Chapter III
QUASIREGULAR MAPPINGS

The study of quasiconformal and quasiregular mappings in this and the following
chapter will be based on the transformation formulae for the moduli of curve fam-
ilies under these mappings. In most cases it will be enough to make use of these
transformation formulae specialized to the conformal invariants e and Ag. These
special cases of the general transformation formulae are convenient to use because they
together with the results of Section 8 provide immediate insight into some relevant
geometric quantities. ,

In the case of the conformal (pseudo)metric kg the transformation formula
reads: a quasiregular mapping f: G — fG C R”" is a Lipschitz mapping between
the (pseudo)metric spaces (G, ug) and (fG,u ) - From this result and a similar re-
sult for the conformal invariant A, we derive several distortion and growth theorems
for quasiregular mappings.

To this end we shall make use of some. results from Chapter II that will enable
us to find simple estimates for the functions pg(z,y) and Ag(z,y). Except for the
special case G = B" formulae for pg(z,y) and Ag(z,y) are unknown, but one can

give upper and lower bounds for them in terms of

__ le—y 2 = dls
ra(z,y) = mld(@), d@)] d(z) = d(z,8G) ,

for a wide class of domains G (see 3.8 and 8.26).

When G = B"™ the transformation formulae for o and A yield two variants of
the Schwarz lemma (see 11.2 and 11.22, respectively). A central theme of this chapter
is a circle of ideas centered in the Schwarz lemma and its various generalizations,
including a study of uniform continuity properties of qr mappings. In particular, we

shall also discuss some properties of normal quasiregular mappings.
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9. Topological properties of discrete
open mappings

In this section we shall survey some topological properties of discrete open map-
pings. A thorough discussion of this topic, including the definition of the degree of
a mapping, requires machinery from algebraic topology (see [RR]). In this section no

proofs will be given.

9.1. Definition. Theset T™ consists of all triples (y, f, D), where f: G — R"
is a continuous mapping, G C R™ is a domain, D is a domain with D C G and
yER" \ féD.

9.2. Lemma. There exists a unique function p : T" — Z, the topological
degree, such that
(1) y+ wu(y, f,D) is a constant in each component of R™ \ féD.
(2) |u(y,f,D)|=1 if ye fD and f|D is one-to-one.
(8) wu(y,id,D) =1 if y€ D and id is the identity mapping.
(4) Let (y,f,D)€ T™ and D;,...,D; be disjoint domains such that
(v,f,D;) € T® and f~(y)nD c U’ D;. Then

k

wy,f,D) =) uly, f, D).

1=1
(5) Let (y,f,D), (y,9,D) € T" be such that there exists a homotopy hs: D —

R", t € [0,1], with ho = f|D, hy = ¢|D, and (y,hs,D) € T" for all
t€(0,1]. Then u(y, f,D) = u(y,g,D).

9.3. Lemma. (1) If (y,f,D) € T™ and y & fD, then u(y,f,D) =0.

(2) If f is a constant c, then u(y,f,D) =0 forall y#ec.

(8) If f: D — R™ is differentiable at zo € D and Jf(zo) = det f'(z0) # O,
then there exists a neighborhood U of zo such that (y, f,U) € T" and u(y, f,U) =
sign J¢(zo) for y € fU.
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It follows from 9.3(3) that if f is a reflection in the plane z, = 0, then
u(y, f,B™) = —1 for y € B"™. We next extend the definition 1.7 of a sense-preserving

C!-homeomorphism.

9.4. Definition. A mapping f: G — R" is called sense-preserving (orien-
tation-preserving) if u(y,f,D) > 0 whenever D is a domain with D C G and
y € fD\ fOD. If u(y,f,D) <0 for all such y and D, then f is called sense-

reversing (orientation-reversing).

Reflection in a plane and inversion in a sphere are sense-reversing mappings ([RR,
pp. 137-145]).

9.5. Lemma. Let f: G — R" and g: fG.— R"™ be mappings and set h = gof .
If f and g are both sense-preserving or both sense-reversing, then h is sense—
- preserving. If one of the maps f and g is sense-reversing and the second is sense—

preserving, then h is sense-reversing.

9.6. Remarks. The approach to the degree theory in [RR] is based on algebraic
topology. An alternative approach can be based on Sard’s theorem and on approxima-
tion of continuous functions by C* —functions, for which the degree u(y, f, D) can be
defined as the sum of the signs of the Jacobians, evaluated at the points of DN f~! (v) .
See [DE|, [HEI], [R12].

9.7. Lemma. Let (y,f,D) and (y,9,D) € T" be such that f|0D = g|dD
and co & fDUgD. Then p(y, f,D) = u(y,g9,D).

For 9.5 see [V4] and for 9.7 see [RR, pp. 129-130]. The assumption co & fDUgD
in 9.7 cannot be dropped, as the example D = B", f =id, and g an inversion in
S™~1, shows.

The branch set Bf of a mapping f: G — R™ is defined to be the set of all points
z € G such that f is not a local homeomorphism at . It is easily seen that B ¥
is a closed subset of G. We call f open if fA is open in R"™ whenever 4 C G is
open, light if f~!(y) is totally disconnected for all y € f@, and discrete if f ~l(y)
is isolated for all y € fG.

The next lemma is a fundamental property of discrete open mappings (see A. V.
Chernavskii [CHE1], [CHE2| and J. Viisili [V5]).
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9.8. Lemma. Let f: G — R" be discrete open. Then dim By = dim fBy =
dim f~1fB f <n—2, where dim refers to the topological dimension.

9.9. Remarks. It is clear that G\ By is open, and from 9.8 and a well-known
non-separation property of sets of dimension < n — 2 (see [HW, p. 98]) it follows
that G \ By is a domain. Stoilow’s theorem (see [LV2]) implies that B; consists of
isolated points for n = 2. In the multidimensional case n > 3 B f mnever contains
isolated points, as one can show by applying some properties of covering mappings

(monodromy theorem).

Let G CR™ be a domain. We denote by J(G) the collection of all subdomains
D of G with DC G.

9.10. Definition. Let f: G — R" be discrete. Fix z € G and a neighborhood
U € J(G) of z such that {z} = Un f~'(f(z)). The number u(f(z),f,U) is
denoted by i(z, f) and called the local (topological) indez of f at z. (Exercise.
Making use of 9.2(4) show that #(z, f) is independent of the neighborhood of z and

has the required properties.)

Now let f: G — R"™ be discrete open. It follows from 9.8 that G \ By is
connected. Hence ¢(z, f) has a constant value, either +1 or —1,in G\ By. In the
first case f is sense—preserving, and in the second case sense-reversing. In both cases
we have by 9.2(4) if D€ J(G), y€ fD\ f8D,and DN f~(y) = {z4,...,zx}

k

(9.11) u(y,/,D) =) iz, f).

j=1
A domain D € J(G) is said to be a normal domain of f: G — R™ if fOD =
OfD . A normal neighborhood of z is a normal domain D such that DN f~1(f(z)) =
It follows from 9.2(1) that w(y,f,D) is a constant if D is a normal domain of
f and y € fD. This constant is denoted u(f,D). Let D be a normal domain of
fyy€ fD,and f~Yy) = {z1,--.,%k} . It follows from (9.10) that

k
uw(f,D) = iz, f) -

j=1

9.12. Exercise. If f: G — R"™ isopen and D € J(G), then 8fD C fdD is

always true.
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Diagram 9.1.

In classical function theory (see [BU, p. 84], [WH2]) the local topological index
is usually called the winding number of a point.
We shall next list several topological results about discrete open mappings without

proofs. The proofs of Lemmas 9.13-9.15 are given in [MRV1].

9.13. Lemma. Suppose that f: G — R"™ is open, that U C R™ is a domain,
and that D is a component of f~'U such that D € J(G). Then D is a normal
domain, fD=U, and U € J(fG).

f f:G—-R", zc G’, and r > 0, then the z—component of f~!B"(f(z),r) is
denoted by U(z, f,r) .

9.14. Lemma. Suppose that f: G — R™ is a discrete and open mapping. Then
limy—o d(U(z, f,r)) =0 for every z € G. If U(z, f,r) € J(G), then U(z, f,r) is a
normal domain and fU(z, f,r) = B™(f(z),r) € J(fG) . Furthermore, for every point

z € G there is a positive number o, such that the following conditions are satisfied

for 0<r<og:
(1) U(e, f,r) is a normal neighborhood of z.
(2) Uz, f,r)=U(z, f,oz) N f~I1B*(f(z),r).
(8) oU(z, f,r) =Ul(z, f,oz) N fL1S"1(f(z),r) if r < o.

R"\ U(z, f,r) is connected.
5) R"\U(z, f,r) is connected.
6) f0<r<s<oy,,then U(z, f,r) CU(z, f,s), and U(z, f,s) \Ulz, f,r) is

a ring, i.e. its complement has exactly two components.

(4
(
(

e
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If :G—-R", ACR"” and y € R™, denote

N(y, f,A) = card(An f~}(y)),
N(f,A) =sup{N(y,f,A) : yeR"},
N(f)=N(f.G).

Here N(y, f,A) is called the multiplicity of y in A and N(f,A) the mazimal mul-
tiplicity of f in A.

9.15. Lemma. Suppose that f: G — R"™ is sense-preserving, discrete, and
open.

(1) If D € J(G), then N(y,f,D) < u(y,f,D) for all y € R™\ fOD and
N(y,f,D) = u(y, f,D) for ye R*\ fA, A=8DU(Dn By).

(2) If D is a normal domain, N(f,D) = u(f,D).

(38) If AC G is compact, N(f,A) < oo.

(4) Every point z € G has a neighborhood V such that if U is a neighborhood
of z and if U CV , then N(f,U)=1(z,f).

(6) =z € By iff i(z,f) > 2.

It follows from 9.15(4) that the local index i(z, f) of a sense-preserving discrete

open mapping f can be defined in terms of the maximal multiplicity of f as follows
(9.16) iz, f) = lir%N(f,B”(x,r)) :

r—+
A trivial example is the function g: B? — B?, g(z) = 22 with {(0,9) = 2.

9.17. Remark. Let f: G — R"™ be continuous, 4; CR", 7=1,2,.... Then

one can show that

N(y’f’ U'A.'I) S ZN(yava]) y
N(f, Ud) < DO N(f,45) .
If A is a Borel set in G, then N(y, f,A) is measurable (cf. [RR, pp. 216-219)]).

9.18. An open problem. Let f: G — R"™ be discrete open, zo € G, t €
(0, d(z0,3G)) , and assume that fS™ (zo,t) = 8fB"(z0,t), that is, B"(zo,t) is
a normal domain. Assume, further, that By N 5™ !(z0,t) =0 and n > 3. Is it
true that f|B"(zo,t) is one-to—one? For n = 2 we have the obvious counterexample
g: B2 — B2%, g(z) = 2z2. This problem is given in [BBH, p. 503, 7.66].
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9.19. Path lifting. Let f: G — R™ and let §: [a,b) — R™ be a path and let
To € G be such that f(zo) = B(a). A path o: [a,¢) — G is said to be a mazimal
lifting of B starting at zo if:

(1) afa) =z0.

(2) foa=4pac).

(3) I ¢ < ¢’ <b, then there does not exist a path o [a,¢') — G such that

a=d|[a,c) and fo o =f|a,c).

If f: [a,b) = R™ is a path and if C C R"™, we write B(t) — C as t — b if the

spherical distance ¢(8(t),C) — 0 as t —b.

9.20. Lemma. Suppose that f: G — R™ is light and open, that zo € G , and
that B: [a,b) — R™ is a path such that (a) = f(zo) and such that either lim;_; 3(t)
exists or B(t) — 8fG as t — b. Then § has a maximal lifting a: [a,c) — G starting
at To. If (t) >z, €G as t — ¢, then ¢c=0b and f(z;) = lim;...; B(t) . Otherwise
a(t) - 8G as t — c. If f is discrete and if the local index i(c(t), f) is constant for
t € [a,¢), then « is the only maximal lifting of § starting at zo .

This lemma is proved in [MRV3, 3.12].
It follows from the lemma, in particular, that a locally homeomorphic mapping

has a unique maximal lifting starting at a point.

9.21. Remarks. In the sequel Lemma 9.20 will be applied in the following
situation. Let f: G — R™ be non—constant qr, o € G, and let $: [0,1] = R™ be a
path with 8(0) = f(zo) and B(1) € fG. Then 9.20 shows that § has a maximal
lifting o: [0,¢) — G starting at zo with «a(t) - 8G as t —c.

