Chapter I
MODULUS AND CAPACITY

For non—empty subsets E and F of R" let A gr be the family of all curves
joining E and F in R™. For fixed F the modulus M(Agp) of Agy is an outer
measure defined for compact subsets E of R™\ F. The real number M(A ) gives
quantitative information about the structure of the sets F and F as well as their
position relative to each other. Roughly speaking M(Agp) is small if £ and F
are far apart or if one of the sets E, F is “thin”, while the modulus is large in the
opposite case. If £ and F are non-degenerate continua in R", then M(Agp) and
min{d(E),d(F)}/d(E, F) are simultaneously small or large. Because of its conformal
invariance, the modulus will be a most valuable tool in our subsequent studies in
Chapter III.

We shall exploit the conformal invariance of the modulus and introduce in a
subdomain G of R™ two conformal invariants Ag(z,y) and pg(z,y), z,y € G,
which describe the position of £ and y with respect to each other and the boundary
of G. One may think of pg(z,y) as a conformally invariant “intrinsic metric® of G
while Ag(z,y) is in a sense its dual quantity. The importance of ug and Ag for
Chapter III is based largely on the explicit estimates proved in this chapter as well as
on the fact that ps and Ay transform in a natural way under quasiconformal and

quasiregular mappings.

5. The modulus of a curve family

For the sake of easy reference and for the reader’s convenience we shall give in this

section the basic properties of the modulus of a curve family. The proofs of several
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well-known results are omitted. For the proofs of these results and for more details
the reader is referred to original sources which we shall quote at the end of this section.
Most of the material in Section 5 is based on Chapter I of Viisdld’s book [V7].

A path in R™ (R™) is a continuous mapping v: A — R"™ (resp. R"™) where
A CR is an interval. If A’ C A is an interval, we call y|A’ a subpath of v. The
path « is called closed (open) if A is closed (resp. open). (Note that according to
" this definition, e.g. the path ~4: [0,1] — R" is closed and that it is not required that
~(0) = (1) .) The locus (or trace) of a path ~ is theset YA . The locus is also denoted
by |y| or simply by « if there is no danger of confusion. We use the word curve as
a synonym for path. The length £(v) of a curve v: A — R"™ is defined in the usual
way, with the help of polygonal approximations and a passage to the limit (see [V7,
pp. 1-8]). The path v: A — R™ is called rectifiable if £() < co and locally rectifiable
if each closed subpath of ~ is rectifiable. If ~: [a,b] — R™ is a rectifiable path, then
~ has a parametrization by means of arc length, also called the normal representation
of 4. The normal representation of ~ is denoted by ~°: [0,£(v)] — R"™. Making
use of the normal representation one defines the line integral over a rectifiable curve
~. In a natural way one then extends the definition to locally rectifiable curves (for a
thorough discussion see [V7, pp. 1-15]).

Let T be a family of curves in R™. By F(I') we denote the family of admissible

functions, i.e. non—negative Borel-measurable functions p: R — R U {co} such that

/pdle
¥

for each locally rectifiable curve v in I'. For p > 1 the p-modulus of T is defined
by

5.1 M,(T) = inf Pdm ,

(5-1) () b7 () Jrn

where m stands for the n-—dimensional Lebesgue measure. If 7(T') = 0, we set
M,(T) = co. The case F(I') =@ occurs only if there is a constant path in T’ because
otherwise the constant function oo isin F(I'). Usually p = n and we denote M, (T)

also by M(I') and call it the modulus of T'. If M(T) > 0, the number M(T')1/(1-7) js
called the eztremal length of T'. We take the extremal length to be co if M(T) =0.

5.2. Lemma. The p—modulus M, is an outer measure in the space of all curve

families in R™. That is,
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(1) My =0,
(2) Ty cT, implies My(Ty) < My(T2) ,
(

3) M,,(D ry) < im,,(r,-) .

Let T'; and T2 be curve families in R™. We say that I'; is minorized by T';

and write I'; > I'; if every v € I'; has a subcurve belonging to T'; .
5.3. Lemma. T'; < Ty implies Mp(T';) > My(T'3).

The curve families T';,T'2,... are called separate if there exist disjoint Borel sets
E; in R™ such that if v € T'; is locally rectifiable then fq x:ds = 0 where x; is the

characteristic function of R™ \ E;.

5.4. Lemma. If T'y,T'y,... are separate and if T' < I'; for all 7, then
Mp(r) 2 Z Mp(ri) .
5.5. Lemma. Let G be a Borel set in R™ and ' = {~:~ isacurvein G
with £(y) >r}. If r > 0 then
Mp(T) < m(G)rP.
Proof. Because p = Lxg € 7(T') the proof follows from (5.1). O

5.6. Corollary. If I' is the family of non—constant curves in a Borel set G C R™
with m(G) =0, then M,(T) =0.

Proof. If T; = {y€T:£(y) > Jl}, 7=1,2,...,then T = JT; and the proof
follows from 5.2(3) and 5.5. O

Curve families with zero p—modulus are sometimes called p—ezceptional. We next
give a general criterion for a curve family to be p—exceptional, which is a generalization
of 5.6.

5.7. Lemma. A curve family T is p-exceptional if and only if there exists an

admissible function p € ¥(T') such that
/ pPdm < co and /pds:oo
" ¢

for every locally rectifiable y € T'.
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Proof. If p satisfies the above conditions, then k™'p € F(T') for every k =
1,2,... and thus
M, (T) S_Ic"”/ prdm — 0

as k — oo. Hence I' is p—exceptional. Conversely, let My(T') = 0 and choose a

sequence py € F(T') such that g, p}dm < 4~k k=1,2,.... Writing
ad 1/p
p(z) = (Z 2’°pk($))
k=1

we infer that [, pPdm < co. On the other hand
/pds > / Zk/ppkds > ok/p
g el

forall k=1,2,... ie. f,ypds = oo for each locally rectifiable curve v+ in I'. O

5.8. Corollary. If T is a curve family in R™ and I', = {v €T :{(y) < o},
then M(T) = M(T,) .

Proof. Set p(z) = 1 for |z| < 2 and p(z) = 1/(|z|log|z|) for |z| > 2. By
direct computation

CEN TP

<o,

/ p"dm = 20, +

where 1, is the n—dimensional volume of B® and wp—; is the (n — 1) —dimensional
area of S™ 1. Let Too = {7 €T :£(y) = c0}. In view of 5.7 it suffices to show
that f,{pds = oo for all Yy €'w. If v is bounded, then p(z) > a >0 on |y| and
it is clear that fqus =o00. If 7€ ' is unbounded we choose z € |y|\ B™(2). It

follows that
/ / ® dr
pds >
lz| T log r

as desired. O

For E,F,G C R™ we denote by A(E,F;Q) the family of all closed non—constant
curves joining E and F in G. More precisely, a non-constant path v: [a,5] — R™
belongs to A(E, F;G) iff (1) one of the end points ~(a),7(b) belongs to E and the
other to F, and (2) v(¢t) €G for a <t <b.
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5.9. Remark. If G = R™ or R" we often denote A(E,F;G) by A(E,F).
Curve families of this form are the most important for what follows. The following
subadditivity property is useful. If E = U2, E; and cz(F) = Mp(A(E,F)) =
¢r(E), then cr(E) < 3 cr(Ej), see 5.2(3). More precisely if G C R™ is a domain
and F C G is fixed, then ¢§(E) = M,(A(E,F;G)) is an outer measure defined for
E C G. In a sense which will be made precise later on, c¢g(F) describes the mutual
size and location of E and F. Assume now that D is an open set in R" and that
F C D. It follows from 5.2(2) that

M, (A(F,8D; D\ F)) < M,(A(F,8D; D)) < Mp(A(F,8D)) .

On the other hand, because A(F,8D;D) < A(F,8D) and A(F,0D;D\ F) <
A(F,8D; D) , 5.3 yields

(5.10) M, (A(F,8D)) = Mp(A(F,0D; D)) = M, (A(F,8D; D\ F)) .

As the relatively complicated definition (5.1) of the p-modulus suggests, it is
usually a very difficult task to find M,(T') when T is given. In fact, the real number
My (T) is known for very few curve families. If I' has a simple structure, then one
can sometimes compute M,(T') in two steps. First, applying Holder’s inequality and
Fubini’s theorem one proves a lower bound for fR,, p"dm' when p is an admissible
function. Second, one shows that this lower bound is attained by some particular
admissible function p; . Making use of this method one can compute the modulus of

a cylinder and of a spherical ring (for details see Viisilad [V7, pp. 20-23]).

5.11. The cylinder. Let E C {z € R" : z, = 0} be a Borel set, h > 0,
F = E + he,, and denote

G={zeR": (z1,.-.,%n-1,0) EE,0< z, < h}.

F
Then G is a cylinder with bases £ and F and, .
as shown in [V7]
M,, (A(E,F; G)) = mp_1(BE) R'™P
E

=m(G)h7P.

Diagram 5.1.
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5.12. The spherical ring. Let 0 <a<b, D= B"(b)\ B*(a) and let ¥ be
a Borel set in S™!. Let v, ={ty:a<t<b}, y€Y. Then [VT]

(5.13) M(T) = mp_1(¥) (1og g) T T={y,:veY)},
(5.14) M(A(S™1(5), S *(a); D)) = wn—1 (1og -2) "

By (5.10) the formula (5.14) holds also if D is replaced by R". Letting a — 0 we
see by 5.3 that

(5.15) M(A(S™2(5), {0))) = 0.

It follows from (5.15), 5.2, and 5.3 (see the proof of 5.6 or [V7, p. 23]) that the
family of all non—constant curves « passing through a prescribed point zo € R™ is

n—exceptional.

5.16. Remark. The inequality of Lemma 5.5 is sharp: if G is the cylin-
der in 5.11 with bases F and F then 5.5 holds as an equality. However, this
is not usually the case. Applying (5.14) we shall now give an example in which
Lemma 5.5 gives a very crude estimate. Let E = S™ !, F = S""1(3), G; =
(B™(4) \ S™1(2)) U B™(2e1,t), and Ty = A(E,F;Gy), t € (0,%). In this par-
ticular case, Lemma 5.5 yields for M(I';) an upper bound independent of ¢. Let
Ay = A(S™(2e1,t), S 1(2e1,1); Gt) . Because Ay < Ty, we get by (5.14)

M(T:) € wp—1 (log %) o

ie. M(T';) -0 as t—0.

. . B™(2e,1)
In conclusion, keeping E and F .
fixed and letting the domain G; vary G e
so that E, F C Gy and m(Gt) is constant, p
one can make M(A(E,F; G’t)) arbitrarily small,
while this fact is not reflected in the form of the
upper bound 5.5. Diagram 5.2.

The most valuable property of the n-modulus is invariance under conformal
mappings, which is the content of the next lemma.
We first extend the definition (5.1) to curve families in R™ when p = n. Let

T' be a curve family in R®. If T' contains a constant curve, we set M(T) = co.



54

Denote T'oo = {7 €T : 00 € y}. If T does not contain a constant curve, we set
M(T) = M(T'\ T's) . It follows from (5.15), 5.2, and 5.3 that M(I'cx) = 0. Hence for
curve families in R™ , this extended definition of n—modulus coincides with (5.1). It
should be pointed out that we have not included p—-modulus, p # n, in this extended
definition (see 5.28).

5.17. Lemma. Let D and D' be domains in R™ and let f: D — D' be
a conformal mapping. Then M(fT) = M(T') for each curve family T' in D where

fT={fov:7€T}.

It is easy to see that 5.17 is false for the p-modulus, p # n, even if f is
the stretching z — 2z . Consider e.g. the curve family A = A(E,F;G) where E =
{2z€B":2,=0}, F=E+{he,}, h>0,and G={zeR":z2+... 422 | <1,
0< zn, <1}. Then by 5.11

0 < My(A) = m(G)h™ # m(fG)(2h) P = My(fA) = 2" "PM,(A)

for p#n.
An immediate application of the conformal invariance 5.17 is the following coun-

terpart of (5.14) in the hyperbolic and spherical geometries.
5.18. Corollary. Let 0<a<b and z € B"™ and
A(a,b) = A(8D(z,a), D(z,b); D(z,b) \ D(z,aq)) .

Then

(1) M(A(a,5) = wn1L(a,6)"; L(a,b) = log :;’EZ% .

IfzeR", 0<r<s<1,and I'(r,s) = A(3Q(z,r), 3Q(z,s)) then

r

2) M(T(r,s)) = wn_1 [log(s i:::)] -

Proof. Let T, € M(B™) be as defined in 1.34. Then T;(z) =0 and we obtain
by (2.25)

(5.19) T.D(z,¢) = D(0,¢) = B*(th 3c), ¢>0.
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Now 5.17 together with (5.19) and (5.14) yields
M(A(a, b)) = M(T:A(a,b)) = wp—1L(a,b)! ™™ .

For the proof of (2), let ¢, € M(R") be a spherical isometry with t,(z) = 0, see
(1.46). Then by (1.47) or 1.25(1)

tz:Q(z,r) = Q(0,r) = B (r/\/ 1— r2) .
The proof of (2) follows from this equality, 5.17, and (5.14). O

Next we shall discuss various symmetry properties of the modulus. If A C R} we
denote by A* the symmetric image {(Z1,...,Zn—1,—Zn) ER™ : (Z1,...,2,) €A}
of A in AR} . The next three lemmas will be given without proofs. For proofs of
5.20, 5.21, 5.22 see [G6], [Z1], and [VU3]|, respectively.

