u has an angular limit « at 0.
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Proof. The proof is similar to that of 15.1. Fix ¢ € (0, %w) . Suppose, on the
contrary, that there exists a sequence (br) in C(p) with by — 0 and u(b;) — 8 # «.
We shall assume that —oco < a < # < co; in other cases the proof is similar. Let
By be the by—component of the set B = {z € H" : u(z) > (e +28)/3} and let
A={zc€H" : u(z) < (2a+ f)/3}. By 16.7 and the proof of 14.5 there are M >0
and p € N such that D(bg, M) C By for all k> p and

rad dens(B,0) > d(p, M) > 0;
hence cap dens(B,0) > 0 by 14.11. Since
cap dens(A4,0) > capdens(E,0) > 0

it follows from 14.14 and 5.22 that

M(A(A4,B;HY)) > $M(A(4,B;R")) = o0
From 7.6 we have

M(A(4,B;H")) < 3"(8 — @) " Dir(u) < oo,
which is a contradiction. O

16.9. Corollary. Let f: H® — R"™ be a qr mapping and assume that there
are sets E; C H" such that fj(z) - aj as £ =0, z € E;, j=1,...,n. If
capdens(E;,0) >0 and Dir(f;) < co for each j=1,...,n, then f has an angular

limit a = (ay,...,a,) at 0.
Proof. The proof follows from 16.5(2) and 16.8. O

16.10. Corollary. Let f: H® — R™ be a qc mapping and assume that f;(z) —
ajasz—0,z€ E;, E;CcH", y=1,...,n. If capdens(E;,0) >0, j=1,...,n,

then f has an angular limit a = (ay,...,a,) at 0.

Proof. Let h € M(R") be such that h(e,) = co and hD(en,1) = R*\ B™.
By considering the map ko f, if necessary, we may assume that f is bounded by 1

in H* N B*(%) = D (note: here we use the fact that f is injective). Moreover,
/ ') |Pdm < K/ Jp(z)dm = Km(fD) < KQ, .
D D

Since |0f;(z)/9zx| < |f'(z)], 1 < i,k < n, we see that Dir(f;) < n"KQ,, j =
1,...,n, and hence the proof follows from 16.8. O
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It follows from a well-known formula for change of variables that all K—qr map-
pings f: H® — B"™ have a finite Dirichlet integral, that is Dir(f) < Km(B") = KQ,, .
More generally this holds for K—qr mappings f: H® — B™ with finite maximal mul-
tiplicity N(f,H") < oo, that is Dir(f) < KN(f,H") Q,, . It is easy to give examples
of bounded analytic functions with an infinite Dirichlet integral (for instance, the ex-
ponential function in the left plane). However, bounded qr mappings have a locally
bounded Dirichlet integral according to the following theorem of Reshetnyak (proof
omitted) [R13, p. 127].

16.11. Theorem. For n > 2, K > 1, and r € (0,1) there exists a number
¢(n,K,r) such that each K~qr mapping f: B®™ — B"™ satisfies

/ (@) "dm < e(n, K, 1) .
B (r)

16.12. Theorem. Let f: B®™ — R™ be qr. Then the following conditions are
equivalent:

(1) f:(B",p) — (R",||) is uniformly continuous.

(2) There are numbers M >0 and B > 0 such that

[ if@ramss
D(z,M)

holds for every z € B"™.
(8) There are numbers T > 0 and C such that |f(z) — f(y)] < C whenever
z,y € B® and p(z,y) <T.

Proof. (1) = (2): Fix ¢t > 0 such that p(z,y) <t implies |f(z) — f(¥)] < 1.
It follows from (2.23) that

B™(z, (1 - |z|) thit) C D(z,t) .