A mapping f: G — R"™ is called proper if f~'K is a compact subset of G
whenever K is a compact subset of fG, and closed if fC is a (relatively) closed

subset of fG whenever C is a (relatively) closed subset of G.

9.22. Lemma. Let f: G — R"™ be discrete open. Then the following conditions
are equivalent:

(1) f is proper.

(2) f is closed. '

(8) N(f,G)=p<oo andforall y€ fG
k
p= Z t(zy, f), {z1,..., %} = ).

J==1
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For the proof of 9.22 see [V5], [MSR1], [VU1], and the references in these papers.
As the simple example z — 22 shows, a maximal lifting of a path starting at a branch
point need not be unique. The next lemma is a quantitative statement of this fact.

For a proof see [RI2|.

9.23. Lemma. Let f: G — R™ be discrete, open, and closed. Denote p =
N(f,G) < oo and let B: [a,b) — fG be a path. Then there exist paths «j: [a,b) —
G, 1< 3 <p, for which

(1) foa;=48,

(2) card{j:oa;(t) ==z} =iz, f)| for z€ f~1B| and t € [a,d)

8) Ui=ilayl=F78] .

9.24. Remarks. It follows easily from the definitions that an open continuous

mapping f: G — R™ obeys the mazimum principle, i.e. if D € J(G) then

max |f(z)| = max |f (<) .

For further results concerning with discrete and open mappings see [CH| and [TY].

10. Some properties of quasiregular mappings

In the present section we study some fundamental properties of quasiregular map-
pings. According to deep results of Yu. G. Reshetnyak [R2|, [R12], a non-constant |
quasiregular mapping is discrete, open, and differentiable a.e., and it satisfies Lusin’s
condition (N) [HS, p. 288]. By definition, condition (N) holds if and only if sets
of measure zero are mapped onto sets of measure zero. The proofs are beyond the
scope of this book. Applying these results one can prove the transformation formu-
lae, the so—called K- and K;-inequalities, for the moduli of curve families under
quasiregular mappings. Also these important results are stated without proof. Of
these the K, -inequality is due to O. Martio, S. Rickman, and J. Viisilda [MRV1],
while the K;—inequality was proved by E. A. Poletskif [P1] and in an improved form
by J. Vaisdld [V8]. A simplified proof of Poletskil’s result was given by M. Pesonen
[PE2]. |

10.1. Quasiregular mappings. Let G C R™ be a domain. A mapping
f: G — R" is said to be quasiregular (qr) if f is ACL™ and if there exists a constant
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K > 1 such that

(10.2) @) < KIfla) , 17'a) = max | @A

a.e. in G. Here f’(z) denotes the formal derivative of f at z (cf. Notation and
terminology). The smallest K > 1 for which this inequality is true is called the outer
dilatation of f and denoted by K,(f). If f is quasiregular, then the smallest K > 1
for which the inequality

(10.3) J(z) < KU(f'(=))", U(f'(z)) = oin |[f(z)A] ,

holds a.e. in G is called the inner dilatation of f and denoted by K (f). The
mazimal dilatation of f is the number K(f) = max{ K;(f), Ko(f)}. If K(f) < K,
f is said to be K—quasiregular (K—qr). If f is not quasiregular, we set K,(f) =
Ki(f) =K(f) =oo.

It follows from linear algebra (see [V7, p. 44] and [R12, p. 22]) that

(10.4) Ko(f) < Ki(f)™', Ki(f) < Ko(f)™!

hold. Moreover, these inequalities are best possible.

10.5. Lemma. Let f: G — R™ be a non-constant qr mapping. Then

(1) f is sense-preserving, discrete, and open,

(2) f is differentiable a.e.,

(8) f satisfies condition (N), ie. if A C G and m(A) = 0, then also
m(fA)=0.

For proofs of these results, see [R2], [R4], [R12].
Next we extend the definition of a qr mapping.

10.6. Quasimeromorphic mappings. Let G C R" be a domain. A mapping
f: G — R™ is called quastmeromorphic (qm) if either fG = {co} or the set F =
f~Y(o0) is discrete and f; = f|G\ (E U {oo}) is qr. We set K(f) = K(f1),
Ko(f) = Ko(f1) , and K (f) = K1 (f1) -

10.7. Quasiconformal nﬁappings. If f is a homeomorphism satisfying (10.2)
and (10.3) with |J¢(z)| in place of J¢(z), then f is called quasiconformal (qc).
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10.8. Remarks. For n =2 and K =1 the class of K—qr maps coincides with
the class of analytic functions. By 10.7 a qc mapping may be sense-reversing, while
a gr mapping in the sense of (10.2) is always sense-preserving. In his book [R12]
Reshetnyak replaces Jf(z) by |Js(z)| in the definition of a qr mapping and hence
qr maps in the sense of [R12] may be sense-reversing. This is largely a question of
technical convention, since by topology (see Lemma 98) each discrete open mapping

is either sense—preserving or sense-reversing.

10.9. Curve families and quasiconformal mappings. We now give an al-
ternative definition of a quasiconformal mapping. Let G, G’ be domains in R" and

let f: G — G' be a homeomorphism. Then f is K-—quasiconformal if
(10.10) M(T)/K < M(fT) < KM(T)

for every curve family T' in G . Moreover, the dilatations of f are defined as
M(ST) _ o M(T)
wmy 0 ol == gy -

where the suprema are taken over all curve families I' in G such that M(T') and

K;(f) =sup

M(fT) are not simultaneously 0 or oco. Thus
(10.11) M(T)/ Ko (f) < M(fT) < Ky (f) M(T)

for every curve family T' in G. The equivalence of the two definitions 10.7 and (10.10)
of a qc mapping is proved in [V7] and also in [C1, pp. 81-110].

The next example shows that (10.11) does not generalize directly to the case of

qr mappings.

10.12. Examples. (1) Let fx(z) = z*, k € N\ {0}, z € C = R?, and
= A(S',S!(1/e)) . By (5.14)

M(T) =27 , M(fxT) < 27 /log(e*) = 27 /k .

Moreover, K(fr) = 1 because fi is analytic. If k£ > 2, we see that the left inequality
of (10.11) fails to hold for (non—univalent) analytic functions.

(2) Let 4; = {(z,y) eR?: 2 =3}, j=0,1, f(2) = expz, z € R?, and
I' = A(Ao,A1). Then fT C A(S'(e),S') and M(fT) < 27/loge = 27 by (5.14),
whereas M(T) = co by 5.11 or by 5.33 and 5.17. Since K(f) =1 also in this
example, we see that the left inequality of (10.11) fails to hold for analytic functions.
A fortiori, it fails to hold for qr mappings.
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By inserting a multiplicity factor in the left side of (10.11) one obtains the K,—
inequality for quasiregular mappings ([MRV1]).

10.13. Theorem. Suppose that f: G — R"™ is a quasiregular mapping and
that A is a Borel set in G such that N(f,A) < oco. If T is a family of pathsin A,

M(T) < N(7, A) Ko () M(fT) .

Proof. Set
|f(z+ k) — f(=)]
||

for £ € G. Thus L(z, f) = |f'(z)| whenever f is differentiable at z. It is easy to
see that = +— L(z, f) is a Borel function.
Suppose that o € F(fT'). Define p: R® — R U {co} by setting
o(f(=) L(z, /) i€ A;
{ 0 otherwise .
Let To be the family of all rectifiable paths 4 € I' such that f is absolutely contin-

L(z, f) = lill?sgp

p(z) =

uous on 7. By Lemma 7.5 M(To) = M(T'). From the formula concerning change of

variables in integrals it follows that

/ pdsZ/ ods>1
v fory

for all v € To. Thus p € F(T'o) . A more detailed proof is given in [MRV1]. Hence

we obtain

M(T) = M(To) < /R prdm = /A o(F(2))" L(z, f)"dm(z)
< Kolf) [ olf(@)" 7(e. ) dm(s)

Since f is ACL"™, J(z,f) is integrable over every domain D € J(G). Thus the

transformation formula in [RR, Theorem 3, p. 364] yields

/ o(F(2))" I(z, f) dm(z) = / o(u)" N(y, £, A N D) dm(y)
AND

n

< N(f,A)/ o"dm .

The theorem cited above is formulated in [RR| for finite-valued functions, but we
may apply it to min(k,o™) and then let £ — co. Since D € J(G) is arbitrary, we
obtain

M(T) < N(, A) Kolf) [ _amdm.

Rn

Since this holds for every o € F(fT), the theorem follows. O
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The right side of (10.11) holds for qr mappings, too, as the following theorem
shows. We shall mainly need the special case m = 1 of this result. The proof is
omitted ([V8]).

10.14. Theorem. Suppose that f: G — R™ is a non-constant qr mapping,
that T' is a path family in G, that T' is a path family in R™ and that m is a
positive integer such that the following condition is satisfied: There is a set E, C G
of measure zero such that for every path §: I — R™ in T there are paths ay,...,an,
in T' with foo; C B forall 1 and such that for every € G\Eq and t € I, o;(t) = z
for at most one 1. Then

mr’) < E) yiry

- om

In this result it is not required that fT' = I'. As a matter of fact, in many
applications fT' < I'. If D is a normal domain of f, if I/ is a family of paths
in fD,and if T is the family of all paths o in D such that foa €I, then the
condition in 10.14 is satisfied with m = N(f,D), Eo = By by 9.22 and 10.16(1)
below.

Due to the connection (7.10) between the conformal capacity and the modulus
of a curve family, one can formulate the K,— and K;-inequalities for condensers as
well. If f: G — R™ is discrete open and (A4,C) is a condenser in G such that A
is a normal domain of f, then (A4,C) is called a normal condenser. Also the next

result is from [V8].

10.15. Theorem. Suppose that f: G — R™ is a non-constant qr mapping.
Then

K (f)
(1) cap(fA4, fC) < —AZ—(TT,—C—)_ cap(4,C)

for all condensers (A,C) in G where

M(f,C) = inf (z,
(f,C) ylefczecr%;(y)z(zf)

and
(2) cap(4,C) < Ko(f) N(f, 4) cap(f4, fC)

for all normal condensers (A,C) in G.
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In the next theorem we list some basic properties of quasiregular mappings.

10.16. Theorem. Let f: G — R"™ be a non—constant qr mapping. Then

(1) m(Bf) =m(fBy)=0. |

(2) Js(z) >0 ae in G.

(8) If g: G' = R™ is a gr mapping with fG C G’ , then K,(fog) <
Ko(f)Ko(g) and Ki(fog) < Ki(f)K;(g).

10.17. Remarks. Part (3) of 10.16 follows immediately from 10.15. Part (1) of
10.16 can be much improved, see [R10], [MR2], [S2].

In most of our later applications of the K, - and K;—inequalities, one may appeal
to the following particular cases, which are the transformation formulae for pg

and Ag.

10.18. Theorem. If f: G — R™ is a non—constant qr mapping, then

(1) pra(f(a), f(8)) £ Ki(f) wla,b) 5 a,bEG.

In particular, f: (G,pg) — (fG, Bsg) is Lipschitz continuous. If N(f,G) < oo,
then

(2) Ac(a,0) < Ko (f) N(f,G) Asa(f(a), £(B))
for all a,b€ G with f(a) # f(b).

Proof. (1) Fix a,b € G and a curve a: [0,1] = G such that «(0) =a,

Diagram 10.1.
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a(1) = b, and denote I = A((foa)[0,1], 3fG) . Let T be the family of all maximal
liftings of the elements of I starting at |a|. That is, v € T' iff there exists 8 in T
such that ~ is a maximal lifting of § starting at a point of |a|. Then fT <TI'; by
the definition (8.3) of the conformal invariant u, and by 5.3 and 10.14,

wra(f(a), £(b)) < M(I') < M(fT) < K (f) M(T) .

Because |B|NAfG # 0 for all § €T, it follows from 9.20 that [y[N8G # @ for all
~ €T . Then by 5.2(2)
M(T) < M(A(le],8G; Q) .

The proof now follows from this and the preceding inequality since « is an arbitrary
curve in G with a(0) =a, a(l) =b (see (8.4)).