5.20. Lemma. Let E and F be disjoint compact sets in ﬁf{'_ and let E* and
F* be the symmetric images of E and F in dR% . If Ty and T2 are the families
of curves joining E to F in R} and EUE* to FUF* in R™, respectively, then

M, (T3) = 2M,(T,) .
5.21. Lemma. If (T';) is an increasing sequence of curve families, i.e. T'; C
Tjy1,5=1,2,...,and p>1, then

lim Mp(T;) = Mp(UTy) .

J—roo

Applying this lemma one can prove the following symmetry property of the mod-

ulus.

5.22. Lemma. Let p>1 andlet E and F be subsets of R} . Then

M (A(E, FiRY)) > § My (A(5, F))

5.23. Corollary. Let E and F be sets in R™ with ¢(E,F) > a > 0. Then
M(A(E, F)) < ¢(n,a) < co.
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Proof. By the hypothesis there exists a ball Q(z,r) in R™\ (E U F) with
r < 1/4/2 and with the spherical diameter ¢(Q(z,7)) = a. By easy computation (see
1.25(3)) ¢(Q(z,7)) = 2rv/1—r% and hence r > 1a. Let Z be the antipodal point
defined in (1.16) and t a spherical isometry with ¢(Z) = 0 as defined in (1.46). By
(1.23) tE, tF C Q(0, v/1—72). Because t is a spherical isometry we obtain

d(tE,tF) > q(tE,tF) =q(E,F) > a.
Next observe that (see 1.25(1))
R0,vV1—-r2)=B"(\/r-2-1)=1B.

These last two relations together with 5.22, 5.17, and 5.5 yield
M(A(E,F)) = M(t(A(E, F))) = M(A(tE,tF)) < 2M(A(tE,tF; B))

< 2a—nﬂn(r"2 _ 1)"/2 < 2a—nﬂn<<§)2 B 1) n/2 ,

as desired. O

5.24. Lemma. Let I'1,Ts,... be separate curve families in R™ with I'; <T
forall y=1,2,... . If p>1, then

oo
Mp(]j)l/(l-z?) > Z Mp(]_"j)l/(l"P) )

j=1

Proof. Let {E;} be afamily of disjoint Borel sets associated with the collection
{T';},let E =|J E;, and let xp, be the characteristic function of E;. Fix p; €
F(T;) and set o; = pjxg, . Then it is easy to see that o; € F(I';) . Now choose a
sequence (a;) so that a; €[0,1] and } a; =1 and define a Borel function p by

o0 o0
p=) a0 =) a;jpXE,
=1 =1

We show that p € F(T'). Fix a locally rectifiable v+ € I' and for each j a subcurve
~; € I'; . We obtain

/pds=/<2ajaj) ds=Za,~/ojds
v T 7 v
>0 [ oyds >3 a1,
P i
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Hence p € 7(T') and we obtain
pPdm = / pPdm = Z/ ZaszE. dm Z/ af pf dm
n By
<Z/ Za,pppdm / Zapp;’dm<z / pk dm .
Taking the infimum yields
o0
(5.25) Mp(T) <D a2 M
j=1
We now apply this last inequality to prove the assertion. Clearly we may assume

M,(T") > 0, which implies by 5.3 that M,(T;) > Mp(T) > 0. (If Mp(T) =0, the left

side of the inequality is co and there is nothing to prove.) We may also assume that

M,(T) < /

My (T;) < oo forall 7, because

ZMP(rj)l/(l—-p) Z M, (T',) 1/ (1=P)
j=1

where >.* refers to summation over terms with M,(T';) < co. Denote
-1
tp = (Z M, ( 1/(1—p)) , a; =M,y (T;)Y 0P,
for y=1,...,k and k= 1,2,... whence

k
Z% =
j=1

The above inequality (5.25) (with a; =0 for j > k+ 1) gives

zk: M, (T';)?/ (1=P)M, (T (f: M, (T;) Y/ (- p))

=1

Letting k — oo yields the desired result. O

As an example of application we consider the following simple particular case of
524. Let ri =1<ry<...<rj<...<a and

T = A( Sn-—l, Sn—l(a)) , Pi — A(Sn—l(ri), Sn—1(7i+1))
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for ¢ = 1,2,.... It follows from (5.14) that in this particular case 5.24 yields (when
p=n)
o0 T'+1
loga > == =1
oga_Zlog - 0g ap

j=1 :
where ao = limr; < a. If we choose the sequence (r;) so that ao = a, then equality
holds. Hence 5.24 is sharp.

For the proof of the next result the reader is referred to [MO, p. 82|, [G1,

pp. 514-515].
5.26. Lemma. Let s € (0,1) and
'y = A([0,se1], S 1;B™) , Ty = A([0, se1], [2e1,00);R™) .
Then Mp(T';) = 2P~ 1M, (T'3) for p> 1.

The next result will have interesting applications later on in this book. This result
was conjectured by the author and a proof was supplied by F. W. Gehring ([VU10,
2.58]).

5.27. Lemma. Let A; = A([0,e1], [t2e1,00)) and Az = A([0,¢], [t%e1,0))
where e € S®! and t > 1. Then M(A2) < M(A,).

Proof. Denote A3 = A( [0,61], Snul(t)) , Ao = A([O, 8], Sn_l(t)) , and
A1z = Aggy = A(S"’nl(t), [tzel,oo)) . Obviously

M(A11) = M(Az1) , M(A12) = M(Azz) .

Let f be the inversion in S™~1(¢) .
Because Ajp = fA11 we obtain by 5.17

M(A11) =M(fA11) = M(Ag2) .
Sm1(t)

M(A2)Y 0™ > M(Ag) Y/ ™) + M(Agq) /(1™ Diagram 5.3.
=2 M(Au)l/(l—n)

while the fact that A, is symmetric yields by 5.26
M(A1) = 2" TM(A,) .

The desired inequality follows from the last two relations. O
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The family of all non—constant curves passing through a fixed point is n—excep-
tional as was pointed out in the paragraph following (5.15). One can show that such
a family is not p-exceptional if p > n (see [GOR, Chapter 3], [MAZ2]). We shall
require this result in the following form, which is sometimes called the spherical cap
inequality. For this result we introduce first an extension of the definition (5.1) of
the p—modulus. Suppose that S is a euclidean sphere in R™ with radius r and
T' is a family of curves in S. We equip S with the restriction of the euclidean
metric of R™ to S and with the (n —1)-dimensional Hausdorff measure m,,_; with
Mp—1(S) = wp—y1r™ 1. Let A(T') be the set of all non-negative Borel-measurable

functions p: S — R U {co} with
/ pds >1
v

for all locally rectifiable (with respect to the metric ds) curves v in T' and set

s .
= inf "dmy_; .
Mn (P) pelﬂ(l") 5 p amn—y

For ¢ € (0,7) let C(p) ={z€R™ : z-en > |2|cosp }.

5.28. Lemma. Let S = S""(r), ¢ € (0,7], let K be the spherical cap
SNC(p), and let E and F be non-empty subsets of K .

(1) Then
by

My (A(E, F;K)) 2 =
where by, is a positive number depending only on n.
(2) If K=S,ie ¢ =m,then b, may be replaced by ¢, = 2"b,, in the above

inequality.

The proof of 5.28 (see [V7, 10.9]) is based on an application of Holder’s inequality
and Fubini’s theorem. A similar method yields also the following improved form of
5.28 ([R12, p. 57, Lemma 3.1], [GV1, p. 20, Lemma 3.8]).

5.29. Lemma. Assume that E, F, and K are as in 5.28(1). If p € (0, -%7(') ,
then

Q,

n

M3 (A(E,F; K)) >

N

where d,, depends only on n.
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5.830. Remark. Throughout the book we will denote by ¢, the number in

5.28(2). The number b, = 2™ "¢, has the following expression

bn = 21.—2"’ Wp—2 I’t—n 3 b2 =5

(5.31) b

I, = / sin»=1 ¢t dt .
0

Because 2t <sint <t for 0 <t < i, it follows from (5.31) that

(n—l)(%) <L<(r-1)%

for n > 2. One can show that 2"c, — 0 when n — co [AVV3].

By (5.1), any admissible function p yields an upper bound for My(T'), that is
M,(T) < fgnp? dm. The probleﬁx of finding lower bounds for My(I') is much more
difficult because then we need a lower bound for fRn pPdm for every admissible p.
The next important lower bound for the modulus follows by integration from 5.28
and 5.29.

5.32. Lemma. Let 0<a<b and let E, F be sets in R™ with
EnS™ ) #0#FnS™ (¥
for t € (a,b) . Then
M(A(E,F; B™(b) \ B*(a))) > cx log% .
Equality holds if E = (ae1,ber), F = (—bei,—aeq).

5.33. Corollary. If F and F are non-degenerate continua with 0 € EN F
then M(A(E,F)) = co.

Proof. Apply 5.32 with a fixed b such that S 1(B)NE # 0 # S* ()N F
andlet a— 0. O

We next give a typical application of Lemma 5.32. Unlike 5.32 this application
fails to give a sharp bound, but it yields adequate bounds in many cases (see e.g.
Section 6). A sharp version of 5.34, which requires some information about spherical

symmetrization, will be given in Section 7 (see 7.32 and 7.33).
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5.34. Lemma. Let t >r >0 andlet E C B™(r) be a connected set containing

at least two points. Then

2 + d(E)

M(A(Sn—l(t),E)) > Cp logm .

Proof. Fix u,v € E with |u —v| = d(E) = d and choose h € GM(B™(t)) with
h(u) = —se; = —h(v) . By (2.27)

d(E) = |u—v| < 2th 1p(u,v) = 2th 1p(h(u), h(v)) = 25,

where p refers to the hyperbolic metric of B"(t). Applying 5.32 to the annulus
B™(tey,t +s) \ B(tei,t — s) with E=hE and F = §""(t) we obtain

M(A(S™1(2), E)) = M(A(S™1(t),hE)) > ¢, log Z ':
2t + d(E)
> (% log m . a

We shall frequently apply the following lemma when proving lower bounds for
the moduli of curve families. This lemma will be called the comparison principle for
the modulus. In the applications of this lemma, the sets F3 and F; will often be
chosen to be non—degenerate continua (that is continua containing at least two distinct
points) while the sets F; and F, will usually be very “small” sets when compared
to F3 and Fy.

5.35. Lemma. Let G be a domain in R", let F,cqG, 7=1,2,3,4, and let
L = A(Fi,F};G) , 1<14,7 <4. Then

M(T12) > 37" min{ M(T'13), M(T24), inf M(A(|713], [v24/; G)) }
where the infimum is taken over all rectifiable curves ~13 € I'13 and o4 € o4 .

Proof. By 5.2(1) we may assume that F; #0, j=1,2,3,4. Fix
p € F(T1). If

(5.36) / pds > %
113

for every rectifiable v,3 € I'13 or

(5.37) / pds > %
Y24
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for every rectifiable 24 € T'24, then it follows from 5.8 and (5.1) that

(5.38) / _ptdm > 37" min{ M(T's5), M(T) }

Diagram 5.4.

If both (5.36) and (5.37) fail to hold we select rectifiable curves ~;3 € I';3 and
V24 € I'24 . Because p € F(T'12) it follows that

/ pds > 1

TisU a2y
for every locally rectifiable @ € A = A(|y1s],|v24/;G). Because both (5.36) and
(5.37) fail to hold it follows from the last inequality that

/p@Z%

o

for each locally rectifiable o € A. Hence

(5.39) / prdm > 37"M(A) > 37" inf M(A(jal, [r24; @)

where the infimum is taken over all rectifiable curves 13 € I'13 and 734 € I'y4. In

every case either (5.38) or (5.39) holds, and the desired inequality follows. O
5.40. Corollary. Let F; CR™ and Ty; = A(F;, F;), 1<4,7 < 4. Then
M(T'12) > 37" min{ M(T13), M(T'24), 6n(r) }
where r = min{ q(F1, Fs), q(F2,Fs)} and
bn(r) = inf M(A(E, F)) .

Here the infimum is taken over all continua E, F in R™ such that ¢(E) > r,
g(F) >r.
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It is clear that 6,(0) =0 in 5.40. In fact, this follows from 5.18(2) if we choose
r€(0,1/v2),set s =+/1—r%,and let r — 0. We are going to show that 6,(r) >0
for r > 0. To this end the following corollary will be needed.

5.41. Corollary. If t€ R*, 0<a < b < o, and F, F, C B"*(z,qa),
F; c R™\ B"(z, b, Ly = A(Fi,F:,') , then

W M(T's2) > 3" min{ M(I's5), M(Tas), e log }

(2) M(Plz) Z d(n,b/a) min{ M(F13), M(I‘23) } .
I
Proof. We apply the comparison principle 5.35 with G = R"™ and F3 = Fy to

get a lower bound for M(I';2). It follows from 5.32 that the infimum in the lower
bound of 5.35 is at least c,log 2 and thus (1) follows. For the proof of (2) we observe
that by 5.3 and (5.14)
b\1—n
max{ M(r13), M(Pzg) } S A= Wn-1 (log ZL.) .
By part (1) we get

M(T12) > 37" min{ M(T'13), M(T'23), '}i‘(cn log %) min{ M(T'13), M(T'23) }}

_>_ d(n, b/a) min{ M(rla), M(I‘zg) }
where d(n,b/a) =37 "min{1, Le,log(b/a)}. O

5.42. Lemma. For n > 2 there are positive numbers d and D with the
following properties.
(1) If E,F Cc B"(s) are connected and d(E) > st, d(F) > st, then
M(A(E, F)) > dt.
(2) If E,F CR™ are connected and q(E) >t, q(F) >t, then
M(A(E, F)) > 6,(t) > D¢.