Let h € M(R") with hB"™ = B"(z, (1 — |z|)thit). Then foh: B® —B" is K—qr
and
/ [(f o h)|*dm = |f'"dm < ¢(n, K, 1)
Bn(1/2) Bn(z,s)

by 16.11, where s = 1(1—|z|) th %t . Now choose a number M such that D(z, M) C

B™(z,s) for all z. Because for all z€ B"

D(z, M) C B"(z, (M -1)(1 - =)
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by (2.23), the choice e —1 = 1th 1t implies that D(z,M) C B"(z,s). With this
choice of M and with B = ¢(n, K, 1) the condition (2) holds.

(2) = (1): It suffices to show that each coordinate function of f is uniformly
continuous. On the other hand the coordinate functions are monotone. Now the
uniform continuity of coordinate functions follows from (2) and 16.6.

It is clear that (1) = (3). So it remains to prove (3) = (1). It follows from the
Schwarz lemma 11.2 (see also the proof of 13.4) that

th %p(z, v) ) o

1) = 1)) < ol ) (=57

where o = K;(f)}/(1~") | The desired conclusion follows. (I

16.13. Corollary. Suppose that f: B™ — R"™ is a quasiregular mapping with
Jgn |7 (z)|"dm < oo . Then

1+ |z
1—|z|

7@ < 17(0)] +1+ 3= log

for all z € B™ where M =sup{T : p(z,y) <T = |f(z) — f(y)| <1}.
Proof. The proof follows from the proof of 4.13 and from 16.12. O

16.14. Remark. Theorem 16.11 yields an upper bound for the growth of the
Dirichlet integral of a bounded K—qr mapping f: B®™ — B"™. Indeed, 16.11 combined
with 4.22 shows that

/ I (2)|"dm < AQL — )",
B~(r)
where A depends only on n and K.

16.15. Notes. The results of this section are from [VU9] except for 16.12 which
is [VU10, 4.29).
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Some open problems

(1) Find an explicit expression for vn(s) when n >3 (see Sections 5 and 7).

(2) Let E, F C H™ be compact and disjoint, let F* = {(z1,...,Zn—1,~Tn) :
(z1,...,2p) € F}, T = A(E,F), T* = A(E,F*). Is it true that M(T) > M(T*)
(cf. 7.59)7

(3) Find all domains D such that Ap(z,y)/(*~™ is a metric on D. Is this true
for D=R"\ {0} and n =2 (cf. Section 8)7?

(4) Let f: B®™ — fB™ C B" be discrete, open, and proper. Assume that n >3
and By is compact. Is f one-to-one (Section 9)? The answer is yes if fB™ =B".

(5) Find an upper bound for the linear dilatation H(z,f) of a K-qc mapping
f: G — fG, G C R™, such that the bound tends to 1 as K — 1 (cf. Section 10).

(6) Does there exist an absolute constant C, independent of n and K, such
that Theorem 11.40 holds with C in place of M;(n,K)?

(7) For given n > 2, K > 1,and § € (0,1), does there exist a number A(n, K, 6)
with the following property: if f: B® — fB® Cc B™ is K—qr and |f(0)| > 6 then

card{ z€ B"(3): f(z) =0} < A?

(8) Let f: B® — B™, n > 3, be qr. Show that f has at least one radial limit.
(The case of Dirichlet—finite f is well known [MIK2], [MR1].)

(9) Prove or disprove the following assertion. For each n > 2, r € (0,1), and
K > 1 there exists a number d(n,K,r) with d(n,K,r) — d(n,K) as r — 0 and
d(n,K) — 1 as K — 1 such that whenever f: B® — R" is K-qc, then fB™(r) isa
d(n, K, r)—quasiball. More precisely, the representation fB"(r) = gB™ holds where
¢g:R® —» R" is a d(n,K,r)—qc mapping with g(co) = co. (Note: It was kindly
pointed out by J. Becker that we can choose d(2,1,r) = (1+7)/(1—7) either by [BC,
pp. 39-40] or by a more general result of S. L. Krushkal’ [KR].)

Additional open problems can be found in [BAM], [G9], and [V10].
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