(2) Let B;:[0,1) — fG be paths such that §;(t) — 8fG, j=1,2,as t — 1,
f(a) = B1(0), F(b) = B2(0) and [B:| N |B2| N fG = 0. Let 7;: [0,¢;) — G bea
maximal lifting of B;, j = 1,2, with 4,(0) = a, 72(0) = b. Since B;(t) — fG
as t — 1 it follows from 9.20 that ~;(t) — 0G as t — ¢;, j = 1,2. Let T =
A(lvl, |v2]; G) - By (8.2) and 10.13

Aa(a,b) < M(T) < Ko(f) N(f,G) M(ST) .

Because f;: [0,1) — fG, j = 1,2, were arbitrary curves satisfying the conditions
mentioned above and because fT' C A(|B84],|B2]; G) , the proof follows from the last
inequality, (8.2), and 5.2(2). O '

10.19. Corollary. If f: G — G’ = fG is a qc mapping, then

(1) ﬂG(a’ b)/KO(f) SMfG(f(a)’ f(b))
(2) Ag(a,0)/Ko(f) <Asa(f(a), £(B))

IA

K;(f) ng(a,b) ,
K;(f) Ag(a,b)

IA

hold for all distinct a,b€ G.

Proof. The right inequalities were proved in 10.18. Because K, (f~!) = K,(f),
K, (f~') = Ky(f) , the left inequalities also follow from 10.18. O

According to 10.18, each qr mapping f: G — fG is a Lipschitz mapping of
the (pseudo)metric space (G,ug) onto (fG,psg). We shall employ the inequalities
of Section 8 for M(A(E,F)) , which enable us to give a geometric meaning to this
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general result in many interesting cases and to replace the metric space (G, ka) by
other metric épax:es. Depending on the context, one may wish to replace (G,ug) by
some less abstract space such as (B",p), (G,kg), (G,Jjg) or even (R",||).

I (X,dx), (Y,dy) are (pseudo)metric spaces and f: (X,dyx) — (Y,dy) is

continuous, then

(10.20) ws(t) = sup{dy (f(2), f(¥)) : dx(z,y) <t},t>0,

is called the modulus of continusty of f. This definition clearly depends on the
metrics dy and dy . If confusion seems possible we shall specify the metrics. It
is clear that wy: (0,00) — (0,00] is increasing and that ws(t) — 0 as t — 0 iff
fi(X,dx) — (Y,dy) is uniformly continuous. A theorem that yields an upper bound
for the modulus of continuity is often called a distortion theorem.

One can derive numerous distortion results for qc and qr mappings directly from
10.18, 10.19, and the estimates of Section 8. Examples of such results will be given in
Section 11. We shall next give an application of 10.18 which yields a bound for the
linear dilatation H(z,f) defined by
H(z, f) = limsup % ;

L(z, f,r) = max{ |f(z) — f(2)] : |z —2|=r}, 0<r < d(z,0G),

Uz, fyr) = min{|f(2) — f(z)| : [z —2[=r},

(10.21)

whenever f: G — R"™ is continuous and z € G.

10.22. Theorem. If f: G — R"™ is a non-constant qr mapping and z € G,
then

H(z,f) < ¢(n, Ko(f)i(z, f) <o

Proof. We may assume that £ = 0 = f(z). Let o, be as in 9.14, U =
U(0, f,0,) , and choose ¢ > 0 such that B"(3t) C U. For each r € (0,t] choose
Try Yr € S"71(r) with |f(z.)] = L(O, f,7), |f(y,)| = I(0, f,r). Let A, be the
yr—component of f~!0, f(y,)] and B, the z,—component of f~![f(z,),c0). Then
0€ A, and B,NAU # @ by 9.20. Denote T', = A(A,, B,;U). By 5.9, 5.3, and 5.14

we obtain

1—~n

(10.23) M(T,) + wne1 (1og 29’;-) > M(A(4,, U N By;R™) .
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Next, 7.17 and 5.54(1) yield

(1024)  M(A(Ay,U N BisRY) 2 M(A([0, rer], [~res, ~3tes])) = 7 id ).

3t—r
I |f(z.)| > |f(yr)| then by 5.27 we obtain

(10.25) M(fT,) < r(%g—;’r’—;—]’ -1).

This inequality holds trivially if |f(z,)| = |f(yr)|. By 10.13, 9.10, and 9.15
M(I‘r) < KO (f) i(z’ f) M(frr) .

We combine the latter inequality with (10.23) and (10.24) and let r — 0. As a result

we obtain

(1) < Ko(£)4(0, f) r(H(0, ) - 1) ,
-1 T(l)
20N <1+ ()
as desired. O

10.26. Corollary. If f: R® — R" is a qc mapping with f(0) =0, then

£ (z)] < e(n, Ko ()| ()]

for |z| = |y|.
Prdof. The proof is similar to that of 10.22; in fact, it is slightly simpler. O

10.27. Remark. Making use of the functional identity in 5.53 one can write

the constant in 10.22 also as follows

This equality together with 7.51 and 10.22 shows that the linear dilatation H(z, f)
of a K —quasiregular mapping f has an upper bound depending only on Ki(z, f).

In particular, this upper bound is independent of n.

10.28. Exercise. Let f: R® — R"™ be a K-qc mapping with f(0) =0 and
let m =min{|f(z)| : |z| =1}, M = max{|f(z)| : |z| =1}. Without appealing to
10.22 or 10.26 show that

M/m<d(n,K).

[Hint: Let I’ = A (S™ !(m), S™1(M)). Because S™~1n f~18" Hm) # @ #
Sr—1n f~18"—1(M), 7.34 yields a lower bound for M(T), I' = f~II" ]
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10.29. Remark. A. Mori [MORZ2] proved that the linear dilatation of a K—qc
mapping of a plane domain has an upper bound e™X . His result was extended to the

multidimensional case by F. W. Gehring [G2| who found the upper bound

d(n, K) = exp (2(_{{_‘32:_1_)1/("—1)>

(v2)

for the linear dilatation of a K —qc mapping of a domain G in R”. The bound in
10.22 and 10.27 yields a better bound ¢(n,K) with

o(n, K) = [y (+(v2)/K)|" < d(n, K)/10.

For these facts see [VU11] and [AVV1]. With a different (larger) constant 10.22 was
proved by Yu. G. Reshetnyak [R10] and O. Martio, S. Rickman, and J. Viisild [MRV1].

10.30. Exercise. Show that d(2,K) = ¢™® . Next using 7.26(1) show that
¢(2,K) < d(2,K)/10. Applying 7.47 and 7.50 find a dimension—independent upper
bound for ¢(n, K). ‘

10.31. Remark. The sharp upper bound A(K) for the linear dilatation of a
K —qc mapping of R? onto R2 was found by O. Lehto, K. I. Virtanen, and J. Viisila
[LVV]. For further results of this type see [HEL]. It can be shown that

W%{,z(l/\/—z-)
‘P%/K,z (1/v2)

(see [LVV] and 5.61(2)) and that A(K) ~ ske™ for large values of K. It can be
shown (cf. [AVV3]) that

ME) = c(2,K) — 1 =

en‘(K—l) < A(K) < ew(K—-l/K)
for K>1.

10.32. Notes. A thorough study of the K,— and K;-inequalities is contained
in [RI12]. Theorem 10.18 and Corollary 10.19 are from [VU10], Theorem 10.22 from
[VU11].

10.33. Remark. Quasiregular mappings have important normal family prop-
erties, which were established by Yu. G. Reshetnyak [R5] (for a simple proof see
P. Lindqvist [LI1]). These properties will not be used in this book.
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11. Distortion theory

In the present section we shall put into effective use the transformation formulae
10.18(1) and (2) for the conformal invariants Ay, and pug. Most results of this
section are of the following general type: we combine the transformation formulae in
10.18 with some particular estimates for Ay and po proved in Chapter II and as a
result obtain distortion theorems. Besides the fundamental distortion theorems, the qr
variant of the Schwarz lemma, and the Hélder continuity, we prove several additional

" special distortion theorems.

11.1. Theorem. Let E C R"™ be a compact set of positive capacity and let
f: B" - R"” \ E be a K-qm mapping. Then

a(f(z), f(v)) < z‘-%%unn(z, y) < —;(]% (—logth 1p(z,y))" "

for distinct z,y € B™ where a and b depend only on n.

Proof. It follows from 6.1 and 8.5 that
Kipn (f(z)’f(y)) > dy mjn{ C(E) ’ Q(f(z), f(y)) }
> dgq(f(2), f(y)) min{ds, e¢(E) } .

Because E is of positive capacity we deduce from 6.1 that 1 > ¢(E)/¢(R") >
¢(E)/d2 > 0, and therefore

wrmn (f(2), f(¥)) 2 dae(E) g(f(2), f(y)) min{ds/dz, 1} .
The proof follows now from 10.18(1), 8.6(1), and (7.30). O

It follows from 11.1 and the monotone property 6.1(2) of the set function c(E)
that for fixed K and pg.(z,y), the distance q( f(z), f (y)) decreases if the set F
becomes larger. In other words, the larger the set omitted by the mapping f, the
less f can oscillate as a mapping between metric spaces f: (B",ug.) — (R™,q).
Later on we shall encounter a similar phenomenon with other metric spaces in place
of (B",ugn) and (R",q).

The next result is a counterpart of the Schwarz lemma for qr mappings. We

consider here the function g = @y , introduced in (7.44).



138

11.2. Theorem. Let f: B®™ — R™ be a non—constant K -qr mapping with
fB" C B" and let o= K;(f)/(1~") . Then

(1) th 30(f(2), f(v) < e (th30(z,9)) < A27% (th 3a(2))"
(2) p(f(2), f(®) < K1(f)(p(z,y) +log4) ,
hold for all z,y € B", where A, is the constant in (7.21).

Proof. Fix z,y € B". Because fB" C B" it follows from 8.5, 8.6, and (7.32)
that

ppn (F(2), f () = ppn (F(2), F(¥)) = ~(1/ tho)

where b= 1p(f(z), f(y)) . Similarly, by 10.18(1) and 8.6,

trpn (F(2), f () < K (f) pgn(z,y) = K1 (f) (1] tha)

where a = 1p(z,y). These inequalities together with 7.47(1) imply (1). For the proof
of (2) we note that by (7.31) and 10.18(1)

Ap(f(z), f(y)) < (1] thd) < K;(f) Alp(z,y) + log4)
where A = 2"~ l¢, . Hence we have proved also (2). O

11.3. Corollary. Let f: B®™ — B" be a K —qr mapping with f(0) =0 and let
o= K;(f)Y(1=") | Then

(1) 17(2)] < exnllzl) < A2l < 28V E K| VE

- K1 (f)
- la a=<4-—-————l+lz|) !
a+1 1—|z|

(2) [f(2)] < ;

for all z € B™.

Proof. Apply (2.17) and 11.2 with y = 0 and recall that A1~ < 2!-VE[E
by 7.51. O

The following invariance properties of 11.1 and 11.2 should be noted. The in-
equality of 11.1 yields the same upper bounds for

¢(f (), f(y)) and g((ho fog1)(z), (hofogi)¥)) ,
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while the second one yields the same upper bounds for

p(f(z), f(y)) and p((g1o fog2)(z), (gr0fo gz)(z))

whenever g1, g2 € M(B") and k is a sense—preserving spherical isometry.

It should also be observed that the explicit estimate 11.3(1) is sharp if K = 1.

In 11.2 we assumed that fB™ C B"™ and proved that f: (B",p) — (B",p) is
uniformly continuous with a quantitative bound for its modulus of continuity. If, in
addition, B™ \ fB™ # 0, one would expect a better result than 11.2. For instance,
one could hope to replace the target space (B",p) in 11.2 by ( fB" kips). In
the particular case of M6bius transformations this indeed is possible by 3.9 (later on
we shall prove that this is possible also for quasiconformal mappings). Now we are
going to show that for qr mappings and even for bounded analytic functions such an

expectation is futile.

11.4. Example. Let g: B2 — B?\ {0} = gB? be the exponential function
g(2) = exp(-g-i—'%) , z € B%. We shall show that g: (B2,p) — (ng,kng) fails to be
uniformly continuous. To this end, let z; = (¢/ —1)/(e +1), j =1,2,.... It follows
from (2.17) that p(0,z;) = j and thus p(z;,z;4+1) = 1. Let ¥ = B2\ {0}. Since
g(z;) = exp(—¢’) we get by (3.4) and (2.34)

ky (9(5),9(z41)) > sy (9(25),9(z511))
= log [1 + (exp e’*?) (exp(—¢’) — exp(—e’T1))]
= log [1 +exp(ef T —ef) — 1] = gt — ¢ -

as j — oo. In conclusion, g: (B%,p) — (Y,ky) cannot be uniformly continuous,

because p(zj,z;41) =1.