Proof. (1) By 5.34 we obtain

45 +is
n—1 >
M(A(S™71(2s),E)) > ¢, log Py

> Lc,(log2)t

and similarly M(A(S™"1(2s),F)) > ic,(log2)t. Applying 5.41(1) with F; = F,
Fo=F,and F3 = S""l(Zs) and the above estimates we get

(T 1) > 57 min{ Jen(log2)t, colog2} > dt
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where d =1.3""¢,log2.

(2) Observe first that both the first and last expressions in the asserted inequality
remain invariant under spherical isometries (see 5.17). By performing a preliminary
spherical isometry if necessary we may assume that —re; € E, re; € F, and r € [0, 1]
(cf. 1.25(1)). Let E; (F;) be that component of E N B"(2) (of F N B"(2), resp.)

which contains —re; (re; ). Then
d(E:) > q(E1) > min{t, ¢(S™ 1,8 1(2))} > ¢/V10,

and likewise d(F1) > t/+/10. The proof of (2) follows from (1) with D = d/+/10.
a

By means of spherical symmetrization, which will be introduced in Section 7, one
can give a different proof of 5.42(1) (see 7.38).

5.43. Exercise. Let E and F be non—degenerate continua in B". Find
a lower bound for M(A(E,F;B")) in terms of n, p(E), p(F), and p(E,F).
[Hint: Fix a3 € E, a3 € F with p(ay,a) =p(E,F) andlet z € J[ay,as] besuch
that p(ay,z) = 2p(E,F) . Let T, € M(B") be as defined in 1.34. By conformal
invariance 5.17
M(A(E, F;B")) = M(A(T,.E,T,F; B")) .

Now one can find a lower bound for the euclidean diameters d(T,E), d(T.F) in
terms of p(E), p(F), and p(E,F), see (2.23)-(2.25). After this apply 5.41 with
a=1,b=2, F1 =T,E, F; = T,F,and F3 = S™ 1(2). The desired result

follows now from a symmetry property of the modulus, see 5.22.]

5.44. Exercise. For ECR", z€R",and 0<r <t set

My(E,r,z) = M(A(S""Y(z,t), E N B"(z,r))) ,
M(E,r,z) = Mz, (E,r,z) .

It follows from 5.3 that My(E,r,z) < M,(E,r,z) for 0 <r < s <t. Also a converse

inequality is true:

(5.45)

(5.46) M;(E,r,z) < M,(E,r,z) < a(n,r,s,t)My(E,r,z)

where a depends only on the parameters indicated. Prove (5.46) by applying 5.35
with Fy = ENB"(z,r), Fy = S""Y(z,t), F3 = §""(z,s), Fy = S" (z,r).
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5.47. Remark. The method described above fails to give the best possible
constant a in (5.46). The sharp result, due to Martio and Sarvas [MS1] yields the

inequality

(5.48) M,(E,r,z) <b" ' My(E,r,z), b= %;—’g%%

for 0 < r < s < t. Here equality holds for E = B™(z,r). The proof of (5.48)

makes use of a radial quasiconformal mapping [V7, p. 49] of B™(z,s) \ B*(z,r) onto
B"™(z,t) \ B™(z, 7).

5.49. The modulus of a ring. A domain D in R" is termed a ring, if
R" \ D has exactly two components. If the components are Cy and C, we write
D = R(Co,C1) . The (conformal) modulus of a ring R(Cy, C}) is defined by

M(A(Co,Cl))>1/(1-n) |

Wn—1

(5.50) mod R(Co, C1) = (

The capacity of R(Co,C1) is M(A(Co,C1)).

A ring is a special case of a condenser, which we shall define in Section 7. In the
two—dimensional case the modulus of a ring R has the following geometric interpre-
tation: mod R =t if and only if R can be mapped conformally onto the annulus
{z€R?: 1< |z| < e'}. Owing to this geometric interpretation the modulus of a
ring is often convenient to use in the two-dimensional case. In the multidimensional
case there is no such geometric interpretation for the modulus of a ring because of the
rigidity of the class of conformal mappings in R", n > 3 (cf. 1.54). On the other
hand there is also a geometric way of looking at the capacity of a particular ring, the
so—called Grétzsch ring, which is applicable to all dimensions n > 2 (see (5.52) and

(7.31)). For this reason we shall prefer the capacity to the modulus of a ring.

5.51. The Grotzsch and Teichmiiller rings. The complementary compo-
nents of the Grétzsch ring Ry ,(s) in R™ are B™ and [se;,00], s > 1, while those
of the Teichmiller ring Ry . (s) are [—e;,0] and [se;,00], s > 0. We shall need
two special functions ~v,(s), s > 1, and 7,(s), s > 0, to designate the moduli of
the families of all those curves which connect the complementary components of the

Grotzsch and Teichmiiller rings in R™ , respectively.
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0Ty Ag

s€1 co —ey 0 se; o
cap RG,n(s) = M(ra) = '7n(3) cap RT,n(s) = M(Ae) = Tn(s)
Diagram 5.5.

{’Yn(S) = M(T;) =~(s) ,
(s) = M(A,) = 7(s) .

The subscript n is omitted if there is no danger of confusion. We shall refer to these

(5.52)

functions as the Grétzsch capacity and the Teichmiiller capacity.

5.53. Lemma. For s > 1, p(s) = 2" 'r,(s? — 1). The functions ~, and 7,

are decreasing. Furthermore, lim, ;4 v,(s) = co and lim,_,o Tn(s) =0.

Proof. Let Ty = A([0,%e1], [se1,00]), T2 = A([0,Les], S*1), T3 =
A(S™ 1, [se1,00]). It follows from conformal invariance that M(Tz) = M(T3) =
Yn(s) and from 5.26 that

Yn(s) = 2""IM(T;) = 277 (s? — 1).
For each fixed n > 2 the functions ~, and 7, are decreasing as follows easily from

5.2(8). The limit values of ~, follow from 5.32 and (5.14). OJ

For the sake of completeness we set v,(1) = 7,(0) = co and v,(c0) =

Tn(c0) = 0.

5.54. Exercise. Show that
(s —t)(r—u)

(1) M(A([re1,se1], [ter,ue])) = T((,. )=

st—1
————), l1<s<t<oo.
t—s

),r<s<t<u,

(2) M(A(S™, [ses, ter])) = (

5.55. Elliptic integrals and ~z(s). The plane Grétzsch ring can be mapped
onto an annulus by an elliptic function [BF|. As shown in [HE1], [LV2, II.2]
2r
(5.56) m(s) = —=

' u(1/s)



for s > 1 where

ur) =5 L= k() = [0 a0 - o) e

for 0 < r < 1. The function K(r) is called a complete elliptic integral of the first
kind and its values can be found in tables [AS], [BF]. The modulus u(r) satisfies the

following three functional identities

(5.57) u(r)/»(i — :) = ir?,

From these one can derive several estimates for u(r) [LV2, p. 62]. By [LV2, p. 62] the
following inequalities hold

1+4+3v1—1r2

(5.58) log-} < log (r) < log%

for 0 <r < 1. From (5.58) it follows that lim, .oy u(r) = co whence, by virtue of
the functional identities (5.57), lim,_,1— u(r) = 0. For the sake of completeness we
set u(0) = oo and p(1) =0. By (5.56) and (5.57) we obtain

4 (s——l

59) =2 ) .
(5.59) 12(s) = —u 571/ 5>t

44

Diagram 5.6. p(r), 0<r<1,and u(l/r), r>1 (from [AVV3]).
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5.60. Exercise. Verify the following identities
' 2w

@ 0= VT T (V)
(2) ro(t) =2r (4t + V(L +t) | [1+t+ VA +18)]),

@ b () u((F2) ) =7

5.61. Exercise. In the study of distortion theory of quasiconformal mappings

in Section 11 below the following special function will be useful
1

¥t (K (1/7))
for 0 < r <1, K > 0. (Note: Lemma 7.20 below shows that ~, is strictly

(PK,n(r) =

decreasing and hence that 7, ! exists.) Show that ¢ 4Bn(r) =04 (05 .(r) and
(pz,ln(r) = ‘Pl/A,n(T) and that

Ox2(r) = px(r) = p (Fu(r) -
Verify also that

N

(1) ‘PZ(T) = 1+r ’
(2) ox(r)? +oyx(VI-r2) =1,

Exploiting (1) and (2) find ¢, ,(r) . Show also that

1—r 1—@g(r)
® eue(17) = Tr o)

27 27/ 05 (1)
(4) (pK(l—lw‘) - 1+<,oI;(r) '

5.62. Exercise. Verify the following identities for K, ¢ > 0

. ~ 1
(1) 3 H(ra(t)/K) = T WD)
4
(2) To(t) = =D

The above functional identities, e.g. (5.57) and 5.60(2), are restricted to the two—
dimensional case. For the multidimensional case n > 3 there is no explicit expression
like (5.56) for v, (s) or 7»(s) and no functional identities are known for v, (s) or ,(s)
except the basic relationship 5.53. The well-known upper and lower estimates for
Yn(s) and 7,(s) will be given in Section 7. Next we shall show that for all dimensions

n > 2 the Teichmiiller capacity r,(s) satisfies certain functional tnequalities.
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5.63. Lemma. The following functional inequalities hold:
(1) 1(s) <v(1+2s) =2""1r(4s% +45),s>0,
(2) 7(s) <2r(2s+2s4/1+1/s),s>0,

(3) T(s)_<_r(t)+r(f—(t-¥-:—)),0<s<t<oo,

(@) ) <r(;7o

Proof. (1) Let T = A(S™ (—%e1,3), [se1,00]) . Then by 5.53

)Sr(u)+r(v),u,v>0 .

M(T) = y(1 + 2s) = 2" 17(4s% + 4s)

while by 5.3 7(s) < M(T') and the desired inequality follows.

(2) We can map the Teichmiiller ring Ry, (s) by a Mébius transformation onto
a ring in R” with complementary components [—e1,e1] and [bey, 00] U [—bey, co]
where b =1+ 2s(1 + \/-1_—;_1—/—5,T ). By a symmetry property of the modulus, Lemma
5.20, we obtain

7(s) = 2M(A([0,e4], [ber, 00]; {z € R™ : 21 > 0})) < 27(b— 1)

as desired. -
(8) Let Ty = A([—e1,0], [ser,tes]), T2 = A([—e1,0], [ter,00]). Then by
5.54(1)
7(s) S M(Ty UT) < M(Ty) + M(T2) = T(f-t-litgt—l) +7(t) .
(4) After a change of variables the second inequality in (4) follows from (3). The
first inequality follows because 7, is decreasing (5.53). O

5.64. Corollary. 7(s) <27(y/s) <2"7(s), s>0.

Proof. The first and second inequality follow from 5.63(2) and 5.63(1), respec-
tively. (O

5.65. Remark. Corollary 5.64 applied to 7, yields by 5.60(1) the following

two-sided inequality for the function p:
w(1/vVi+t) <2u(1/V1+vt) <4u(1/vi+t), t>o0,

which can also be derived from the identities (5.57). The second inequality in (5.58)
can be derived from the lower bound in [LV2, p. 62]

(1+ V1—r2)2
g " < p

lo (r) .
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5.66. Remark. It follows from (5.58) that log(1/r) < u(r) < log(4/r) for all
r € (0,1) where both bounds have the correct asymptotic behavior as r — 0+ . For
r — 1— the second inequality is very weak since u(r) — 0 as r — 1—. An improved
two—sided inequality for u(r) can be obtained as follows. Exploiting (5.58) together
with the functional identity (5.57) we obtain

2 2 T2
4log —2— “(r)-4 (V1-7r2)  4log—
y/1—1r2 A/ 1—r
This inequality together with (5.58) implies for r € (0, 1)
1 2 4 2
(5.67) ma,x{log-,:ﬁ——y—r—-—z———}<u(r)<min{log;,4—1——-Zr——-1——}.
T 8 1—r2 °8 4/ 1—r2

The asymptotic behavior in (5.67) is correct at both ends r =0 and r=1.

5.68. Exercise. Let A,B,C,D be distinct points on the unit circle S! in
the stated order and 2c: and 28 the lengths of the arcs AB and CD, respectively.
Find the least value of M(A(AB,CD)). [Hint: |4~ C||B—D|=|A-B|C—-D|+
|B — C||A— D| by Ptolemy’s theorem [CG, p. 42], [BER, 10.9.2].]

5.69. Remark. The function p has several interesting properties which are

given in [AVV3]. For instance the inequalities

“(1 :Z'b'> <we) +u(b) < “<(1 n afc)bz)l n b’)) < 2u(Vab)

hold for a,b € (0,1) where o’ =+/1 —a2. It follows from (5.57) that the second and

third inequalities hold as equalities for a = b.

5.70. Exercise. Show that for s >0 and r € (1,1 +s) the inequality
Tn(s)l/(l——n) > ,Yn(r)l/(l-—n) +’7n((1 + S)/?’) 1/(1—n)

holds with equality if r =+/1+s.

5.71. Notes. Most results in this section are standard and are well represented
in the literature, e.g. in [V7]. The origin of some less standard results is indicated
above in connection with each result. Next we shall make some additional remarks

on the results of this section. Lemmas 5.7 and 5.24 are from [F], 5.20, 5.21, and
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5.22 from [G6], [Z1], [VU3]. The comparison principle 5.35 has its roots in [MRV?2,
3.11], but under this name it was introduced and developed by R. Nikki [N2] and the
author [VUS8|. An account of the properties of the function u(r) is given in [LV2].
The inequalities in 5.63 and 5.64 are from [VU13|. For further properties of 7, (s)
the reader is referred to Section 7 and to [AVV3]. A highly interesting study of the
complete elliptic integral K(r) and Gauss’ arithmetic-geometric mean is contained
in [BB].

5.72. Notes. The extremal length method of L. V. Ahlfors and A. Beurling
[AB] (1950) has its roots in the length—area method whose use is widespread through-
out geometric function theory. Some historical comments about the origin of the
length-area method are made by L. V. Ahlfors [A3, p. 50, 81] and by J. Jenkins in
[JE1], [JE2]. According to Jenkins the first result of this type is due to H. Bohr in
1918 and slightly later results are due to W. Gross, G. Faber and R. Courant. In
1928 H. Groétzsch [GRé] published his well-known work on quasiconformal mappings
and in a subsequent series of papers developed his strip method, giving applications
to a variety of problems. In his dissertation in 1955 J. Hersch [HE1] established con-
nections among harmonic measure, extremal length, and other conformal invariants.
A survey of some function-theoretic applications of the extremal length is given by
B. Rodin in [RO], which contains also a good bibliography of the subject. See also the
bibliography in the book of G. V. Kuz’mina [KU]. In his book [O] M. Ohtsuka gives
several function-theoretic applications of the extremal length.

B. Fuglede [F| was the first to consider, in 1957, the p—modulus in the multi-
dimensional case. He also considered the modulus of a surface family as well as the
modulus of a system of measures (see also P. Mattila [MAT1]). Later these notions
were developed mainly in connection with the theory of quasiconformal mappings (see
O. Lehto and K. I. Virtanen [LV2], F. W. Gehring [G1], [G2], [G9] and J. Viisild [V1],
[V3], [V7], [V10]). The notion of p—capacity, which is closely connected with that of
p-modulus (see Section 7) has been studied by many authors in the setup of non—
linear potential theory (see the references given at the end of Sections 6 and 7). The
paper of C. Loewner [LO] is one of the first papers dealing with conformal capacity
in space. See also the books of P. Caraman [C1, pp. 46-70] and A. V. Sychev [SY,

pp. 26-35]. The book of Caraman contains a useful and very extensive bibliography.




72

6. The modulus as a set function

In this section we shall consider the problem of finding estimates for M (A(E, F))
when E and F are disjoint non-empty sets in R™. In view of the conformal invari-
ance of the n—-modulus 5.17, one would like to find estimates which reflect this invari-
ance property in the following way: The estimate should give the same lower /upper
bound for M(A(E,F)) and M(A(RE,hF)) whenever h € GM(R™). In most es-
timates (see e.g. 5.42(1) or 6.1 below) this requirement is not completely met, the
estimate remaining invariant only under the action of a subgroup of GM(R"), e.g.
under translations, stretchings, or spherical isometries. Some aspects of this problem
will be discussed in Sections 7 and 8.

In the present section we shall prove the existence of a set function ¢(-), defined

in the class of all subsets of R™, with the following properties.

6.1. Theorem. For n > 2 there exist positive numbers di,...,ds and a set
function ¢(-) in R™ such that
(1) ¢(B) = ¢(hE) whenever h: R* — R" is a spherical isometry and E C R™.
(2) ¢(®) = 0, A c B Cc R" implies ¢(A) < ¢(B) and e(U2; By) <
di 372, ¢(Ey) if E; CR™.
(3) If E CR"™ is compact, then ¢(E) > 0 if and only if cap E > 0. Moreover
c(ﬁ") <ds <o0.
(4) c(E)>dsq(E) if ECR™ is connected and E # 0.
(5) M(A(E,F)) > dymin{¢(E), ¢(F)}, if E,F c R".
Furthermore, for n > 2 and t € (0,1) there exists a positive number ds such that

(6) M(A(E,F)) < dsmin{c¢(E),c(F)} whenever E,F C R" and q(E,F)>t.

It should be emphasized that the main interest in Theorem 6.1 lies in the inequal-
ities (5) and (6). The condition cap E > 0 in 6.1(3) is not needed in this section and

its definition will be postponed until Section 7.
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We shall next give the reader some idea about the set function ¢(-). To this end
define (see (5.45))

My(E,r,z) = M(A(S”"l(x, t), —En(z, r) N E; ﬁ”)) ,

(6.2)
M(E,r,z) = M. (E,r, z)

whenever E CR"”, z € R", and 0 < r <t. Moreover, let E~! = {z/|z|?:z€ E}

and
(6.3) a(F) = max{ M(E,1,0), M(E~*,1,0)}

for E C R™. It follows from the results of this section that there are numbers Y1

and ~, depending only on the dimension n such that
(6.4) ~716(E) < ¢(E) < y2a(E) .

In what follows we shall give a construction of the set function ¢(E). We remark
that there may also be many other methods of constructing ¢(E): it is clear by
(6.4) that any method which yields a set function differing from a(E) by at most a
multiplicative constant is adequate also for constructing c¢(E) .

For the next lemma we recall that the balls Q(z,r) of the metric space (R”,q)
were defined in (1.22).

6.5. Lemma. Let r > 1 and ¢ € (0,1) be such that ¢(S™1, S*~1(r)) > 2t.
There is a number b(t) dependingonly on n, r, and t such that the following holds.
If ECB" and G =,cpQ(z,1t), then

M(A(E, 8Gy)) < b(t) M(A(E, S™~(r))) .

Proof. Let Fy = E, F;, = S™!(r), and F3 = 8G; = F;. Because
q(F1,F3) >t and q(Fs,F4) >t it follows from the comparison principle 5.40 and
5.42(2) that

(66) M(Plz) Z 3 " mm{ M(Plg), M(I‘23), Dt}

where I';y; = A(F;, F;). We shall first find a lower bound for M(I';3). From the
choice of ¢ it follows that ¢ < 1/4/2 and hence ¢(Q(z,t)) = 2tv/1 — 2 > t1/2 (see
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1.25). It follows that F3 contains a continuum of euclidean diameter at least /2.
Hence we deduce by 5.9 and 5.34 that

2r + t\/2 > cptlog2 S B_t_

2r—ty2- r T or

Here D is the number in 5.42(2) and (6.6). Since d(|v|) > ¢(|7]) > ¢ and |v| € B"(r)
for v € A(Fy,F3;G:) = A and M(A) = M(T'13) (cf. (5.10)) we get by 5.5

(6.7) M(Tza) > ¢y log

n

M(T13) < nn% .
By (6.6) and (6.7)
] Dt
M(Flz) Z 3—n rmn{ M(I‘13) ) —;— }

Dtn+1

—_n ‘ 1
>3 ”mm{ M(T13), WM(Fm) } = —=M(T'13) ,

b(t) = 3"/min{ 1, Dt"*1/(Q,r"*)}. O

6.8. The construction of ¢(E). For E C R", 0 < r <t < 1 denote
(cf. (6.2))

(6.9) { my(B,r,z) = M(A(0Q(z,%), ENQ(,7))) ,

m(E,z) = my(E,1/v/2,z); s = 1/3.
We define (see (1.16) and (1.23))

{ ¢(E,z) = max{m(E,z), m(E,Z) },

(6.10) ) _
¢(E) =inf{c¢(E,z) : z€R"}.

2

(%)
m(z) — r(®)| =1

o=
B

1/v2

m(z)

Diagram 6.1.
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6.11. Remark. By 5.18(2)

2 1—-n
mt(E,T, :B) S Wp—1 [10g<t - d ):l ’

rV1-—1¢2
m(E,z) < m(R",z) = wy_;1(logv/3)17".
If F C Q(z,r), where r € (0,1/v/2], by (6.12) we obtain

(6.12)

1 l—n
ol 2
(6.13) m(F,z) < wp_1 [log(r 3(1—r ))] .
Hence ¢(F,z) — 0 as r — 0. Note that equality holds in (6.13) if F = Q(z,r).

Exploiting 1.18(1) one can simplify the upper bound in (6.12).

6.14. Lemma. There exists a positive number d, depending only on n such
that
¢(E,z) < die(E,y)

for z,y € R® and E c R". In particular,
¢(E) < ¢(E,z) < die(E) .
Proof. Let U = Q(z,1/4/2). By 5.18(2) or by (6.12) we obtain
(6.15) M(A(8Q(z,1v/3),8U)) = M(A(3Q(z,1),0U)) = wp_1(logv3) ™ =a.
Fix z,y € R™. In what follows we shall assume that
(6.16) ¢(E,z) =m(E,z) .

The other case ¢(E,z) = m(E,T) can be dealt with exactly in the same way; even

the constants will be the same in the other case. Let

E{ =EnQ(s,1/v2) N Q(y, 1/v2),
Ey = (E\ E}) nQ(z,1/v2).

It follows from 5.9 and (6.16) that either

2M(A(AV, E})) > ¢(B,z) or 2M(A(8V,E3)) > ¢(E, z)

where V = Q(z,% 3). In the first case denote F; = Ef, F3 = 9Q(y, -;-\/?:) , F3 =
8V and Fy = 8Q(y,1/v2). In the second case let F; = E}, F» = 9Q(%, %—\/5) ,
F3 =08V ,and Fy=0Q(¥,1/v2). In both cases (see 1.25(1) and (1.15))

min{ Q(FI’F3) H q(FZaF4) } Z Q(aV, aQ(x’ 1/‘\/5))

:.—.\/5_1:

7 6.

= ¢(S""}(v3), 5™7Y)
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We obtain by 5.40, 5.42(2), and (6.15)
c(E,y) > M(Ty2) >37" min{ M(T13), M(T24), D6}
>3 " min{ ¢(E,z), a, Dé} .
Because ¢(E,z) < a by (6.12) and (6.15) we obtain from this inequality
¢(E,y) >3 "min{ Lc(E,z), D6} > d7'c(E,z) ;
dy' =38""min{ %, Dé(log ﬁ)”"l/wn._l} ,
which yields the desired bound. O

6.17. Lemma. If E Cc R", then

-\/§ ) l—n
v2¢(B)/
Proof. Assume first that ¢(E) > 1/4/2. In this case

¢(E) < wp—y (log

\/?-, )l—n
V24(E)

by (6.12). Assume next that ¢(E) < 1/v/2. In this case E C Q(z,q(E)), z € E,
and the proof follows from (6.13). O

¢(E) < ¢(E,0) < wn—1(logv3)*™ < wp_y (log

6.18. Corollary. If E C R" is connected, then
¢(E) > dsq(E) .

Proof. It follows from the definition (6.10) that ¢(E) = c¢(hE) whenever % is a
spherical isometry. Hence both sides of the asserted inequality remain invariant under
spherical isometries. By performing an auxiliary spherical isometry if necessary we
may assume that 0 € E. Then ENB” has a connected component E; with 0 € By
and hence by (1.15)

d(E1) > q(E1) > min{1/v2, ¢(E)} > ¢(E)/vV2 .
By 5.34 we obtain (see (6.2), (6.10), and 1.25(1))

2v3+q(E)/V2

The proof with dg = c,/(d1v/6) follows now from 6.14. O

c(E,0) > M\/§(E1,1,0) >cqlo
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6.19. Lemma. M(A(E,F)) > dymin{c(E), ¢(F)}.
Proof. Fix z € R". Let z € {z, &} with‘m(E,z) = c¢(E,z) zmd denote
F= ENQ(z1/V2), F3 =0Q(z,3V3) .
Let w € {z, £} be such that m(F,w) = ¢(F,z) and denote
Fo=FnQw,1/v2), Fy= aQ(w,-;- 3).

We see that (cf. 1.25)

V3—1

min{q(Fl,Fa)’q(Fz’F4)}Zq(S"‘"l(\/?;),S""’l)z =96.

>

Set T';; = A(F;, F;). It follows from the comparison principle 5.40 and 5.42(2) (see
also 5.9) that

M(A(E, F)) > M(T12) > 37" min{ ¢(E,z), ¢(F,z), D6 }
> dymin{ ¢(E, 1), ¢(F,z) } > dymin{ c(E), ¢(F) }

where dg = 3~"min{ 1, D6(log/3)""!/w,_1} and the second last inequality follows
from the fact that ¢(E,z), ¢(F,z) < wp—1(logv/3)~" (cf. (6.12)). O

6.20. Lemma. Let E,F C R" be sets with q(E,F) >t > 0. Then
M(A(E, F)) < ds min{ (), «(F) }
where ds depends only on n and t.

Proof. Let E; = ENQ(0,1/v2), E, = E\ E, F1 = FnQ(0,1/v/2),
F2 = F\F1 . Let I‘l = A(El,Fl) , I‘z - A(El,Fz) ) P3 - A(E2,F1) , and I‘4 =
A(E,, Fp) . By 5.9

M(A(E,F)) < 4max{M(T;) : y = 1,2,3,4} .

Without loss of generality we may assume that the maximum on the right side of this

inequality is equal to M(T';) because in the other cases the proof will be similar. Let

Ei=U{Q(z,3t):ze B}, Fs=U{Q(z,3t):z€ Fy } .
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If ¥ €T;, then clearly |y|NAE? # 0 # |y|NF: and hence by 5.3
(6.21) iM(A(E,F)) < M(T3) < min{ M(A(Ey,8EY)), M(A(F;,0F3)) } .

We shall now find an upper bound for M(A(El,BEf)) . A simple calculation shows

that
V3-1

(5" (VE), 57 = Yo

1
> Z .
Since E; C B™ we get by 6.5
M(A(E:, 9E)) < M(A(E:, 571 (vV3))) b(:/3)
b(¢/8) = 3"/ min{ 1, Dt"*1 /((8v/3)"*1q,)} .

A similar estimate holds for M(A(F, 0F})) as well. As a result we obtain in view of
(6.21), (6.10), and 6.14

M(A(E, F)) < 4b(t/8) min{ ¢(E,0) , ¢(F,0) }
<4d; b(¢t/8) min{c(E),c(F)}. O

6.22. Corollary. If E,F C R" with q(E,F) >t >0, then M(A(E, F)) < de .

Proof. By(6.12) and 6.14 ¢(E) < ¢(R™) = wp—1(logv/3)!™" = d3 . The proof
with dg = dodp follows from 6.20. O

Recall that a different proof of 6.22 was given in 5.23.