In this example 3(gB?) consists of a point component {0} and the unit circle
0B2. We now show that if each boundary component of the image domain is non—
degenerate, then the situation will be different, at least under an additional condition.
Later on we shall show that this additional condition, which requires that the image
domain be uniform, can in fact be removed, and that the exponential function in 11.3

is in a sense an extremal case.

11.5. Theorem. Let f: B®™ — R"™ be a non—constant qr mapping, let E C
R™\ fB"™ be a non-degenerate continuum such that oo € E, and let G =R"\ E

be a domain.
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(1) Then f: (B™,p) — (G,Jg) is uniformly continuous.
(2) If G is uniform, then f: (B",p) — (G,kg) is uniformly continuous.

Proof. (1) The proof follows the same general pattern as the one in 11.2. The
particular estimates needed for the present case are supplied by 7.41, 8.6, and (7.30).
(2) The proof follows from (1) and the definition 3.8 of a uniform domain. (I

11.6. Lemma. Let G and G’ be proper subdomains of R™, where G is
uniform and G’ has connected complement R"\ G'. If f: G — R™ is a qr mapping
with fG C G', then for all z,y € G

Jeor (F(2), F(¥) < a1jg(z,y) + a2,

where a1,a2 are positive numbers depending only on n, K;(f), and the constant

in the definition of a uniform domain.
Proof. By 8.31, 10.18(1), 8.30(2), and 3.8 we obtain

can’ (f(m)af(y)) < (el (f(x)’ f(y)) < KI(f) /LG(Q:’ y)
< Kp(£) (b, kg(z,y) +by)
< Ki(f) b145e(z,y) + K (f) b, . O

11.7. Exercise. Show that the hypothesis that R™\ G’ be connected cannot be
removed from 11.6 if n =2 and G = B". [Hint: Show that the exponential function

in 11.4 provides a counterexample in the present case, too. Recall that p ~ jg. by
2.41(1).]

11.8. Exercise. Observe first that 11.2(1) and (2) hold also for a qr mapping
f: B® — H" . Show that

1+ |z|

1 lx|)ﬁ, ﬂzKI(f)a

7(2)] < 2%°17(0)|(

for a qr mapping f: B®* — H" when z € B™. [Hint: Apply 11.2(2) for a gr mapping
of B" into H™ and the inequality py.(z,y) > |log(|z|/|y])|, z,y € H™. The
required inequality then follows from 2.41(2) and (2.39).]
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11.9. Exercise. Show that if f: B® — B"™ is K—qr, then for all z € B"

— K
- 1) 2 2 - 1o ()
[Hint: Observe that by 2.36(1) and 2.41(1)
p(z,y) 2 jpn(z,y) 2> log i — m

for all z,y € B". Now apply 11.2(2) and (2.17).]

11.10. Theorem. Suppose that f: G — R"™ is a bounded qr mapping and that
F is a compact subset of G . Let o= K;(f)Y(*~™) and C = AL~%d(fG)/d(F,8G)*
where A, is as in (7.21). Then f satisfies the Hélder condition

(11.11) |f(z) = fW)| < Clz—y|*
forzeF, yeq.

Proof. Set r = d(F,dG). Suppose first that |z — y| < r. Define g: B® — B"
N fle+rs) — f(a)
r+rz)—flz
g(z) = d(fG) .
Then ¢(0) =0 and K,(g) = K;(f) by 10.16(3). By 11.2 we get |g(2)| < AL~%|z|.
Setting z = (y —z)/r we obtain (11.11). Next assume that |[z—y|>r. Since A\, > 1
(in fact, A, >4, see 7.22) we have

If(z) = fW)] < d(fG) < r~%d(fG) e —y|* < Clz—y|*. O

11.12. Theorem. Let f: B® — B™ be a K —qr mapping into B™. Then

|F(z) — f(¥)] < bk (th $p(z,y))

for all ¢,y € B™, where by (s) = 2pg .(s)/(1+V1— 0% .(s)) . The result is sharp
if f is a rotation fixing the origin and z = —y .
Proof. If we let ¢/ = 2p(f(z),f(y)), it follows from (2.27) and 2.29(2) that
2th#

- <2thi = )
F(=) = 1)l < 2that' = ==

The desired inequality follows now from 11.2(1). Since ¢; ,(r) = r, the sharpness

assertion follows from the one in (2.27). O



142

11.13. Corollary. Under the assumptions of 11.12

£ (2) = f(0)] < ox,a(a) + 0%,q ()
where a =th 1p(z,y) for all z,y € B".
Proof. The proof follows from 11.12 and the inequality

2 <l+z, 0<z<1. O3

1++v/1—22

11.14. Theorem. For n > 2, r € (0,1), and K € [1,00) there exists a number
a(r) with lim,_,oa(r) = 1 such that if f: B® — B"™ is a K —qr mapping into B",
then

|f(2) = f(y)] < a(r) Aa™ %[z~ y|*

for all z,y € B*(r) where a = K/(1-n)

Proof. Let r € (0,1) and z,y € B*(r). Then

2r
1+r2

th 2p(z,y) < th2p(—rei,rey) =

by 2.47. By the inequality in the proof of 11.13, by 11.12, 11.2(1), and 2.47 we obtain
2AL7%(th 2p(z, y))™
1+ /1= ok ,(2r/(1+17))
ATt era 2/ )] |z~ yl®
- af2
[lz =912 + (1 = lal?) (1 - ly12)] ™/

17(2) = F()] < by (th Lo(z,9)) <

We may choose
2r

1472

a(r) = (l-i-goK,n( ))(1-—7’2)”"‘. )

The following result is a generalization of Liouville’s theorem concerning the

growth of entire analytic functions.

11.15. Theorem. Suppose that f: R™ — R"™ is a qr mapping and that

limz—oco |Z|~%|f(2)| = 0 where o= K;(f)/~") . Then f is a constant.
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Proof. We can write |f(z)| < |z|%¢(|z]) where ¢(R) — 0 as R — oo. Fix
£ € R™ and choose R > |z|. Applying (11.11) for G = B™(R) and F = {0} we
obtain |f(z) — f(0)| < C|z|* where C = A\L=%d(F,8G)~*d(fG) < 2A1~%¢(R) . Thus
|[f(z) — F(0)] < 2AL~%¢(R)|z|*. Letting R — oo yields f(z) = f(0). Hence f is a

constant. (O

11.16. Remarks. The exponent « in 11.2(1) and 11.15 is best possible.
As to 11.2(1), the function f:B" — B", f(z) = z|z|*"!, z € B", K;(f) =
K(f) = a'™™, is a desired example (see [V7, 16.2] for the calculation of K;(f)).
The same function, as a mapping of R"™ onto R™, shows that the condition

limz o0 |2|7%|f(z)| = 0 in 11.15 cannot be replaced by the requirement that
|z|~%*|f(z)| be bounded.

For © € (0,37) let C(p) = {z € R" : z-e, < |2|cosp}. We next give a

formulation of 11.2 for maps into a cone or into an infinite cylinder.
11.17. Theorem. Let f: B®™ — R"™ be a non-constant qr mapping.
(1) If ¢ € (0,47) and fB™ C C(p), then for all z € B™

Ltlzc_l.) i

1@ < )4 (17

where ¢ depends only on n and K(f).
2) If fB*Cc{ze€R" :z2+...+32_, <1}, then for all z,y € B"

[f(@)] < 1f ()| + A K (f) (o(z,y) + log4)

where A is a positive constant depending only on n.

Proof. (1) By 5.29, 10.18(1), 8.6(1), (7.31), and 7.26(2) we obtain

dn . |f(z)]
P log 170)] < uyps (f(2), F(0)) < Ki(f) npn(2,0)

< K;(f)2" tep log (4

1+ lz()
1—|z|/ "~
The proof of (1) with ¢ =2""1c, K;(f)/dn follows.

(2) Assume first that |f(z)| > |f(y)| + 1. From 5.29 we deduce that

|f(=)]
dr

usee (£(2), f(y)) 2 dn o)
IF(y)]+1

> 2n (@) - £ )] - 1)
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Here ©(r) € (0, 37) is such that
S Y n{zeR" : 2 +...+22_, <1} =5""1(r) N C(p(r))
for r > 1,1.e. p(r) = arcsin(1/r) and ro(r) < 3m. By 10.18(1) and (7.31) we obtain
as in the proof of (1)
[f(2)] < |f ()] + 1+ TE(f) (p(z,v) + log4)
< |f ()| + A K (f)(o(z,y) +log4)
where T = 2" %c,7/d, and A = T + 1/log4. Since equality holds for |f(z)| <
|f(y)| + 1 as well, the proof of (2) is complete.

11.18. Remark. For small values of p(z,y) one can improve 11.17 by applying
7.26(1) instead of 7.26(2). Recall also 7.28(1).

11.19. Theorem. Let f: B® — B" bea qr mapping with N(f,B") =N < c0.
Then

th $o(f(2), S ¥) < 2 (th 30(2,))"
holds for all z,y € B™ where 8 =1/(NK,(f)). Furthermore, if f(0) =0, then for

all z € B"
=l 2( 2] )f’ .
1+/1—-[f(z)* 1— |z
Proof. We may assume that f(z) # f(y) . It follows from 8.6(2) and 8.7 that

(11.20) Agn(z,y) = %'r'(sh2 20(z, y)) > —cnlogth 1p(z,y) .

Because fB"™ C B", it follows from 8.5, 8.6(2), and 8.7 that
2

11.21 Arpe (f(Z), fly)) < Aga(f(z), f(y)) < cplog .

The proof now follows from (11.20), (11.21), and 10.18(2). If f(0) =0, the assertion
follows from the above inequality and (2.17), 2.29(2). O

11.22. Exercise. Observe first that the proof of 11.19 yields the inequality

sh?b < 771 (%(_;—{l}g(%)j)

where a = 1p(z,y) and b = 1p(f(z), f(y)) . Next assume, in addition, that f(0) =0
and N = 1. Exploiting the functional identity 5.53 and the definition (7.45) show
that the above inequality with y = 0 yields

1f(@)? <1-03/kn(V1-]2l?)

for all z € B™. (Compare this to the Schwarz lemma 11.3.)
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11.23. Exercise. Assume that f: B® — B™ is K—qc with f(0) = 0 and
fB™ = B"™. Show that

f(@)* < min{ pk,n(I2)), 1 — 01k (VI-1a?) }
(@) 2 max{ @ x,a(l2]) , 1 — 0k, (V1 - [=2) } -

[Hint: Apply 11.22 and 11.3 also to f —1.] Recall that in the case n = 2 we have
0k o(r) =1—p% g (V1—r?) forall K >0 and 0<r<1by 5.61(2) while the
analogous relation fails to hold for n > 3 by 7.58.

11.24. Theorem. Let f: B® — R™\ {0} be a gr mapping with N(f,B") <
p < co. Then for z,y € B"

F(@)| < 1F @) (1 + 77" (A7(sh* 3o(2,1))))
where A = 1/(2pK,(f)) .-

Proof. If |f(z)| < |f(y)| there is nothing to prove. Hence we may assume that
|f(z)| > |f(¥)|. By 5.27 and 8.5 we obtain

A rpe (£(2), F(9) < Aa(F(2), F(¥)) S M(A([0, f(9)], [f(z),0)))

£ ()]
= T(m‘gﬂ -1)

where G = R™\ {0} . Next, by 8.6(2)
g (2,9) = 37 (sh* $p(z,v))

and by 10.18(2)
Agn (T, ¥) < pEo(f) Appe (f(2), f(¥)) -

The desired bound follows from these relations. O

We require the following important theorem of Martio, Rickman, and Viiséld
[MRV3, 2.3] on locally homeomorphic qr maps of B™, n > 3. The proof of this
theorem makes use of an ingenious method of V. A. Zorich [ZO1]. The proof will be

omitted. A similar result for qm mappings was proved by Martio and Srebro [MSRA4].

11.25. Theorem. For n >3 and K > 1 there exists a number ¢ = 9(n,K) €
(0,1) such that every locally homeomorphic K-qr mapping f: B™ — R™ is injective
in B*(z, (1—|z|)¢) for all z € B"™.
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11.26. Exercise. Applying (2.23) show that D(z,M) C B"(z, T(1 — |z))
where T = (2thiM)/(1 —thiM), |z| < 1. Conversely show that D(z,M) C
B"(z, (1 — |2|)¥) where |2| <1, 9 € (0,1), M =2arth(s/(2+9)) .