Proof of Theorem 6.1. Part (1) is clear by the definition of ¢(-). Part (2)
follows from (6.10), 6.14, and 5.9:

c(DEj)gc(DEj,o)s_i ¢(E;,0) < ic(Ej).

The other assertions in (2) follow from 5.9. The proofs of (4), (5), and (6) were given
in 6.18, 6.19, and 6.20, respectively. The proof of (3) follows from (5), (6), and the
definition of a set with positive capacity, which will be given in Section 7 (see 7.12).

d

6.23. Exercise. Find a lower bound for ¢(B"(z,r)).
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6.24. Exercise. Applying (5.46) and the results of this section show that (6.4)
holds.

6.25. Exercise. Let E = {0} U (Ur>, S *(27%)) and E(t) = {z € R™:
g(z,E) < t}. Show that M(A(E,8E(t))) > at' "log } for small ¢ where a de-
pends only on n. [Hint: Apply (5.14).] Conclusion: The function b(t) in 6.5 must
grow so fast that b(t)t"~!/log 1 /4 0 as t — 0. From the proof of 6.5 it follows that
the rate of growth of b(t) is at most t~1~™ , and the best rate of growth will be given
in 6.27.

An appendix to Section 6. In this appendix we shall carry out some compu-
tations which we shall not need later on in this book but which may be of independent
interest. We are now going to prove an improved form of Lemma 6.5 and shall show
that the function b(t) in 6.5 can be chosen so that its rate of growth is at most ¢7".
It follows from Exercise 6.25 that the power —n cannot be replaced by 1 —n (see
also 6.28).

The following discussion is based on a Poincaré inequality type result of Yu. G.
Reshetnyak [R12, p. 60, Lemma 3.3], and the proof of Lemma 6.27 below is also due to
him. The author wishes to thank Yu. G. Reshetnyak for contributing this result. For
the proof we need also some results from the early parts of Section 7. In particular,

Lemma 7.8 will be useful.

6.26. Lemma ([R12, p. 60, Lemma 3.3]). Let u be a function of class C§°(R")
such that u(z) =0 for |z| > r > 0. Then the inequality

/ lu[*dm < (2r)" / Vu[rdm
n Rn
holds.
6.27. Lemma. Let E be a compact set in B"(R) and let E(t) = E + B™(t)

for t > 0. Then
M(A(E(), B)) < a(t) M(ABE(), E)
for t > 0 where a(t) = a(l) for t > 1 and a(t) < a;¢t™™ for t € (0,1), and ay
depends only on n and R. '
Proof. Fix ¢ > 0. In view of (7.3)-7.8 there exists a function v € C§°(E(1))
with u(z) > 1 for z€ F and

./Rn Ivulndm <€+ M(A(BE(I),E)) =€ +cap(E(1),E) .
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There exists a constant b; depending only on n and for each t € (0,1] a (real-valued)
CS°(E(1))—function @4: E(1) — [0,1] with the properties (see e.g. [ST, p. 171])
(a) pi(z)=1for € E ,
(b) wi(z) =0 for z€ E(1) \ E(¢) ,
© Vo) <bift -
The function v(z) = u(z)p:(z) is admissible for the definition of cap(E(t), E) (see
7.2), and hence

M(A(9E(t), E)) = cap(E(#), E) < /R Vo[

Since |Vu(z)|" < 2"(|Vu(z)|"p¢(z)™ + |Veoe(z)|"|u(z)|*) we get by the properties
(a) and (c) of o4

cap(E(2), E) < 2" /R [Valrdm + (251)"" / lu(z) [ dm .

7

Moreover, by Lemma 6.26 we obtain for ¢ € (0,1]

/ i [u(z)|*dm < 2"(R + 1)”/ |Vu(z)[*dm .

n

Hence
cap(E(D). B) < aft) | [Vul"dm < a(t)(e-+cap(E(1), B))

a(t) =2"(1+2"b} (R +1)"t™")
for t € (0,1]. For ¢ > 1 we define a(t) = a(1) . Because € > 0 is arbitrary the proof

follows from this last inequality in view of 7.8 and 5.3. O

We already know by Exercise 6.25 that the inequality a(f) < a1¢™™ of Lemma
6.27 provides the best possible integer power for the growth of a(¢). Next, we shall

show that this rate ¢t~™ of growth for a(t) is in fact attained.

6.28. Example. We shall show that there exists a constant b; > 0 and for
arbitrarily small ¢t € (0,1) aset E = E; in R™ such that

(6.29) M(E,t) = M(A(E,8E(t))) > byt™"

where E(t) = E + B"(t).
Let @ =[0,1]""! x {0} and let s € (0,1). It follows from 5.11 that

(6.30) M(Q,s) >s'™".
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Fix k > 4 and let Q; = Q +2 % je,, j = 0,...,2%. Set Ej = U2 Q,. For
t € (27%72,27%=1) we obtain by 5.4 and (6.30)

M(Eg,t) > (2F + 1)t > Len
In conclusion, we have proved (6.29) with b; = ;11- .

6.31. Remarks. Modulus estimates in the spherical metric appear in [LV2,
1.6.5], [V7, Section 12], [SR1], [MRV2, Lemma 3.11], and in [N2]. This section is taken
from [VUS8|. H. Renggli [REN] and W. P. Ziemer [Z2] have also constructed some set

functions related to moduli of curve families.

7. The capacity of a condenser

In the present section we shall introduce, as a special case of curve families and
their moduli, the notion of a condenser and its capacity, and we shall examine various
properties of condensers. An important property of the capacity of a condenser is
that it decreases under a special geometric transformation called symmetrization. Of
the several kinds of symmetrization discussed in the literature (see e.g. [PS], [G1],
[S1], [R12, p. 74]) we shall consider only spherical symmetrization. An immediate
consequence of the above-mentioned monotoneity is the fact that condensers obtained
as a result of spherical symmetrization are of extremal character — their capacities
yield lower bounds for the capacities of a wide class of condensers in R"™ . The extremal
condensers of Grotzsch and Teichmiiller are of particular importance, and the well-
known estimates for the capacities of these condensers are given in this section.

One of the main themes of this section is the relationship of the capacity of a con-
denser to its geometric structure. The hyperbolic and quasihyperbolic geometries are
useful instruments in the study of this interrelation in Sections 7 and 8. In this context
the hyperbolic and quasihyperbolic geometries are useful for proving estimates for the

capacity only of ring domains with non—degenerate complementary components.

7.1. Definition. For j = 1,...,n let R} = {z € R" : z; = 0} and let
T;: R™ — RJ'-‘ be the orthogonal projection Tjz = z — zje;. Let D C R™ be an
open set and u: D — R a continuous function. The function u is called absolutely

continuous on lines, abbreviated as ACL, if for every cube Q with Q C D, the



82

set A; C T;D C R} of all points z € T;@ such that the function ¢ — u(z +te;),
z+te; € Q, is not absolutely continuous as a function of a single variable [HS, p. 282],

satisfies mp,_1(4;) =0 forall j=1,...,n.

By well-known properties of absolutely continuous functions of a single variable
the derivative exists almost everywhere and is Borel-measurable (see [HS, p. 285], [V7,
pp. 87-89]. From this fact and from Fubini’s theorem it follows that an ACL function
u: D — R has partial derivatives with respect to every variable z;,...,z, a.e. (with
respect to n—dimensional Lebesgue measure) in D . We say that an ACL function
u: D — R is ACL?, p>1,if du(z)/dz; € LP(K), j=1,...,n, whenever K C D
is compact. A vector—valued function is said to be ACL (ACL®) if and only if each

coordinate function is in this class.

7.2. Definition. Let A C R™ be open and let C C A be compact. The pair
E = (A,C) is called a condenser. Its p—capacity is defined by

(7.3) p—capE:inf/ |VulPdm ,
v Jga

where the infimum is taken over the family of all non—ﬁegative ACLP? functions u

with compact support in A such that u(z) > 1 for z € C. Here

Vu(z) = (ai::(z).,..., %‘:(z)) .

A function v with these properties is called an admissible function.

It follows from (7.3) that p-cap E is invariant under translations and orthogonal

maps.

Without alteration of the real number p-cap E , one can take the infimum in (7.3)

over several other classes of functions as can be shown by approximation. For instance
one may take functions u € C*°(A4) with compact support in A and u(z) > 1 for
z € C (see [MRV1]). The following monotone property of condensers is a consequence
of the definition. If (4,C) and (A’,C’) are condensers with. A’C A and C C C',
then

(7.4) . p-cap (4',C") > p-cap (4,C).

The p—capacity of (A4,C) reflects the metric structure of the pair C, R®"\ A as we.
shall see later on. If p =n we denote n—cap (4,C) simply by cap(4,C) and call it
the capacity or conformal capacity of the condenser (4,C).
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An ACL? function u: D — R™, where D C R"™ is open, is said to be abso-
lutely continuous on the rectifiable curve a: [a,b] — D iff foa®:[0,£(a)] = R™ is

absolutely continuous as a function of one variable.
We shall make use of the following result of B. Fuglede [F|, [V7, 28.1, 28.2].

7.5. Lemma. Let D be an open set in R™ and let f: D — R™ be ACLP?.
Then the family of all locally rectifiable paths in D having a closed subpath on which

f is not absolutely continuous, is p—exceptional.

7.6. Lemma. Let G be a domain in R™, let u: G — R be an ACL® function,
—00 < a<b< oo, andlet Ay B C G be non-empty sets such that u(z) < a for
z€ A and u(z) > b for z € B. Then

M, (A(4,B;G)) < (b—a)™? /G |VulPdm, .

Proof. Define an ACL? function v: G — R by

W,xGG' '

v(z) =

b—a

Then v(y) > 1 for y € B and v(y) <0 for y€ A. Let A ={~v€ A(4,B;G):
~ is rectifiable } and

A, = {~v € A:v is not absolutely continuous on a closed subpath of v} .

Fix v € A\ A, with the normal representation +°: [0,¢c] = G, ¢ = £(), and with
7°(0) € A, 7°(c) € B. Then ~° has a Lipschitz constant 1 and |(v°)/(¢)| =1 a.e.
n [0,c] (see [V7, 2.4]). By [V7, 1.3] we get

1< 'v(fyo(c)) _ 0(70(0)) < /Oc ,(v O’YO)'(t)I dt
< [N (vvo @l [0y de = / Vol ds.

Since v is ACLP, |Vv| is a Borel function and thus |Vv| € F(A\ A,) in view of
(7.7). By 7.5 we obtain

(7.7)

My (A (4, B; G)) /]Vv]"dm —-a)—P/ VulPdm. O
G
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Let (A,C) be a condenser for which A is bounded. It follows from 7.6 that
M, (A(C,84; 4)) / |Vu|Pdm

for every v in ACLP with C C {z€ A:u(z) > 1} and 84 C {z € R" : u(z) < 0}.
Thus
M, (A(C,84; A)) < p-cap (4,C) .

Also the converse inequality holds true according to the following result of W. P.

Ziemer [Z1], but the proof is longer and will be omitted.

7.8. Theorem. If E = (A,C) is a bounded condenser in R™, then

p-cap E = M, (A(C, 84; A)) .

7.9. Remark. By 5.9 the curve family on the right side of Theorem 7.8 may be
replaced by some other families as well. We shall need 7.8 mainly in the case p=n.
We now show that 7.8 holds also for unbounded condensers if p=n. Let (4,C) be
an unbounded condenser, let z € C and r > 1+d(C), and A, = AN B"(z,r%). By
the monotone property of the capacity, by 7.8, 5.9, and 5.14 we obtain

cap(4, C) < cap(4,,C) = M(A(C, 8Ar; Ar))
< M(A(C,04; 4)) + M(A(C, 8™ (2,7%)))
< M(A(C, 84;4)) + wy—1(logr)t—"

Letting r — oo shows that cap(4,C) < M(A(C,84; 4)) . The converse inequality

follows from 7.6 and 7.7. In conclusion, we have proved that the equality
(7.10) cap(4, C) = M(A(C, 84; 4))
holds whenever (A4,C) is a condenser in R"™, whether A is bounded or not.

We now extend the definition of a condenser to R”. Assume that C ¢ R" is
compact and that there exists an open set 4 ¢ R® with A #* R"™ and C C 4.
Then we say that (4,C) is a condenser in R™ and define its (n—)capacity by (7.10).
In view of 7.8 this extended definition is compatible with the definition (7.3) in case
A C R™. (We shall not need the p—capacity, p # n, of a condenser in R" )
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Now let (A, E) be a condenser in R™ or R™. It follows from (7.10) and the
conformal invariance of the modulus 5.17 that cap(A4,E) is a conformal invariant.
Likewise, by virtue of (7.10), many properties of cap(4,E) may be derived directly
from the properties of the modulus. In particular, we shall often make use of Remark
5.9 specialized to condensers. If p # n, then p—cap(4, E) is not invariant under con-
formal mappings, while n—cap(A4, E) has this invariance property. The corresponding

property of the modulus immediately yields this conclusion.

7.11. Lemma. Let (A, F) be a condenser with A C B™. Then there are posi-
tive numbers a; depending only on n, and as; depending only on n and d(F,04)
such that
a1¢(F) < cap(4, F) < aqe(F) .

Proof. By the proof of 6.19 and 7.8
cap(4, F) > dymin{ ¢(R™ \ 4, 0), ¢(F,0) } .
Since A C B™,
(B \ 4, 0) = wn_y (log v3)'"" = o(",0) > o(F0)
(cf. (6.10), (6.12)) and thus we obtain the desired lower bound
cap(4,F) 2 dsc(F) .