11.27. Theorem. Let f: B® — R"\{0} be a locally homeomorphic qr mapping
and n > 3. Then

1) < o) ()’

where C and a are positive numbers depending only on n and K(f).

Proof. Let ¥ = ¥(n, K(f)) beas in 11.25 and define g,(2) = fz(z+2(1—|z|)¥)
for z € B® and z € B". Then g, is injective and K—qc in B™ by 11.25.

We are going to show first that |f(z)| satisfies the Harnack inequality (4.11) in
B" with s € (0,1%] and

(11.28) Co=1+7"1Ar(16/9)), A=1/(2Ks(f)).

To this end let B"(z,7) C B® and 1,272 € B"(2,6r), s € (0,3¢]. By 11.24 we

obtain

[f(z)] _ |g2(v1)|
[f(z2)] lg2(v2)]

where y; = (z; — 2)/((1 — |2])¥) € B® and A =1/(2K(f)) . Because |y;| < 1 for
j =1,2 it follows from (2.17) that

<1477t (A T(sh2 %p(yl,yz)))

2B = p(y1,y2) < 2log3,

and hence sh® B < 16/9. We have thereby proved (11.28).
By virtue of (11.28) and 4.12 we obtain

|f(z)| < Ca**|£(0)|

where C, is as in (11.28) and ¢t = (log if}:{)/log 18 s = 219. We have thus
proved the desired inequality with C = C; and a = (log C,)/ log %i—ﬂé (Recall the

¥
relationship (10.4) between Ko(f) and K(f).) O

11.29. Exercise. A counterexample to show that 11.25 is false for n = 2 is
easily found. Denote f;(z) = exp(jz), 7 = 2,3,..., 2z € B2 . By considering the
family {f;} we see that 11.25 is false for n = 2. Find a counterexample to show that
11.27, too, fails to hold for n = 2.
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Next we shall study the behavior of the function

B |z — y
re(z,y) = min{d(z), d(y)}

under quasiconformal mappings.

11.30. Theorem. Let G and G’ be proper subdomains of R™ and f: R"™ —
R" a K-qc homeomorphism such that fG = G'. Then for all z,y € G

1
rer (@), 1) < 77 (5 7(ral@:)) -
Proof. We may assume that d(f(z),0G") < d(f(y),8G'). Fix 2/ € 3G’ such

that |f(z) — 2'| = d(f(z),0G") and z € G such that f(z) =2z’. Then by 10.18(2)

Ap(z,y) < K dpi(f(2), f(¥))

where D =R"\{z} and D'=fD=R"\ {2'}. By 8.24

Ao() 2 7 (E22) 2 (el

o (100, 10) < ar (LT 4 (o110, 1)

The desired result follows immediately from the above inequalities. (O
Applying Theorem 11.30 with G =R" \ {0} yields the following result.

11.31. Corollary. Let f: R® — R" be a K—qc mapping with f(0) = 0. Then
for z,y € R™\ {0}

fl@) -] . T-1< 1 ,r( |z -yl )) _
min{|f(z)], [f(¥)[} ~ 4K \min{|z|, [y[}
Next we shall prove a result where f need not be defined on the whole space R™
as it was in 11.30 and 11.31. '

11.32. Theorem. Let G be a proper subdomain of R™, suppose that G is
c-QED, and let f: G — fG be K-qc with fG C R™. Then

r1e(£(2), 1) <77 (g (re(@ )

for all z,y € G.
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Proof. By 8.29 we obtain
Ag(z,y) > er(r? +2r) > 21" "cr(r)
where r = rg(z,y) . Next by 8.25 we get

Are(f(2), Fv) S 47(rsa(f(2), F())) -

The desired inequality now follows easily. O

11.33. Example. We shall now show that the ¢-QED condition in 11.32 is
necessary. Let G = B2\ [0,e;) and let f: G — B2 = BZNH? be the conformal
map f(z) =+/z, z€ G. Let z; = (1/2,1/5), y; =(1/2,-1/7), 7 =4,5,... . Then
ra(zj,y;) = 2, while it is easy to see that

ch(f(f"j),f(yj)) —* 00

as § — oo. In particular, rfG(f(zj),f(yj)) has no upper bound in terms of
re(zj,y;) . One can show that G is not a ¢-QED domain for any ¢ > 0.

The function rg(z,y) is invariant under similarities and, accordingly, the same

is true about 11.30 and 11.32. Next we shall give some M(R")-invariant results.

11.34. Theorem. Let D C R™ be a ¢-QED domain with card(R"™\ D) > 2
and let f: D — fD c R™ be K—qc. Then for z,y € D

_ ¢
mp(£(@),£W)) < 77 (G Tmo(=,0)))
where mp, is as in (8.33).
Proof. The proof follows from 8.41 and 10.18(2). O

11.35. Theorem. Let f: B® — R" be a K-quasimeromorphic mapping, let
a,d € R™\ fB™ be distinct and suppose that N(f,B") < p < oco. Then

da,d) d(f(@), /(8) _ 1/ 1 = o2
e aws < G (T )

for all z,y € B™.
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Proof. By 8.6(2)

1, |z — y|?
Age(Z,9) = 3 ((1 - |z2)(1 - |y|2))

for distinct z,y € B®. Let D = R")\ {a,d}. By 8.5 Afgn < Ap and thus by 8.40

we obtain

’\fB” (f(.’):), f(y)) S AD(f(m)af(y)) S 4T(mD(f(z)7f(y))
<4r(le,f(2),d, f(v)]) -

The desired conclusion follows from the above inequalities and 10.18(2). O

11.36. Exercise. Show that thlp(z,y) = |z — y|/\/|z — y|2 + 4zpys for

z,y € H*. Show that if f: H® — H" is K—qr with f(e,) = e, then
|f(x) :enl < Al-—-al: |.’B—€nl :la
\/[f(:z:) —en|? +4f(z)n " \/i“"“en‘z’*"lzn
for all z € H™. [Hint: Apply 11.2(1).] Assume next that f:H" — H" is K—qc and
f(er) = e, . Show that
[f(2) —enl® _ _1f1 (lz—enl?
< — | ) )
if(@)n = (K T( 4Ty, )>

[Hint: Find first an expression for sh %p(z, y) and then apply 11.22.]

11.37. Exercise. (1) Let f: B® — B" be K—qr and a = K*/(1=") | From
the proof of 11.14 derive the inequality

|f(z) = fW)] < (2An)" % p(z, y)*

for all z,y € B™.
(2) Next extend this inequality to a K—qm map f: B™ — Q(z,r) where Q(z,r)
is a ball in the spherical metric as defined in (1.22). Show that
4(f(2), f(¥)) < (2Xn)' " p(z, 4)* e(r)

for all z,y € B™ where ¢(r) =r/v1—1r2.
(3) Find a form of 11.14 where the majorant is independent of n.
(4) Let f: B® — R™ be a K—qr mapping with By = 0. Show that for n > 3
there exists a number d(n,K) such that for all r € (0,1)
N(f,B™(r)) < d(n,K)(1 —r)}"".

[Hint: 4.22 and 11.25.]
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11.38. Exercise. Let f: B®" — R"™ be K-qr and assume that there are
numbers T >0 and A > 0 such that p(z,y) < T implies |f(z) — f(y)| < A. Show

that .
th 50(z,y) ] o
th 1T
for all z,y € B® with p(z,y) < T where a = K/(1=")  Next combine this inequal-
ity with 4.13 to obtain a bound valid for all z,y € B™.

17(2) - 1()] < AN

Next we shall survey some distortion theorems for quasiconformal mappings,
which will not be proved in this book.
In 1956 the following theorem of A. Mori [MOR1] appeared.

11.39. Theorem. Let f: B2 — B? be a K -qc mapping with f(0) = 0 and
fB2% =B?. Then
|f(2) — F(v)| < 16]z — y|/%
for all z,y € B%. Furthermore, the number 16 cannot be replaced by any smaller

absolute constant.

It has been conjectured that the best constant in place of 16 is 16!~1/X ([LV2,
p. 68]). In 1985 H. Qu [Q] proved that the constant 162(!~1/X) will do (cf. [SEM2,
p. 205]). In [FV] R. Fehlmann and M. Vuorinen proved the following theorem.

11.40. Theorem. Let f: B® — B"™ be a K-qc mapping with f(0) =0 and
fB"® =B". Then

lf(x) - f(y)t < Ml(n!K) Iz - yla y A= Kl/(l—-n) ’

for all z,y € B™, where the number My(n,K) has the following three properties
(1) Myi(n,K)—1 as K — 1, uniformly in n.
(2) M;i(n,K) remains bounded for fixed K and varying n.
(3) Myi(n,K)<3A2 forall K >1.

We remark that a multidimensional generalization of 11.39 (essentially part (3)
of (11.40)) follows if one extends Mori’s original argument to R"™. This fact was
observed by B. V. Shabat in 1960 [SH]| (see also F. W. Gehring [G2, p. 387] and K.
Ikoma [IK]). The point of 11.40 is that a quantitative constant is given which satisfies
the property (1). See also G. D. Anderson and M. K. Vamanamurthy [AV].

Some related results are given by R. Nakki and B. Palka [NP] as well as by F. W.
Gehring and O. Martio [GMZ2].
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11.41. Remark. It is an open problem whether the constant M;(n, K) in 11.40

can be chosen so that it remains bounded when both n — 00 and K — co.

The following theorem was proved by P. Tukia and J. Viiséla ([TV], [V11]) and
in its present improved dimension—-independent form by G. D. Anderson, M. K. Va-

manamurthy, and M. Vuorinen [AVV1].

11.42. Theorem. For K > 1 and s € (0,1) there exists a homeomorphism
n: [0,00) — [0,00) with n(0) =0 and with the following properties. If f: B" — R",
n > 2, is a K—-qc mapping into R™ and z,y,z € —En(s) with = # z, then

|f(z) = f(v)] |z — |
o= <" (e=a)

11.43. Exercise. Show that the inequalities n(1) > 1 and

(@) - F@)] = 2|
e—ran 2/ (=)

for all distinct z,y,z € B"(s) follow from 11.42. Show also that 7(1) yields a bound
for the linear dilatation of the mapping f.

11.44. An open problem. For K > 1, n>2,and r € (0,1) let
Ok,n(r) = 0k(r) =suwp{|f(z)|: f € QCx(B"), f(0) =0, |z| <r}

where QCr(B™) = {f: B® — fB™ | f is K-qc and fB"™ C B"}. As shown in
[LV2, p. 64]

(11.45) ©k,2(r) = Pk,2(r) < 1=K K

for each r € (0,1) and K >1. By 11.3(1)

(11.46) P n(r) S Ogalr) <A r%, a=KY0W)

for n>2, K>1, re(0,1). A. V. Sychev [SY, p. 89] has conjectured that
(11.47) Plenlr) < gl-a o

forall » > 2 and K > 1. Because Ay = 4, (11.47) agrees with (11.45) for n = 2.
In [AVV4] it is shown that p% , # ¢k, for n > 3. It follows from 11.19 and 11.23
that

O (T §4r1/x,
(11.48) { inl7)

[Pl n(M]” < 1= 0%/ (VI=77).
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From (11.48) and (11.46) it follows, as shown in [AVV2], that
(11.49) Ok n(r) < 4-VE LK

holds for all n > 2, K > 1, r € (0,1). Note that the right hand side of (11.49)
is bounded when K — oco. Recall that A\, — o0 as n — oo by 7.22 and that
Al=e < 21-1/K K by 7.51. Note that Sychev’s conjecture (11.47) still remains open.

11.50. Notes. Distortion theorems for qc and qr mappings have been proved
by many authors (see the bibliography of [C1]). The Holder continuity of plane qc
mappings was proved by L. V. Ahlfors [Al], and the Schwarz lemma by J. Hersch and
A. Pfluger [HEP] and P. P. Belinskif (see the references in [BEL, p. 13]). For n = 2
the explicit bound 41~%/¥ in 11.3(1) was found by C.-F. Wang [WA] with the aid of
a parametric method, and a simplified proof was given by O. Hiibner [HU] See also
O. Lehto and K. I Virtanen [LV2, p. 65, (3.6)] as well as P. P. Belinskil [BEL, p. 15,
formula (16%)]. The n—dimensional form of the proof in [HU] and [LV2] was given by
G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen [AVV1].