For the upper bound let ¢ = ¢(F, R™\ A). Then by 1.17 t > 1 d(F, R"\ A)
since ' C A C B™. By the proof of 6.20 and 6.14

cap(A4, F) < 4b(t/8) min{ ¢(F,0), ¢(R™\ 4, 0) }
< 4dy b(d(F,0A4)/16) c(F) ,

which yields the desired upper bound. (Note that a slightly better upper bound can
be derived from 6.27.) O

7.12. Definition. A compact set E in R" is said to be of capacity zero,
denoted cap £ = 0, if there exists a bounded open set A with E C A and
cap(4,E) = 0. A compact set E C R®, E # R", is said to be of capacity zero if
E can be mapped by a Mobius transformation onto a bounded set of capacity zero.

Otherwise E is said to be of positive capacity, and we write cap £ > 0.
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7.13. Remarks. By conformal invariance the second part of the above definition
is independent of the choice of M6bius transformation. We next show that the first
part of the definition is independent of the choice of bounded openset A with AD E.
Indeed, if A; D E, j =1,2, are both bounded, say 4; C B*(R), j = 1,2, then by
6.1(4)

dy = c(R™) > c(R"\ 4;) > ds/V2+ R?; j=1,2.

This inequality together with 6.1(5),(6) yields for j = 1,2
dsmin{ ¢(E), ds/V/2+ R?} < cap(4;,E) < dsmin{c(E), dg }

where ds,ds,ds are positive numbers depending only on n and where ds depends
also on ¢ (E, (8A1) U (8A4z)). In other words, cap(A;, E) =0 if and only if ¢(E) =
0. Hence the condition cap F = 0 is independent of the choice of open bounded set
A with E C A (see also [R2, Lemma 2]). This argument also shows that in the above
definition of cap E =0, E C R™ compact, one can replace the bounded set A by a
ball B"(r) with r > d(0,E) + 2d(E) , say.

' It should be observed that we have only defined the conditions cap £ = 0 and
cap E > 0 for a compact set E and that in the latter case the “capacity” of E will
not be specified as a real number. In view of 7.9 and (5.15) countable compact sets are
examples of sets of capacity zero. The following theorem shows that sets of capacity
zero are always very thin [R12, p. 72]. The definition of the Hausdorff dimension and

the a—dimensional Hausdorff measure can be found in [FA] and [MAT?2].

7.14. Lemma. Suppose that F is a compact set in R™ of capacity zero. Then
for every a > 0, the a-dimensional Hausdorff measure Ao(F) of F is zero. In

particular, int F = 0, and F is totally disconnected.

7.15. Remarks. (1) In the dimension n = 2 the logarithmic capacity is
often used in complex analysis. H. Wallin [W1] has proved that a compact set is of
logarithmic capacity zero if and only if it is of capacity zero in the sense of the above
definition (7 = 2). He has also constructed a compact Cantor-type set E in R" of
positive capacity (in the sense of 7.12) with A,(E) =0 for all a > 0. See also V. G.
Maz’ya-V. P. Khavin [MK].

(2) Various sufficient or necessary conditions for capacity zero can be found in
the literature [MK], [W2], [R12, p. 71], [R7], [MV], [V9].
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7.16. The spherical symmetrization. If zo € R*, ECR" andif L is a
ray from zo to co, then the spherical symmetrization E* of E in L is defined as
follows:

(1) zo€ E* iff z0€ E,

(2) o€cE* if € FE,

(8) for r € (0,00), E*N S™ I(zg,r) # 0 if EN S zo,r) # B, in which

case E*N 8" 1(zo,r) is a closed spherical cap centered on L with the same

My measure as E N S™ 1(zq,7).

o oo

Diagram 7.1.

Let (A4,C) be a condenser and zo € R™. Denote by C* and B the spherical
symmetrizations of C' and R™\ A in two opposite rays L; and L2 emanating from
To, and let A* = R"™\ B. Then it is easy to verify that (4*,C*) is a condenser [S1].

An important property of spherical symmetrization is given in the following theorem
(1], [S1).

7.17. Theorem. If (A,C) is a condenser, then for p > 1

p-cap (4,C) > p-cap (4%,C") .

/% SN -
Rn\A\‘& Zo oo @ \ zrm—oo

Diagram 7.2.
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This inequality is sharp in the sense that there is equality if (4*,C*) = (4,C)
(eg. o = 0, C = [0,e1], A = B™(2) and L; is the positive z;-axis). Note
that the minorant p- cap(A*,C’*) in 7.17 depends on the choice of the center of
symmetrization, the point zo, in an essential way. For instance, if » > 3, E; =
{z € S*1(277) : z3 =0}, E = {0} U (U;’;l E;) and if E* is the spherical
symmetrization of E in the positive z;—axis (in which case zo = 0), then E* =
{0, 2e1, ;e1,...} and clearly cap(B",E*) =0. It is left as an exercise for the reader
to find a spherical symmetrization with center # 0 which provides a strictly positive

minorant for cap(B”, E).

7.18. The Grotzsch and Teichmiiller rings. Let us recall the Grétzsch and
Teichmiiller rings Rg ,(s) and Rp ,(s) which were introduced in Section 5. They
can also be understood as condensers in the following way:

Rgn(s) = (R™\{te1:t>s},B"), s€(1,),

Ry, (s) = (R™\ {tey : t > s}, [—e1,0]) , s € (0,00) .
We define functions & = @, and ¥ = ¥, by modRg,(s) = log®(s) and
mod Ry . (s) = log ¥(s) . In other words (cf. (5.52))

{ cap B (s) = wner (log 8(s))" ™ = 1(s) ,

(7.19) Ien
cap By ,(s) = wn—1 (log ¥(s)) = Tn(s) .

7.20. Lemma. The function ®(t)/t is increasing for ¢ > 1 and U(t — 1) =
®(+/t)? for t > 1. Moreover, the functions v, and r, are strictly decreasing.

Proof. For the first part fix 1 <s <t,let R = Rg,(t) and let R’ and R"
be the two rings into which R is split by the sphere |z| =t/s. By 5.24 and 5.14 we

obtain
log ®(¢t) = mod B > mod R’ + mod R"

= log(t/s) + log @(s)
whence ®(t)/t > ®(s)/s as desired. It follows, in particular, that & and ¥ are
strictly increasing and hence by (7.19) ~, and 7, are strictly decreasing. The asserted

identity is the functional identity 5.53 rewritten. O

By 7.20 the function log ®(¢) — logt is increasing and therefore has a limit as
t — oo . We define a number A, by

(7.21) log A, = tlego (log @(t) — logt) .
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This number is sometimes called the Grétzsch (ring) constant. Only for n = 2 is the
exact value of the Grotzsch constant known, A = 4 [LV2, p. 61, (2.10)]. Various
estimates for A,, n > 3, are given in [G1, p. 518], [C1, pp. 239-241], [AN2|. For

instance it is known that A, € [4,2¢*71),

oo 2 n=2
Ans4exp (/ gl_.(..rfﬁ).(Ls) : a:(n,S)::(s +1)n——1“1’
1 S

s2—1

and that )\,1/ " —+ e as n — oo. These technical results will not be proved here. Some

of them are summarized in the next lemma.

7.22. Lemma. For each n > 2 there exists a number A, € [4,2¢"" 1), Ay =4,
such that

(1) t<®F) <Ant, t>1,

(2) t+1<UE)<A2(t+1), t>1.

Furthermore, A},/" — e as n — co and, in particular, A, — 00 as n — co.

Proof. The bounds 4 < A, < 2e™! are given in [G1], [AN2]. The lower bound
in (1) follows from the fact that the boundary components of R ,(t) are separated
by the annulus A = B"(t)\ B” with mod A =logt and from 5.3. The upper bound
in (1) follows from 7.20 and the definition (7.21) of A, above. Inequality (2) follows
from (1) and 7.20, and the last assertion is proved in [AN2]. O

Because of the functional identity 5.53 the properties of 7 can be derived from
those of 4 and conversely. A simple argument similar to 5.63(3) shows that the
strictly decreasing function 7 is continuous on (0,00). In what follows we may use
these simple properties without notice.

The following fundamental difference between dimensions n = 2 and n > 3
should be observed: for n > 3 no explicit expression like (5.56) is known for ~,(s).
It is an interesting open problem to find such a formula also for the multidimensional
case.

The Groétzsch and Teichmiiller condensers have some important extremal prop-
erties which are connected with the spherical symmetrization. In what follows we
shall often require a lower bound for the capacity of a ring domain in terms of the
Teichmiiller capacity 7,(s) which follows from the spherical symmetrization lemma

7.17. For this reason various estimates for v,(s) and 7,(s) will be very useful —
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in fact they will be necessary for our later work in the multidimensional case n > 3
when no exact formulae for 7,(s) or 7,(s) are known.

Before giving these estimates we shall discuss qualitatively the behavior of m(s)
and v,(s). First we note that by (5.14) and 5.32 the limit values of v,(s) and 7,(s)
are

gws 14

lim ~,(s) =00, lim v,(s) =0,
(7.23) T

3&1:51‘*_1%(3) = oo, lim m(s) =0.

For convenience we set 7y,(c0) =0 = ,(c0) and ~,(1) = co =71,(0) .

Lemma 7.22 yields the inequalities

W1 (10g An5)' ™" < Yn(s) < wp_1(logs) ™",
(7.24)

wr—1 (log(AZs)) T < (s — 1) < wo—1(log s)tm

for s > 1. In passing we shall show how this upper bound for 7,(s) can be slightly
improved. First, fix s > 1 and choose h € GM(B™) with A[0,%e;] = [—aey,aey],
a>0. Then a=s—+s%2—1 by 2.42 and by conformal invariance 5.17, 5.3, and
5.14

T(s) =M (A(Sn"l, [0, %el])) =M (A(S”"‘l, {—-a,el,a,el]))

(7.25)
< wn..l(log(s +Vs2— 1))1—"' < wp—1(log 3)1"'z .

We note that (7.25) yields a slightly better upper bound for ~,(s) than (7.24). Note
also that by combining the first inequality in (7.24) with (7.25) and letting s — oo
yields A, > 2 for all n > 2. An even better upper bound for ~,(s) will be given in
Lemma 7.26.

Each of the bounds for v,(s) in (7.24) is asymptotically sharp as s tends to oo,
but not of the correct order as s tends to 1, as can be seen from 7.26 below. The
following theorem due to G. D. Anderson [AN1] yields inequalities that are asymptot-
ically sharp as s tends to 1.

7.26. Theorem. For s € (1,00) and n > 2

(1) 7n(s) £ wn_lu(l/s)l—” < wn..l(log(s + 34/52 — 1))1—% ,
1 n-1 s—1 n—1
1) <n(s) <2 Cnﬂ(—-——s+1) <2 cnlog<4

Moreover, if s € (0,00) and a =1+2(1++/1+s)/s, then

s+1)

- s+
(2) 2" 1c,,,log( P

s-——
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(3) eploga < 1,(s) < epp(l/a) < ey log(4a)

and (1+1/4/s)2<a< (1+2/y/s)? hold true. Furthermore, when n = 2, the first
inequality in (1), the second inequality in (2), and the second inequality in (3) hold

as Identities.

Proof. (1) The proof of the inequality v (s) < wp—14(1/s)}~" will be omitted
(see [AN1]). The second inequality follows from (5.58).

(2) & (3) It is left as an easy exercise for the reader to verify that (2) and (3)
are equivalent, that is, one can be derived from the other in view of (5.53). Hence it
suffices to prove (2). Here we shall only prove the lower bound in (2); the proof of the
upper bound will be omitted (see [AN2]). Let h be an inversion in S~ (—ep,/2)
which maps B™ onto H™ and 0 to e,. By (2.22) h preserves hyperbolic distances.

Because
To(s) =M (A([O, %en],S”"l))

and pga(0,1e,) = log <t} we see by (2.6) and (2.17) that h(ie,) = 2le,. By

conformal invariance, 5.26, and 5.32 we obtain

Tn(s) = M(A([$ten, en), SH™))

___2""'1M(A([8+16n,en] [ s-l—le"" e"']))

> 2"~ ¢, log —-——-+i :

which is the desired lower bound. The proof for the bounds for a is elementary.
The assertions concerning the case n = 2 follow from (5.56), (5.57), (5.59),
5.60(1), and 5.30. OJ

It should be observed that 7.26(1) yields a slightly better explicit bound than
(7.25).

We shall next summarize the preceding inequalities for ~,(s) . Let

u1(s) = wp—1u(1/s) 7", ug(s) =2""le, (

+1

l—n

v1(8) = wp—1(log Ans)1™" , ve(s) = 2" le, 1og

By (7.24) and 7.26

(7.27) max{ v1(s), v2(s) } < Yn(s) < min{uy(s), ua(s)}.
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For n = 2 the right side of (7.27) is sharp. In fact, it follows from (5.56) (or (5.59))
that for n = 2 the right side holds as equality for all s > 1. One can rewrite (7.27)
for 7,(s) using the functional identity 5.53.

10 4

Diagram 7.3. The graph of v3(1/r), 0 <r <1, lies in the shaded region.

g(r) = el

Lower bounds: f(r) = 4¢3 log —E " log?(9.9002/r)

1—7r"

(As < 9.9002) .

Upper bounds: F(r) = 4cau(i :_ :) , G(r)= (;::).)2 (from [AVV3]).

7.28. Remarks. (1) The last inequalities in 7.26(2) and (3) can be improved
in view of (5.67).
(2) The inequality 7.26(3) can also be written as follows

4(1 +1) 1
c,,_log(l-}-t) ST(——t—é—*) Scnﬂ(m) , t>0.