The Holder continuity of qr mappings in R™ was proved by E. D. Callender

[CAL], F. W. Gehring [G2], Yu. G. Reshetnyak [R1], [R12, pp. 36-38]. A spatial form
of the Schwarz lemma was found by B. V. Shabat [SH| and O. Martio, S. Rickman,
and J. Vaisild [MRV2]|. Most of these bounds depend essentially on n, with bounds
that approach co as n — oco. Dimension—free bounds (such as 11.3(1)) were given
in [AVV1] and [AVV2]. For 11.27 see [VU10] and [MI1]. Both 11.34 and 11.35 were
proved in [VU13|. For results similar t0 11.34 and 11.35 see [G7, p. 233] and [RI2)].

12. Uniform continuity properties

The present section is devoted to the study of uniform continuity properties of
a qr mapping f: G — fG as a mapping between the metric spaces (G,kg) and
(fG,ksg) and to the study of its restrictions
flD: (D,kp) — (fD,k¢p)

whenever D is a subdomain of G. We shall consider the modulus of continuity of f
(cf. (10.20))

wy(t) = sup{ kse(f(2), f(¥)) : ka(zy) <t}
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If f is a Mdbius transformation, then w; () < 2t for all domains D in G by
3.10. In this section we shall prove an analogous result for qc maps. The situation for
non-homeomorphic qr mappings is entirely different, as Example 11.3 in the preceding
section shows. However, under a natural additional condition, one caﬁ prove a positive
result even for non—~homeomorphic mappings. This additional condition is a necessary
and sufficient condition for a qr mapping f: (G,kg) — (fG,k;g) to be uniformly

continuous. The condition requires that the function dy defined by
z— dj(z) = d(f(c),0C)

satisfy the Harnack inequality (4.11) in G. Applying some results of Section 8 we
shall show that this Harnack condition is satisfied if f is qc or if f is qr and, in
addition, N(f,G) < oo. Furthermore, under mild restrictions on dfG the Harnack
condition holds independently of N(f,G). For instance, it is sufficient to require
dfG to be connected.

We shall first prove some preliminary results.

12.1. Lemma. Let B > 0, u,v € R*\ B*(R), u # v, and let F be a

continuum with u,v € F. Then
M (A(F, S*1(R))) = (1 + a(u,v))

where
2min{ |v|(Ju| — R), |u|(jv]| - R) }
R|u — v '

a(u,v) =

Proof. Let h(z) = Rz/|z|*, |z| > R. Then A(R"™\ B"(R)) = B". By (1.5)
h(e) ~ h(o)] = L

o fullo] T
This together with the definition (2.34) yields

JBn (h(u),h(v)) = log(1 + 2/a(u,v)) .
By conformal invariance 5.17, 7.32, and 2.41(1)

M(A(F, 5™1(R)) = M(A(K(F), 5™71) 2 +(

)
th 2p(h(u), k(v))

1
= ’Y(th(%Jﬁn(h(u),h(v))Q '
Because th(3 log(1+ s)) =s/(2+ s), we obtain
M(A(F’ Sn—l(R))) > (1 + a(u,v))

as desired. O



154

12.2. Lemma. Let f: G — R"™ be a gr mapping, let G and fG be proper
subdomains of R™*, z€ G, 8 € (0, %) ,and let z € 8fG with

dj(z) = |f(z) — 2| = d(f(2),8fG) .
Assume that |z —y| < 1d(z) implies |f(y) — 2| > 0ds(z). Then the inequality

f(=) - F@) A
di(z) Ty HE(d(=)/(2lz-y)) - A-1

holds for |z —y| < % d(z), where K = K;(f) and A=2(0"1—1).

Proof. Let B, = B"(z,1d(z)). We may assume that f(z) # f(y). By the
monotone property 8.5 of 4, 10.18(1), and 8.8(2),
prc(f(e), f(¥) < K pele,y) < K pp (z,9)

SK,,(_i@_)__) ,

2|z —y|

where K = K,(f). Next apply 8.5 and 12.1 with R = fds(z) to get
pra(f(2), f() 2 (1 +a)

where

o = 2min{ |[f(y) — 2[(|f(2) — 2| -~ R), |/(z) — 2|(f(y) —2[ - R) }
R|f(=) - f(y)l '

Since |f(y) —z| < |f(z) — f(y)| +|f(z) — 2| and R = d¢(zx) we obtain

-1 _ dy(z)
e <207 = 1) (1+ )

This inequality together with the above ones yields

7(1 +2(07" - 1)(1 + D#EJ%—@T)) < Kry(zli(f)m) .

The desired inequality is now easily obtained from this. O

12.3. Corollary. Under the assumptions of 12.2, there exists a number tg €
(0,1) depending only on K;(f) and 8 such that |z —y| <tod(z) implies

/(=) - Fw)l

PO

ST

.
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Proof. Denote K = K (f). As in (7.44) let

(r) = ——
PE) = S 1(EA(1/7)

, r€(0,1).

We can now rewrite the inequality of 12.2 as

f(&) - W)l . Apx(2lz—yl/d(z)) _B
di(z) T 1-(1+ A)pg(2lz —yl/d(<))

where A = 2(§~! —1). Hence it suffices to require B = 1, in other words

(84 +1) o (2lz — yl/d(z)) = (607" = 5) o (2l — vl/d(z)) = 1.

In order to find a number ¢o independent of the dimension we recall that by 7.47(1)
and 7.50
(pK,n(t) __<_ 21—1/K.Kt1/K

holds for K > 1, n>2,and ¢t € (0,1). Hence it suffices to choose ¢y so that
(60~ —5) 21~V EK(2t,) VK =1

or, equivalently,
to = (12K~ —10K)~ ¥ .

Because 0 € (0,3) we see that
0 \X 6 \¥X
12.4 (-—-> <to < (—-—) .
(12.4) 12/ = °~\1K
Hence to depends only on # and K as desired. O
After these auxiliary results we now prove the main result of this section.

12.5. Theorem. For K > 1 and 0 € (0,3) there exists a number ¢ with the
following property. Let G and G’ be proper subdomains of R™ and let f: G — R™

be a non—constant qr mapping with fG C G' satisfying the Harnack condition
i(f(2),8G") > 0d({ (1), 0G")
for all z,y € G with |z—y| < Ld(z). If K;(f) = K and a=K'/(~")  then

ke (f(2), f(y)) < emax{ kg(z,y)® ka(z,v) }

for all z,y € G.
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Outline of proof. The proof will be carried out in two steps. In the first
step we choose a number ¢ € (0, 312-) , t =t(K,0), such that |z —y| < td(z) implies
|7(z) — f(v)| < 3 d(f(z),0G") whenever z € G. Moreover, we prove the theorem for
|z —y| < td(z). In the second step we assume that |z —y| > td(z) and prove the

theorem in this case by exploiting quasihyperbolic geodesics as in Lemma 4.9.

Proof of 12.5. Fix z,y € G with y € B"(z,1d(z)) = B,. Choose z, € 3G’
such that |f(z)—zo| = d(f(z),8G") = d(f(z)) . From the Harnack condition it follows
that f maps B, into R"\ B"(z, 0d(f(z))). Let t = t(K,0) be the number given

by 12.3. Because 0 € (0,1) we obtain by (12.4)

0 \K f \K
(126) (mx) <=<(&) -
Then

for |z —y| <td(z).
Case A. |z—y| <td(z). Let By = B™(z, td(z)) and B; = B™(f(z), 1d(f(z)) .
For y € B; we obtain by 8.8(2)
_ (=)
g, (T,y) = ’Y(Tx—_—ﬂ) .
Observe that fB; C Bz by (12.7). Hence the monotone property 8.5 of u. together
with 8.8(2) yield

wi, (f(2), f(¥) = up, (f(2), fv) = 7<2!le3§{'('$)]2(?4)|) '

Because

wep, (F(z), f(v)) < K pp,(z,v)

by 10.18(1), the above relations yield

2/f(z) — f(v)] 1 — o (22
(12.8) @)~ T EAGD m=o)) ox t d(z) )

where we have used the function @y introduced in (7.44). Because |z —y| < td(z),
also (12.7) holds, and hence by 3.7(1)

() - £(3)] 207(@) - )
ke (11 1) < Toe (1 + g =T S ) <
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This inequality together with (12.8), 7.47, and 7.50 yields
] , < 9l-V/K |z — y]
(12.9) ke (F(2), Fy) < 2R K (22 e )"

where o = K/(1=") | Tt follows from 3.7(1) and (12.6) that

|z —y| 1 T_1
< = )< <log—- < = .
ko(z,y) < log(1+ aq )(1-—-t)) __logl_t ,_log6 <6

Therefore we have by (3.4) for |z —y| < td(z)

|z —y|

d(z)

Here the second inequality follows from the well-known fact that [AS, 4.2.33]

< exp(ch(a:,y)) 1< w-)- kc:( y) -

(12.10) 16

a
e —-1<

l1—a

for ¢ < 1. By (12.9), (12.10), and (12.6) we obtain

(12.11) ke (f(2), f () < eqkg(z,v)*
where
(12.12) ca = 2" VEK(5/6)%(12K/0)%> < 21"V E K (12K/9)K

Case B. |z —y| > td(z). Let Jg[z,y] = J be a geodesic segment of the quasi-
hyperbolic metric k5. Choose points zi,...,Zpy; on J as follows. Let z; = z and
assume that the points zj,...,z; have been chosen. If y € B™(z;,td(z;)) we set
P=1J, Tp+1 =y and the process of choosing points ends. Otherwise we choose z;.;
to be the last point of J on S"™"(z;,td(z;)) when we traverse from z to y along

the geodesic segment J . It follows from (3.4) that
b (2, 5741) > log(1+1)

for 1 < j<p-—1. By the length-minimizing property of the geodesic J

p~1
(p—1)log(1—1) < Y kg(zj, Tj1) < kg(z1, 2p1) = kg(z,9)
=1
and hence p < 1+kg(z,y)/log(1+t). By the definition of the number ¢ (see (12.6))
we see by 3.7(1) that

kg (f(5), f(zj41)) < log2
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for all j = 1,...,p. Therefore by the triangle inequality for kg, and by (3.4) we
obtain the desired inequality

ke (f(2), f(y)) < plog2 < (log 2) (1 + lfg((lzj}-yg))

because |z —y| > td(z) in the Case B. By (12.6) the constant admits the following
upper bound

log 4 < (12K/6)¥ log 4

(12.13) °5= log(1+t) = 7log(8/7) = g(lzK/(})K |

Finally, by (12.12) and (12.13) we see that in both Cases A and B we can choose

(12.14) ¢ =max{cq, cp} <3 -2"YEK(12K/0)X . O

12.15. Exercise. In the above computations we applied the fact that in view
of (12.6), t < 1/7. However, it was required in 12.5 that 6 < % and hence ¢t < 1/14
by (12.6). Using this fact improve the constant ¢ in (12.14).

12.16. Corollary. Let f: G — R™ be a non-constant qr mapping such that
fG CG'. Then
f : (G7 kG’) - (lekG')

is uniformly continuous if and only if the Harnack condition of 12.5 holds.

Proof. By 12.5 it will be enough to prove that uniform continuity implies the
Harnack condition. Assume that f is uniformly continuous in the above sense. Hence
there exists a number D such that kg(z,y) < log(3/2) implies kg (f(z), f(y)) <

D. It follows from (3.4) that |z —y| < %d(z) for kg(z,y) < log(3/2). Hence for
|z — y| < 3d(z) we obtain by (3.5)

d(f(z))
flog W‘ <ke(f(z),f()) <D

where d(f(z)) = d(f(z),0G’). Thus the Harnack condition of 12.5 is fulfilled with
g=eP. O

We next show that p—to—one qr mappings satisfy the Harnack condition of 12.5.
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12.17. Theorem. Let G and G’ be proper subdomains of R™ and let f: G —
R™ be a qr mapping with fG C G' and N(f,G) < p < co. Then for all z,y € G
with |z —y| < Zd(z)

d(f(2)) < [1+771(A7(1/24))] d(f(v))
where d(f(z)) = d(f(z),8G") and A =1/(8pK,(f)).