7.29. Hyperbolic metric and capacity. As in Section 2 we let J[z,y| denote
the geodesic segment of the hyperbolic metric joining =z to y, z,y € B™. It is clear

by conformal invariance that

cap(B", J[z,y]) = cap(B", T:J[z,y])
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where T, is as defined in 1.34. We obtain by (2.25) and (7.25)

bt (2

(130)  cap(B",J[5,5]) = (o) < wn—1(~logth ko(z,v))"

'fp(xa y)
Next by (7.30), 7.26(2), and (5.58) we get

(7 31) zn-—-lcn p("E’ y) < CaaP(Bna J[xay]) < 2nmlcn M(e—p(z,y))
. < 2" e (p(z,y) + log4) .

For large values of p(z,y) (7.31) is quite accurate. For small p(z,y) one obtains
better inequalities than (7.31) by combining 7.26(1) and (7.30).

7.32. Lemma. Let z,y € B™ and let E C B™ be a continuum with z,y € F.
Then

cap(B", E) > cap(B",J[z,y]) = Yn (m) .

Proof. Let T; be as in 1.34 and let * denote spherical symmetrization in the
positive zj—axis. Then the center of symmetrization is the origin and by 7.17 we

obtain
cap(B", E) = cap(B",T;(E)) > cap(B", (T=(E))*) .

By (2.25) we see that [0, (th 1p(z,y))e1] C (T-(E))* and the proof follows from (7.30).
O

7.33. Exercise. Show that 5.34 follows from 7.32. [Hint: We may assume that
t =1 in 5.34. Apply (7.31) and 2.41(1).]

The next result gives a very useful lower bound for the capacity of a ring domain.

7.34. Lemma. Let R = R(E,F) be aringin R" andlet a,b€ E, ¢,00 € F
be distinct points. Then

cap R = M(A(E, F)) > T({a——c]) .

a—9

Here equality holds for E = [—€;,0], a =0, b = —e;, F = [se;,00), ¢ = sey,

d=00.

Proof. Observe first that the right side remains invariant under the similarity
transformation f(z) = (z — a)/la — b|. Then |f(c)| =|a —¢|/|e —b| and f(a) =0.
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d= o0
F
s E
<
<)
D
2
—|bler a=0 c=sey o0
Diagram 7.4.

The spherical symmetrizations of fE and fF in the negative and positive z;-axis,

respectively, contain the complementary components of R 2—21) . Thus by 7.17
T\ la—b

| — ¢
> .
ca,pR_T(Ia_b|> a
7.35. Lemma. Let R = R(E,F) be aringin R"® and let a,b€ E, ¢c,d € F
be distinct points. Then
capR > (|a,b,c,d]) .
Here equality holds if b = sye;, a = sge1, ¢ = sge1, d = sqe1, and 81 < sp <

Sg < 84.

Proof. By (1.29) we may assume that ¢ = 0, b = e, d = oo, and |c| =
|a,b,c,d|. The proof follows now from 7.34. The assertion concerning the equality
follows from 5.54(1). O

7.36. Corollary. Let R = R(E,F) be a ring and let a,b € E, ¢,d € F be
distinct points in R" . Then

t—s
>
R 27 (5—)
= |a — b ‘= la —b| + |a —¢]
e lad+l=d " o Htle—dil=q
Here equality holds for E = [0,se;], a=0, b=se;, F =[tey,e;], c=te;, d=e;,
and 0<s<t<l1.

where
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Proof. Because the points are finite, (1.15) and 7.35 yield

a—cllp—dly

> emreere—————ee
CaPR~T(1a—b| e —d|

The desired inequality follows from this and the fact that |b—d| < |b—a|+|a—c|+|c—d] .

The statement concerning equality follows from 5.54(1). O

7.37. Corollary. If R = R(E, F) is a ring, then

2) wp327<§%%%%>.

Proof. (1) Choose a,b € E and ¢,d € F so that g(a,b) = ¢(E) and ¢(ec,d) =
g(F). Then '
q(a, c) g(b,d) < 1
a(a,b) g(c,d) ~ 4(E) q(F)
and (1) follows from 7.35 because r is decreasing.

(2) Choose a € E, ¢ € F such that g(a,c) = ¢(E,F) and choose be E, d€ F
such that

q(a,b) > 3q(E) , qle,d) > 3 q(F).

With this choice of a,b,¢,d the proof follows from 7.35. O

7.38. Lemma. Let E and F be disjoint continua in R™ with d(E),d(F) > 0.
Then
M(A(E, F)) > r(4m? + 4m) > ¢, log(1 + 1/m)

where m = d(E, F)/ min{d(E), d(F)} and ¢, is as in 5.32.

Proof. Fix a € E, ¢ € F with |[a—¢| =d(E,F) and b€ E, d € F with
la — b| = $ d(E) and |c — d| = % d(F), respectively. By 7.35 we obtain

!a—CHb-dl) 2,r<|a—61(lab—bl+Ia-f:l+lc—d|)

M(A(E, F)) 2 T(}a,-—bl le — d| la —b||c— d| ) =7(u).

Here
2d(E,F) (d(E) + 2d(E, F) + d(F))

d(E) d(F)
and the first inequality follows. The second one follows from 7.26(3). O

u = §2m+4m2+2m,
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7.39. Corollary. Let E and F be disjoint continua in R™ with 0 < d(E) <
d(F). Then
d(E,F)

M(A(E, F)) > 21—%(—0@7)—) :

Proof. The proof follows from 7.38 and 5.63. O

7.40. Exercise. (1) Show that if R = R(E,F) is a ring in R", then

q(F
> ——i— ) |
cap R > q(E)cn lég(l + q(E,F))
[Hint: Apply 7.37(2), 7.26(3), and (3.6).]
(2) Derive 5.42(2) from 7.37(1).

We are going to generalize the formula (7.31), which relates the hyperbolic dis-
tance p(z,y) and the capacity of the condenser (B”,J[z,y]) in a simple fashion.
Now we shall discuss instead of this particular condenser a general ring R(E, F) and
the hyperbolic distance will be replaced by the function
|z —yl

min{d(z), d(y)} )

Ja(z,y) = log (1 +
which was introduced in (2.34).

7.41. Lemma. If R = R(E,F) is a ring with co ¢ EU F , then

cap R > cpmin{ jpo\ g(F) , fnm\p(E) } -

If co € F, then
cap R > cn jgrm\r(E) -

Proof. The proof follows immediately from 7.38, 7.34, and the definition of
ja(A) (see (2.35) and 2.37). O

Applying this lemma with E = S®~!, F = J[z,y], z,y € B"® we obtain in view

of 2.41(1)
cap(B", J[z,y]) 2 ¢n Jg=(J[7,y]) = cnipn(2,Y)

> %enp(z,y) .
Hence 7.41 implies (7.31) with a slightly different constant. Thus we may regard 7.41

as a generalization of (7.31).
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7.42. Remark. Lemma 7.41 has a converse which is valid even for disconnected
sets £ and F. Indeed one can show that for a given integer n > 2 there exists a
homeomorphism h;: [0,00) — [0,00) with the following properties. If E and F are

compact disjoint sets in R™, then
M(A(E’F)) <h(T), T= min{ ].R”\E(F) J J‘R"\F(E) }-

We shall outline a proof for this estimate. Clearly we may assume that 0 < d(E) <
d(F). Set t =d(E,F). Then 5.5 yields

M(A(E, F)) < M(A(B, 8(8 + B*(1))) < 0 (ZELEEY™

while for d(F) <t we obtain by (5.14)
t l-n
< Wpe — .
M(A(E, F)) < wa-1(log d(E))

These two inequalities together imply the desired bound.

7.43. A special function. The functions v, and 7, as well as their inverses
and various combinations of these will occur often in Chapter III. Of particular impor-
tance is the function @g: [0,1] — [0,1], which will occur in the quasiregular version
of the Schwarz lemma as well as in its many applications. This function is defined as
follows. For 0 < r <1 and K > 0 we define a special function

1
(7.44) pg(r) = '7;1(K’7n(1/?'
and set g (0) = 0,4g0K(1) = 1. It is easy to see that wg:[0,1] — [0,1] is a

)) = (PK,n (T)

homeomorphism. Next we shall derive some explicit estimates for @, . Recall first
that by (7.24)

n

wn—1(log Ans)' ™" < Yn(s) < w1 (logs)!™

for s > 1. It is left as an exercise for the reader to derive from this the following

inequality

(7.45) t%/An < 75 H(En(8)) < AF % ‘
forall £>1 and K >0, where a = K=" From (7.45) it follows that
(7.46) r*AL % < pg(r) < Apr®

holds for all K >0 and r € (0,1).

It is easy to see that 0 < A < B < oo implies p4(r) < wg(r). In particular,
©1/k(r) <17 =04(r) < pg(r) for K > 1. We next improve the upper bound in
(7.46) for K > 1. The resulting explicit bound is sharp for K = 1.
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7.47. Theorem. For n>2, K>1,and 0<r<1

(1) or(r) <AL=%r* | o= KY0-7)
(2) (pl/K(r) > }\i“ﬂ P , B= Kl/(n-—l) ]

Proof. (1) Let K > 1, r € (0,1), and M(r) = mod Ry ,(1/r). Setting r' =
o (r) we have M(r') = aM(r) and ' > r. These facts follow from the definitions
(7.19) and (7.44).
From the proof of 7.20 it follows that M(r) + logr is a decreasing function on
(0,1) , so that
M(r) +logr > M(r') +logr’ .

Let Ay >4 be as in (7.21). Since log A, > M(r) + logr by (7.21) we obtain

Oglogi\-TE-M(r) < Iog%——M(r')

and, further, because 0 < a <1
An. An !
alog-;.—-——on(r)Slog—;,———M(r).

This inequality yields

! l—c
r <A

for r € (0,1) . Because this holds for r =0 and r =1 , too, we have completed the
proof of (1).
(2) The proof of (2) is similar. O

7.48. Exercise. Applying (7.24) and 7.26(1) show that A, > 4. Derive from
(7.24) and 7.26 also some inequalities between the constants ¢, and w,—;. [Hint:
Note that by (5.57) w(1/v2) = ir.] Find also lower bounds for )\, in terms of

Wp—1 and ¢y .

7.49. Exercise. Show that @y .(r) = M7 (aM,(r)) where M,(r) =
mod Rg ,(1/r) and a = K'/(1="). For the proof of (7.46) the crude upper bound
() € wn—1(logs)!~™ was used. Derive improved versions of (7.46) by using the
two upper bounds in 7.26(1). (Note: The resulting inequality will yet be weaker
than 7.47.)
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It is clear that r* < rV/E o= KY(1-") for K >1 and 0<r <1. This fact
together with 7.47 and the next lemma, shows that @ (r) < ¢(K)r'/X for K > 1,
where ¢(K) depends only on K and where ¢(K) —1 as K —1.

7.50. Lemma. For n > 2, K> 1, and a = KY(-n) = 1/B8 the following

two inequalities hold:

(1) Al-e < gl-ap < gl-1/Kf
(2) AP > ol-PR—P > ol-K g%

Proof. (1) It follows from 7.25 that
(1—a)logh, <(1—a)(n—1)+(1—a)log2.
From 1—-e*<z, z _>_ 0, one can deduce that
(l-a)(n—1)=1-KY0""))(n-1)<logK .
Because 1 —a < 1—1/K we conclude that
(1—a)logh, <logK + (1 —a)log2<logK + (1 —1/K)log2

and the desired upper bound follows.
(2) The proof of (2) can be derived from (1) as follows

ALF = \(e=1)F > (gl—aK)"ﬁ —l-PR—F > 9l-Kp-K

Next we shall prove a “dimension—cancellation” property of the function
(pK,n 3

K > 0, by finding dimension—free minorant and majorant functions.

7.51. Lemma. For K >0 and 0 < r < 1 there exist positive numbers a; and
ag in (0,1) such that a; < @y ,(r) < ag for all n > 2. In particular, a1 and a,

are independent of n .

Proof. By 7.26(2) we have

s—1
s+1

s+1
= <(s) < A

(7.52) Alog ) . A=2""lc,

s.._

for s > 1. Because « is strictly decreasing we obtain from this

-1 1+ p~1(t/A)
YHt) < 1= ai(t/4)
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and
t
~1(¢) > c¢th — .
~ (t)__cth

These two inequalities together with (7.52) yield for r € (0,1)

o= en(u(150)) <17 (n()) < KT

where T = (1+7r)/(1 —r) . Both bounds are independent of n. In view of (7.44) we
may choose a; =1/b and as =1/by. O

7.53. Exercise. For n=2, K >0, t>0,let ag(t)=r;"(r2(t)/K). Show
that '

(7.54) )= 2 A=pr(/—=
* aK _—1__A27 "“PK,Z 1+t *

Let ty = 2(4K)~% . Then for K > 1 and ¢ € (0,¢x]

Pra(t) < 3

(see 7.50). Conclude that for K > 1 and t € (0,¢x]

4 _ t \VK
alt) < 31675 ()

Next, applying 5.61(2) and 7.47 show that for K > 1 and ¢t >0

7.55. Exercise. Let G be a uniform domain in R™ with connected boundary
(recall 3.8). Show that if E is a connected subset of G, then M(A(E,3G)) > ckg(E)

where ¢ is a constant.