Proof. We may assume that d(f(z)) > d(f(y)) . Because

@)= fwl . A=)
min{d(f(2)), /@) ~ d(f (@)

by the triangle inequality, Corollary 8.25 yields

d(f(=))
d(5(v)) 1) '

-1

Ao (£(2), 1) < 47 (
It follows from 8.6(2) and (2.17) that
Agn(0,2) > 2 7(sh?®(3log £)) > 1 r(1/24)
for all |z| < % . Denote B, = B"(z,1d(z)). Then
Aa(z:y) 2 Ap, (2,y) > 37(1/24)

by 8.5 and the above inequality. The desired inequality follows now from 10.18(2).
)

12.18. Exercise. Applying the functional identity ~(t) =2""1r(¢2—1) of 5.53
show that

147 (Mr(t) = [y (MA(VITE))]?

forall M >0 and t > 0. Next show that the constant in 12.17 has an upper bound
in terms of pK,(f). [Hint: Apply 7.51.]

12.19. Corollary. Let f: G — fG be a qc mapping where G and fG are

proper subdomains of R™. Then

ka(f(:B)a f(y)) < cma'x{ kG’(xvy)a 3 kG(za y) }

holds for all z,y € G where a = K;(f)*(*~™) and ¢ depends only on Ko(f).
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Proof. By 12.17 and 12.18 the Harnack condition of 12.5 holds with a dimension—

free constant 0y . The proof follows now from 12.5. O

12.20. Corollary. Let f: G — fG be a K—qc mapping, where G and fG are

proper subdomains of R™. Then

ka(f(z)’ f(y)) S c1 ma.x{ kG(xv y)l/Ka kG(za y) }
holds for all z,y € G where ¢; depends only on K .

Proof. Because K > K, (f) and because the constant ¢ of 12.19 increases
with K (f) we can make ¢ independent of K,(f) by replacing K,(f) with K.
This yields a new constant ¢; depending only on K with ¢; > ¢. Because o =
K ()Y > 1/K we obtain

max{ ke(z,v)®, ka(z,y) } < kg(z, y)l/K
for kg(z,y) <1 and
max{ ka(z,9)%, kg(z,y) } = kg(z,y)

for kg(z,y) > 1. The desired dimension—free inequality follows. (I

It follows from Example 11.4 that Corollary 12.19 does not hold for qr mappings
and not even for analytic functions. However, if dfG satisfies some additional condi-
tions, then 12.19 can be generalized to qr mappings. Next we shall prove such a result

when 3fG is connected.

12.21. Theorem. Let f: G — R"™ be a non—constant qr mapping and let 0fG

be a continuum containing at least two distinct points. Then

ka (f(:l:), f(y)) < ez ma.x{ ke (z,y)%, ke(z,y) }

for all z,y € G where ¢y depends only on n and K(f).
Proof. Let z,y € G with |z —y| < 2d(z) . By 10.18(1) and 8.8(2) we obtain

pie(f(2), f(¥) < Ki(f) welz,y) < K (£)(2) .

Further, in view of (3.5) and 8.31(1)

d(f(=))
d(f(y)) | < ne(F(2), £(3) -

cn|log
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From these inequalities it follows that d(f(z)) = d(f(z),0fG) satisfies the Harnack
condition of 12.5 with

0 = exp(——KI(f) '7(2)/cn) .

Hence the proof follows from 12.5.

It should be observed that Theorem 12.21 is applicable to qr mappings also when
N(f,G) =00.

12.22. Theorem. Let f: G — R™ be a non-constant K-qr mapping and let
D € J(G) (for notation see 9.10). Then

ka (f(.'l:), f(y)) < C(D) ma‘x{ kp(z, y)a’ kD(z’ Y) }
holds for all z,y € D where o= K*(~") and ¢(D) depends only on KN(f,D).

Proof. It follows from 12.17 and 12.18 that d(f(z),8fD) satisfies the Har-
nack condition of 12.5 in D with a dimension—free constant § depending only on
KN(f,D). The proof follows now from 12.5. O

12.23. Example. For n = 2 and K = 1 consider the analytic functions
fp(2) =27, p=2,8,..., 2 € C. The points a, = 7 and b, = Lexp[(r/p)i] are
mapped by f, onto a; = 27P and b}, = —27P, respectively. Let D = B?\ {0} =
fpD . By (3.4)

ks p(ay,bp) > jp(ap,by) =log3 > 1,
kp(ap,bp) < /p,
where the last inequality follows by integration along the circular arc {z € C:z =
Lexp(t),0 <t < m/p} (see the definition (3.2) of the quasihyperbolic metric). By
Theorem 12.22
1 <log3 < ¢(D) max{(r/p)*,7/p} = ¢(D)/p

and hence
¢(D) > p/m > N(fp,D)/7 .
In particular, we see that ¢(D) — o0 as N(f,D) — oo in 12.22.
12.24. Corollary. Let f:B™® — Y, Y = R"\ {0}, be a qr mapping with
N(f,B™) < co. Then
f:(B*p) — (Y, ky)
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is uniformly continuous. In particular,
f:(B"p) — (R",q)
is uniformly continuous.

Proof. Theorem 11.24 shows that the Harnack condition of 12.5 is fulfilled and
hence the first assertion follows from 12.5. The second assertion follows from the first
one (see 3.31). O

12.25. Exercise. Show that 12.20 yields a bound for the linear dilatation of a
K —qc mapping. [Hint: Apply 12.20 to G\ {z}, z€ G ]

12.26. Remark. (1) Let ¢ denote the least constant with which 12.19 holds.
As shown in [AVV?2] the following inequalities hold

(1+;—r1—2-log2A(K)>1/2 <7< 2K[1+ (2(v3 + x/i))s"] ,

where A(K) is as in 10.31 and K = K(f).

(2) The condition in 12.21 that dfG be a non-degenerate continuum can be
replaced by the requirement that dfG be sufficiently thick at each of its points in a
sense involving n—capacity. See [VU12].

(3) This section is taken from [VU10]. Corollary 12.19 is due to F. W. Gehring
and B. G. Osgood [GOS].

13. Normal quasiregular mappings

The properties of bounded analytic functions of the unit disc have been studied
extensively in classical function theory. In their fundamental paper [LV1] of 1957
O. Lehto and K. I. Virtanen proved that many boundary properties of bounded an-
alytic functions, or more generally of meromorphic functions omitting at least three
distinct values in the extended complex plane, have natural generalizations to a wider
subclass of meromorphic functions, namely the normal meromorphic functions. This
class of functions is very convenient to study because of its invariance properties. The
notion of a normal meromorphic function also provides a natural setup for the study

of the Schwarz lemma and the Schottky theorem as well as their many ramifications.
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For a bibliography of normal meromorphic functions the reader is referred to A. J.
Lohwater’s survey [LOH] (see also [PO]).

The goal of this section is the study of some growth properties of normal quasireg-
ular mappings. In the case of meromorphic functions there are several equivalent
characterizations of normal functions, of which we mention here only three: namely
one based on the study of normal families, one based on the notion of the spherical
derivative, and finally one making use of uniform continuity between appropriate met-
ric spaces. Of these the last one seems to be the most natural definition in the present
context, since we are interested not only in knowing whether a function is normal but

also in estimating its modulus of continuity.

13.1. Definition. A continuous mapping f: B™® — R" is said to be normal if

ws(t) = 0 as t — 0 where

we(t) = sup{ q(f(:v),f(y)) : z,y € B" and p(z,y) <t} .

Then ¢(f(z), f(y)) < wy(p(z, y)) holds for all z,y € B™ by virtue of the above
definition. In other words, f: B® — R™ is normal if and only if f is uniformly

continuous as a mapping between metric spaces f: (B",p) — (R",q).

13.2. Remarks. (1) Since the hyperbolic metric (2.21) is a conformal invariant
it follows that f is normal if and only if fog is normal for each g € M(B"). In
this case wy = wfog. I f: B™ — R™ is normal and & € M(R"), then so is
hof and wpoy < Lip(h)ws where Lip(h) is the Lipschitz constant in the spherical
metric. In particular, wpoy = wy if h is a spherical isometry. It follows that in most
cases we may assume that f(0) = 0, by considering ¢ £(0) © f in place of f, where
t¢) is the spherical isometry defined in (1.46). As we shall see in 13.4, from these
invariance properties and from the Schwarz lemma 11.2 it follows that wy(t) < ct®,
a=K1/(1-n) if f:B® - R" is K-qm and normal.

(2) The above definition of normality extends immediately to the case of functions
defined in an arbitrary proper subdomain G of R", if we use kg in place of p. It
should be observed that if G isa mﬁltiply connected plane domain then this definition

of a normal function is not the same as the definition in [LV1].

13.3. Exercise. Assume that f: B® — R" is normal and f; € M(R") with
fi(z) = z+a. Show that wy,o¢(t) < [1+3|a|(|a|++/4 + [a]?)]wy(t) . [Hint: 1.54(4).]
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Assume fi(z) = a +r*(z — a)/|z — a|*. Find an upper bound for wy,of(t). [Hint:
1.54(2).]

By virtue of the results in the preceding sections we see that the class of normal
gm mappings is wide. Several examples will be given in 13.7.
The following result may be viewed as a generalization of the Schwarz lemma to

the context of normal functions.

13.4. Theorem. Let f: B® — R™ be a normal qm mapping and let M =
sup{t: wg(t) = 1}. Then

th Zp(z,y)

« _ 1/(1—n)
th%’M ) ’ a““KI(f) 3

a(f(2), 1(v)) < a(n B) (
for all z,y € B"® where a(n,K) = max{1, \1~*/v/3} and )\, is the Grotzsch
constant (7.24).

Proof. Since a(n,K) > 1, the assertion is trivial if p(z,y) > M. Fix z,y €

B"™ with p(z,y) < M. In view of the conformal invariance of the right side, we
| may assume that z = 0 and y = (th 2o(z, y))el (see (2.25)). Because the left
side is invariant under spherical isometries we may also assume f(0) = 0. Hence
fD(0,M) C Q(0,%) = B"(1/+/3) by 1.25(1). Denote

hy : B® — D(0,M), hi(z) =zthiM,

hg : B*(V3) — B™, hy(z) = zv3.
Then g = hp o fohy: B® — B™ is qr with K;(9) = K;(f), Kol9) = Ko(f),
¢(0) = 0 and thus by 11.3(1) and 1.17

v34(f(v), £(0)) < V31£(y) — £(0)] < lo(y/ th 1M) — 4(0)|
—a(th3a(z,y)\

<A ( t]i iM )
where a = K;(f). This is the desired inequality. O

13.5. Corollary. A gqm mapping f: B® — R" is normal if and only if there
are numbers « € (0,1] and B > 0 such that ws(t) < ft* for all t € (0,00) .

If f: B® — R" is continuous, then the set E; = {z€ B": |f(z)|=t}, t >0,

is called the t—level set of |f|. We are next going to give a geometric characterization
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of a normal qr mapping which requires that the oscillation of the mapping “near” a
level set is bounded. It should be observed that the hypothesis S*~' N fB™ # @ in
the following theorem is merely a technical normalization: if it fails.to hold, then f
omits a ball of R™ of spherical diameter =1 and hence f will be normal by virtue
of 11.1.

13.6. Theorem. Let f: B® — R™ be a non—constant gqm mapping with S™*~'n
fB" # 0 and let E = {z € B": |f(2)| <1}. Then the following conditions are
equivalent:

(1) f is normal

(2) There exists a positive number T such that |f(z)| < e whenever z € B"\ E

and p(z,E)<T.

Proof. Since the implication (1) => (2) is obvious, only (2) = (1) remains to
be proved. Fix z,y € B™ with p(z,y) < %T. We consider two cases.

Case 1. p(z,E) < —;—T . In this case f|D(z, %T) omits the set F; = R™\ B”‘(e)
by the hypothesis of the theorem and

c(F1) > c(F:i;OO) = w;zl (log(e\/g))l—n =d;

by (6.13) and 6.14.
Case 2. p(z,E) > 3T . In this case f|D(z,3T) omits B" (i.e. fD(z,3iT)N
B"=0) and

— B~ _
¢(B") > C(—d; o (log v3)'™" = dj .

In both cases we apply 10.18(1) to f|D(z,3T), and we obtain by (2.24) and
8.8(2)
th 1T
#p(ar/2) (%2 8) = q'(th 30(z, y)) '
Because di < d; we obtain by 6.1 in both Cases 1 and 2

HfD(z,T/2) (f(), f(¥)) = Bmin{ dy, d3 ¢(F(2), f(¥)) }
- >fmin{d;, ds}q(f(z), f(v)) -

This together with the previous inequality, 7.26(1), and 10.18(1) shows that f is

normal. O
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13.7. Examples. We 4now list some sufficient conditions for a qr mapping
f:B™ - R"™ to be normal:

(1) ¢(R™\ fB") > 0 (see 11.1). In particular, an injective qr mapping of
B"™ (i.e. q¢c mapping) is normal, because ¢(dfB™) > 0 by 14.6(1) and 6.1.
Likewise, bounded qr maps are normal.

(2) fB™ C G, where G is a proper subdomain of R"™ and dy: B® — R,
d¢(z) = d(f(z), 0G) satisfies the Harnack inequality (see 12.5 and 3.31).

(38) f:(B™ p)— (R",]|) is uniformly continuous (see also 16.12).

The above sufficient condition 13.7(1) for a qr mapping to be normal may be
much refined. As the following important theorem of S. Rickman [RI10] shows it
suffices to assume that ca.rd(— ™\ fB") exceeds a sufficiently large finite number
p(n,K) depending only on n and K . The next result is a qr variant of the Schottky
theorem, which has a fundamental role in classical complex analysis [T, p. 268], [A3,

p. 19], [NE, p. 62]. Some applications of this result are given in [VU14].

13.8. Theorem ([RI10]). For n > 3, K > 1 there exists p = p(n,K) such
that every K-qm mapping f: B® — R" \{e1,...,ap}, where a; # a; for i # 7, is

normal. Moreover, if co & fB", then

log™ | f(z)| < Co (~log so +log™* |£(0)]) (1 — |2) =

where logtt = logmax{1,t}, so = i—min{q(a;,aj) :1<4,7<pi#35},and C

and Cy are constants depending only on n, K, and sq.

We are now going to prove that every normal qr mapping satisfies a growth
condition similar to the one in 13.8 and that the constant C can be chosen to depend
only on the dimension n and the maximal dilatation K . The proof of such a growth

inequality can be based on the Harnack inequality.

13.9. Remark. Let u: H?2 — R, be a harmonic function. By a well-known
property of positive harmonic functions u satisfies the Harnack inequality (4.11) with
Cs < (§£2)? for each s € (0,1) (see e.g. [GT, p. 28]). If f: G — R" is K—qr,
E={2€G:|f(z)] £1},and G\ E # 0, then log|f| satisfies (4.11) in each
component of G\ E with a constant C, depending only on n, K, and s (see [SE],
[MOS)], [R12, pp. 232-239], and [GR]).
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By virtue of Theorem 13.6 a qr mapping satisfying the hypothesis of the following

theorem is normal.

13.10. Theorem. Let f: B® — R™ be a qr mapping with 0 €E = {zeB":
|f(2)] <1} and suppose that there exists a positive number T such that p(z,E) < T
implies |f(z)| < e. Then there are positive numbers § and -, of which v depends
only on n and K(f) and 8 also on T, such that |

@I < e (p(1H2) 7 +1)
fo‘r all z € B™.

Proof. We may assume that B"™ \ E # 0, since there is nothing to prove if
E=B". For z€B"\ E let u(z) =log|f(z)|. We wish to find an upper bound for
|f(2)| when z is a fixed prescribed point.

Case 1. z€ B"\ E and u(z) > 1. Now p(z,E) =M >T. Fix z; € E such
that p(2,21) = M. Clearly u(z) >0 for z € D(z, M) and it follows from 13.9 that
u satisfies the Harnack inequality (4.11) in D(z, M) with a constant C, depending
only on n, K(f), and s € (0,1). Denote

F={yeB":u(y) <1}, Fi=FnJzz].

Select 2o € Fy with p(z,29) = p(2, Fy) . It follows from the hypothesis of the theorem
that p(z2,21) > T, while 23 € J[2,21], 0 € E, implies that (see (2.17))

1+ |2|

(13.11) p(z,22) < p(2,21) = T < p(2,0) = log — |2

Denote by 7 the hyperbolic metric of D(2,M) (see 4.25). We are next going to
apply 4.12 to u|D(z, M) and to the points z and 2, . For this purpose we need an
upper bound for 5(z,22). To find such a bound, map z to 0 by T, (see 1.34). In
order to avoid notational ambiguity denote h = T, . From the conformal invariance
of p it follows that A maps D(z,t) onto D(0,t), for each ¢t > 0. Hence by (2.24)
and (2.25) we see that

h(z2) € S™ ! (th 1p(2,22)) ,
hD(z,M) = B™ (th 1p(2,21)) .
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Diagram 13.1. The proof of Theorem 13.10.

In view of the conformal invariance of 7 it follows that (see (2.17) and 4.25)

PD(z,1)(2:22) = Pp(o,01) (0, h(22))
(13.12) ~ log 1+r _ th 1p(z, 22)
1—r’ th $p(z,21)

Denote ¢ = 1p(z,21), 7 = 2p(2,22) . Because p—7 > 1T we obtain by (13.11),
(13.12), and 2.29(1) the inequalities

1+r thp+thr th(p+7) 1+thethr
1—r thp—thr th(p—7) 1—thepthr
< 1 .1+th<pth'r< 1 1 <e2<°
th(p—7) 1-th?p thiT 1—the th

(13.13)

2O
~

By 2.29(3), (13.12), (13.13), and (13.11) we get
(13.14) P2, 22) < p(2,21) +2arthe T .

Because 0 € F it follows from thé choice of z; that

1
(13.15) | p(z,21) < p(2,0) =log —1-—{:-—:5-:- .
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Since u satisfies the Harnack inequality, (13.14) and (13.15) together with 4.12 imply

that
1+ lz])

u(z) <c, u(22) exp [13(2, 22)] < ﬂ( — |2

(13.16) ,

B=C, ('1#_7') ; 7=(long)/log1___

Note that u(z2) = 1 by the choice of 2;. In Case 1 the desired inequality follows
from (13.16).

Case 2. z€B™\ E and u(z) <1 or z€ E. In this case |f(z)| < e and hence

the assertion is trivial. O

We shall next give an alternative proof for 13.10 in the particular case of bounded

mappings, since in this case the proof is very short.

13.17. Corollary. Let f: B®™ — R"™ be a non-constant qr mapping with
fB®" CB", yo € B"\ fB"™. Then

(1) £(2) — w0l 2 zexp(-A(lf—{—jf—{)")

holds for z € B® where A >0 and « = (log C, / log . Moreover,

(2 1- 1) 2 o(1)

where 6 = K;(f) and a > 0. Furthermore, if n =2 and f(0) =0 then
1—|f(=)] o ya—s(l—lz]\°

©) e 2 )

for all z € B™ where 6§ = K;(f).

Proof. (1) Define v: B® — Ry by v(z) = -—1og(%]f(z) - yol) for zeB". It
follows from 13.9 that the function v satisfies the Harnack inequality (4.11) in B”
with a constant C,. Now 4.12 yields

v(:c) < v(0)C, exp( p(0,z))
where v = (log C;) / log . The desired bound with A = v(0)C, follows.
(2) This was proved in Exerc1se 11.9 with a = 22K:(5)(1 — | f(0))) .
(3) By 11.3, 5.61(3), and 7.47(2)
1+ 17(5)] _ 1+ paalle) e
< ©
1= (@) = T=pg,() / 1/62(14-!93!)

< (5g)’

which yields the desired inequality. O
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The above results 13.10 and 13.17 depend on a pé,rameter s which can be chosen
arbitrarily in (0,1).

13.18. Remark. The exponential function g: B? — B?\{0}, g(2) = exp(Zt}),
z € B?, shows that an exponential rate of decrease in 13.17(1) can be attained, even

by analytic functions. Recall that it was shown in 11.4 that g is not uniformly
continuous as a map of (B?,p) into (G,kg), G = B2\ {0}.

13.19. Exercise. Let G be a proper subdomain of R™ andlet f: B® — R™ be
a qr mapping such that f: (B",p) — (G,kg) is uniformly continuous. Let df(z) =
d(f(z),0G) . Show that ds(z) has a lower bound in terms of df(0), p(0,z), n,
and K;(f), similar to that in 13.17(2). [Hint: Observe that d; satisfies the Harnack
condition (see 12.5 and 12.16). Next apply 4.12.]

We shall next give some corollaries to 13.10. The first one is a Picard theorem
for qr mappings. For the statement of this result we call a qm mapping f: R® — R”
of the entire space R"™ normal if there exists a function wy : (0,00) — (0,00) such
that ws(t) -0 as t = 0 and

4(f(2), F(v) S ws(or(z,y))

for all R >0 and z,y € B"(R) where pj is the hyperbolic metric of B™(R) (cf.
4.25). Equivalently, f: R™ — R" is termed normal if

4(fr(2), fx(v)) < ws(p(z,v))
for all z,y € B™ and all k£ > 1 where fx(2) = f(kz), z€ B".

13.20. Theorem (Picard’s theorem for qr mappings). A normal qr mapping
f: R™ — R™ is a constant. In particular, if ca,rd(ﬁ" \ fR") is at least the number
p of 13.8, then f is a constant.

Proof. Without loss of generality we may assume that |f(0)] < 1. Fix z €
R™\ B™. Applying 13.10 to f|B™(2|z|) we see that '

|f(2)] < exp(378 +1)

where v depends only on n and K (f) and @ also on wy. This inequality holds
for all z € R™\ B™ and hence, by the maximum principle, for all z € R*. Thus
f is bounded, in contradiction to Theorem 11.15. The second part follows from the
Schottky theorem for qr maps, Theorem 13.8. I
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By a deep recent result of Rickman [RI11] the number ¢ in 13.20 tends to oo as
K—o if n=3.

13.21. Lemma. Let f: B®™ — R" be a normal qm mapping, let (bx) be a
sequence in B"™ with by — b€ 0B", let f(by) =y € R"\ fB" as k — oo, and let
M >0. Then f(z) -y as z—b and z€ E = |JD(bg, M) .

Proof. By performing a preliminary sense—preserving Mobius transformation if
necessary, we may assume that y = co. Assume now that the result is false. Then
there exists a sequence (ax) in E with ax — b as k — oo and |f(ax)| < 4 < ©
for all £ = 1,2,... and some A. Let gx € M(B") with gx(0) = ax (see 1.34).
Then f o gy is normal in the sense of 13.1, wysog = wy in view of 13.2(1), and
|(f o 9x)(0)|/A < 1. By passing to a subsequence and relabeling if necessary we may
assume that p(ar,bx) <M for all K. It follows from 13.10 that

| £ (be)1/A4 = |F(gx(g% " (bx)))|/A < C < o0

for all & where C does not depend on k. This inequality yields a contradiction,
since f(bx) — oo as k — oco. Hence the antithesis is false and the result is proved.
d

In the case of normal meromorphic functions of the unit disk in C, Lemma
 13.21 can be deduced also from Hurwitz’ theorem. An alternative proof of the n—
dimensional result 13.21 can be based on the notion of the local topological index and
on normal families (see [VUS3, 6.3]).

The hypotheses of Lemma 13.21 can be much weakened. This appears from T.
Kuusalo’s recent result [K2], which shows that Hurwitz’ theorem (and hence also
13.21) holds for discrete open normal maps. Note that quasiregularity is not needed
here. For a similar result see G. T. Whyburn [WH1].

13.22. Remarks. The hypothesis y € R™\ fB" in 13.21 can be replaced by the
slightly weaker requirement that N(y, f,B"™) < co. The proof of such an extended
version of 13.21 is left as an exercise for the reader. We now give an example to show
that the hypothesis y € R"® \ f/B™ cannot be entirely dropped. For this purpose we
consider the bounded analytic function g: B2 — B?\ {0}, g(2) = exp(#t}). Fix

o € B?\ {0} and choose a sequence (bx) in B? with by — e; and g(bx) = a for all
k =1,2,.... By studying the properties of g we see that g(z) /+ @ as z — e; and
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z € |JD(bg,1), i.e. the conclusion of 13.21 fails for this function g if € B2\ {0}.
Therefore the assumption y € 3fB™ cannot be dropped from 13.21.

13.23. Exercise. In the particular case when JfB"™ is a non-degenerate con-
tinuum, one can deduce 13.21 by applying the K -inequality. Give the details. [Hint:
Apply 11.5(1).]

13.24. Notes. This section is taken from [VU10]. For 13.21 see [BS|. An account
of Schottky’s theorem can be found in [BU, Ch. XII]. In the particular case of analytic
functions, 13.17 can be found in [HM]. .