7.56. Exercise. (1) Applying the functional identities of 1, one can write the

constant by in the proof of 7.51 also in other ways. Show that

2
@ =5 =1 (57eT) -

(2) Find an improved form of 7.50 by replacing the inequality 1—¢7® < z in the
proof of 7.50 by the better inequality 1 —e~% < thz (cf. 2.29(1)).
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7.57. Remark. The Grotzsch capacity «n(s) has several interesting properties
which are studied in [AVV3]. It is shown there that

Yn(1/ th(a + b)) < Yn(1/tha) + v, (1/ thd)

holds for all a,b> 0. Several inequalities involving the function @y ,(r) can also be
found in [AVV1], [AVV2], and [AVV3]. One of these is

2r¢ )
s (1+r’)°‘+(1..,-l)a -<—<PK,n(T); r = V1—r2, a::Kl/(l n) ,

which holds for all K > 1, r€[0,1], and n > 2.

7.58. Exercise. Let My(r), r € (0,1), n > 2, be as in 7.49. Then M;(r) =
u(r) . Show that the relationship

(a) Mu(r)Mp(V1—12) =c

for all r € (0,1) is equivalent to

() loxa®] + loryxa(VI-12)]* =1

for all » € (0,1) and all K > 0. Recall that both (a) and (b) hold for n = 2 by
(5.57) and 5.61. Next, applying 7.26 show that (a) is false for » > 3 and, therefore,
also (b) is false for n > 3.

7.59. An open problem. Let £ and F be disjoint compact sets in H™ and
let F* denote the reflection of F in dH"™. Consider two curve families I' = A(E, F)
and T* = A(E,F*). It seems natural to conjecture that M(I') > M(I'*) ([BBH,
p.501, 7.57]). The validity of this conjecture can be verified in certain particular
cases, e.g. when F and F are balls. In particular, the conjecture holds true when
n =2, as F. W. Gehring and N. Suita have independently shown to the author. Some
applications of this fact are given in [LEVU].

7.60. Notes. The method of symmetrization has found many applications in
geometry (see [BER, 9.13]) and in various branches of analysis, e.g. in the study of
isoperimetric inequalities (see [PS], [BA], [HE2]), and in real analysis. O. Teichmiiller
[TE] applied these ideas to geometric function theory and proved a special case of

Lemma 7.17 above. Other function-theoretic applications are given in [HA2].



102

In R3® the conformal capacity was studied by C. Loewner [LO], who applied his
result to quasiconformal mappings. Many results of this section are connected with
the fundamental results of F. W. Gehring [G1], [G2]. A multidimensional version of
Teichmiiller’s work on symmetrization is contained in [G1] and [S1]. See also [PS].
The literature dealing with p—capacity is vast: the reader is referred to [MK], [FR],
[GOR], [MAZ2], and [STR2|, [W2], as well as to the bibliographies of these works.

One of the main goals of this section is to find estimates for M (A(E , F)) in terms
of geometric quantities such as

min{ d(E), d(F) }
d(E, F)

For 7.34-7.37 see [G1] and [G7]. For 7.41 and 7.42 see [VU10] and [VU13|. The natural
setup and motivation for 7.47 is the Schwarz lemma [HP], [WA|, [SH|, [MRV2], which
we shall study in Section 11. For n = 2 Theorem 7.47 is due to O. Hiibner [HU] and
the same method appears also in [LV2, p. 64] and, in the n—dimensional context, in
[AVV1]. For a different proof (n = 2) see P. P. Belinskil [BEL, p. 15]. Also 7.50 and
7.51 were proved in [AVV1]. For 7.38 see [VU10|, [VU13|, and [GM1].

From the vast literature dealing with condensers in the plane we mention [B],
[KL], [KU], and [T, Ch. III].

8. Conformal invariants

In the preceding sections we have studied some properties of the conformal invari-
ant M (A(E ,F G)) . In this section we shall introduce two other conformal invariants,
fhe modulus metric pg(z,y) and its “dual” quantity A4 (z,y), where G is a domain
in R® and z,y € G. The modulus metric ke is functionally related to the hyper-
bolic metric p, if G = B"™, while in the general case u, reflects the “capacitary
geometry” of G in a delicate fashion. The dual quantity Ag(z,y) is also function-
ally related to pg if G = B"™. For a wide class of domains in R"™, the so—called
QED-domains, we shall find two-sided estimates for A4(z,y) in terms of

|z — y]
min{ d(z,8G), d(y,8G) }

re(z,y) =
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8.1. The conformal invariants Ay and ps. I G is a proper subdomain
of R™, then for z,y € G with = # y we define

(8.2) Aa(z,y) = Cing M(A(Cz,Cy; @)

z Ly

where C, = v;[0,1) and 7,: [0,1) — G isacurvesuch that z € |y,| and ~,(t) — 8G
when ¢t = 1, z = z,y. It follows from 5.17 that Ay is invariant under conformal
mappings of G. That is, A;c(f(2), f(y)) = Ag(z,y),if fi G — fG is conformal
and z,y € G are distinct.

8.3. Remark. If card(R"\ G) =1, then Ag(z,y) = co by 5.33. Therefore
A is of interest only in case card(R”\G) > 2. For card(R"\G) >2 and z,y € G,
T # y, there are continua C, and C, as in (8.2) with C, N C, = # and thus
M(A(Cm, Cy; G)) < oo by 5.23. Thus, if card(R" \ G) > 2, we may assume that the

infimum in (8.2) is taken over continua C, and Cy with C,NCy = 0.

ke (z,y) Ag(z:v)
Dragram 8.1.

For a proper subdomain G of R™ and for all z,y € G define

(8.4) ne(z,y) = inf M(A(Cey,0G; G))

zy

where the infimum is taken over all continua C,, such that Cy = +[0,1] and v isa
curve with 4(0) =z and ~(1) = y. It is clear that . is also a conformal invariant
in the same sense as Ay . It is left as an easy exercise for the reader to verify that ug
is a metric if capdG > 0. [Hint: Apply 5.9 and 6.1.] If cap8G > 0, we call u, the

modulus metric or conformal metric of G.



104

8.5. Remark. Let D be a subdomain of G. It follows from 5.9 and (5.10)
that pg(a,b) < pp(e,b) for all a,b € D and Ag(e,b) > Ap(a,b) for all dis-
tinct a,b € D. In what follows we are interested only in the non-trivial case
card(R™ \ G) > 2. Moreover, by performing an auxiliary Mé&bius transformation, we
may and shall assume that co € R” \ G throughout this section. Hence G will have

at least one finite boundary point.

In a general domain G, the values of Ag(z,y) and pg(z,y) cannot be expressed
in terms of well-known simple functions. For G = B™ they can be given in terms of

p(z,y) and the capacity of the Teichmiiller condenser.

8.6. Theorem. The following identities hold for all distinct z,y € B™:

n—1 1 — 1
(1) ppn(z,y) =2 T(m) = fY(W) ;
(2) Ags(z,y) = 17 (sh? 1p(z,v)) .

Proof. (1) The proof of part (1) follows directly from 7.27, (7.32), and 5.53.

(2) Because the assertion is §M(B")-invariant, we may assume that z = re; =
—y and r = th(1p(z,y)) (see (2.25)). By a symmetry property 5.20 of the modulus
and by 5.54(1) we obtain

Agn(z,y) < M(A( [—e1,—rei], [re1,e1]; B"))

% M(A( [_',1‘.61, "7‘61] s [rgl, ;1_.31] . Rn))
T('('fé%i»’)’i) = 17 (sh® Lp(z,y)) .

Hence it will suffice to prove the inequality “>”.

il
B

Let C,, Cy be asin (8.2) and 0 < ¢ < (1 — |z|). Choose compact connected
subsets B, F of C,, Cy with z€ E, y € F and d(E,S™!) = d(F, 5" ) =¢.
Let E°=EURE, F° = FUhF where h(z) = z/|z|2. By 8.3 we may assume that
CrNCy =10 and hence at most one of the sets £ and F can contain 0. We may
assume O & F, hence F° is compact. Let Sym(F?®) denote the set obtained from
F*® by spherical symmetrization in the positive z;-axis and let Sym(E*®) be the set
obtained from E°* by spherical symmetrization in the negative z;-axis. By 7.17, 7.8,
and 5.9

cap(R™\ B*, F*) > cap(R™ \ Sym(E*) , Sym(F"*))

Z M(A( [“%61,—-1‘81] , [rel, -;1:61 D) — 2M(A(Y1,Y2))
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where Y; = [—-}:el, —re;] and Y, = [(1 —¢€)es, (1 —€)"tes]. This inequality together
with 5.54(1) yields

cap(R"\ E°, F°) > r(sh® 1p(z,y)) — 6(¢)

where 6(¢) — 0 as e — 0. Letting ¢ — 0 and applying 5.20 yields

M(A(Cz,C’y;B”)) > -.Al;'r(sh2 1p(z,y)) . Since C; and C, were arbitrary sets with

the stated properties, the desired inequality Agn(z,y) > %T(sh2 -é—-p(a:, y)) follows.
a

8.7. Remark. From 7.26(3) we obtain the following inequality for z,y € B"
(exercise)

1r(sh® 1o(,y)) > —ecn logth 1o (s, v)
= 2¢,, arth (e"é“”(”’y)> > che‘%P(m,y) .

Here the identities 2ch? 4 = 1+ ch2A4 and sh24 = 2ch Ash A were applied (see
also 2.29(3)). Recall that

2
sh? Lp(z,y) = |2~ vl
) = TG
by (2.19). Similarly, by 7.26(3) we obtain also
4
1r(sh® Lp(z,y)) < Len u(th®(Lp(z,y))) < Lcnlog m—)—

= ¢ 10g ——— .
o 8 th 2p(z, v)

8.8. Lemma. Let G be a proper subdomain of R", z € G, d(z) = d(z,8G),
B, = B"(z,d(z)), let y € B, with y # =, and let r = |z — y|/d(z). Then the
following two inequalities hold:
2

r 1
(1) Ac(z,y) > Ag, (z,y) = —%T(i—:ﬁ) > ¢, log pt

(2) pe(z:9) < up,(@9) =7(7) Swar(log2) .

Proof. (1) By 8.5, 8.6(2), and 8.7 we obtain

2
r
Ae(z,y) = Ag, (z,y) = %r(l——_—_—ﬁ) > —cp, logth Z(2arthr)

1+ 41 —r2
r

1
= ¢y, log > ¢, log -

(2) The desired inequalities follow from 8.5 and (7.24). O
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8.9. The function p(z). For z€ R"\ {0,e;}, n > 2, define

(8.10) p(z) = mf M( (E, F))

where the infimum is taken over all pairs of continua E and F in R"™ with the

properties 0, e; € E and z,00 € F.

8.11. Lemma. The inequality

p(z) > max{r(|z]), 7(|z — es)}
holds for all z € R™\ {0,¢e;}. Equality holds if z = se; and s <0 or s> 1.
Proof. The proof follows directly from 7.17. O
The main result of this section is the following theorem.

8.12. Theorem. For |t —e;| < |z|, z€R™\ {0,e:}
(1) p(z) < 27(|z— e1]) when |z+e1| > 2,

(2) p(z) <47(|z—e1]|) when |z| >1,

(3) p(z) <2"*ir(lz —e).

The proof of Theorem 8.12 will be divided into several parts. Due to symmetry
properties of the above definition (8.10) (that is axial symmetry in the z;-axis and
symmetry in the (n — 1)-dimensional plane z; = -;— ) it is clear that the values of p(z)

are determined by its values in the set

(813) D1={($1,0,...,0,.’Dn): % >0}\{€1}

All the upper bounds (1)-(3) in Theorem 8.12 are based on Lemma 5.27 and on

the functional inequalities of 7(s) in Lemma 5.63.
8.14. Lemma. If z € R"\ B"(—2¢y,3), then
4(|z] — 1) > min{ |z — ey, [z —e1]? } .
Proof. Write £ =z + 2e; — 2e; and £ — e; = £+ 2e; — 3e; . Then by the law

of cosines
|z = |z + 2e1|* + 4 — 4(z + 2e1) - €1

|z — e1|® = |z + 2e1|* + 9 — 6(z + 2e1) - €1
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From this we obtain
3]1:‘2 —'2|$—€112 = |x+261|2“629—6=3 .

Hence |z| > (1 + Z|z — e1]?)¥/?, so that

2z —eq?

1+\/1+§]$—81|2

|zl - 1>

Case A. |z —e;| <1. Then

2‘}:13—61[2
|z] —1> -2 22%!3)*-61{2.
14+4/1+2
Case B. |z —ey| > 1. Then
2 2
flz—elllz—e sz —e
lzt__lz 3! 1“ 1I > 3] 1* >:11_|$ ell)

14+/1+8z—ei2 1+4/1+2

since ¢ — t/(1+4/1+ 2t2) is increasing on (0,0).

The proof follows from the above inequalities. O
8.15. Lemma. Let E = [0,e;] and F = [z,00] for z € R"\ B™. Then
(1) p(z) <M(A(E, F)) < r(lz| - 1) .
If £ € R™®\ B"(—2ey,3), then
(2 p(z) <M(A(E,F)) < 27(|z = ea]) -

Proof. The inequality (1) follows from 5.27. It follows from 5.63(2) that 7(u) <
27(2u + 2¢/u) < 2r(2y/z) and hence r(1s?) < 2r(s). From 5.63(2) it also follows
that 7(%s) < 2r(s). In conclusion, for s >0 the following inequality holds

7(% min{s, s*}) < 2r(s) .

The proof of the inequality (2) follows from (1), the above inequality, and from
Lemma 8.14. O '
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8.16. Exercise. For 0 < a < 17 let z; = ey +t((cosa)e; + (sina)e,), t > 0.
For fixed o and arbitrary ¢ > 0 show that

p(zt) < t(tcosa).

8.17. Proof of Theorem 8.12(1). Let ¥ = {z € 5" !(—e1,2) : 21 = £ }.
Note that d(e;,Y) = /2. It suffices to prove the result for z € Dy \ B"(—ey,2).

Case A. |z—e1| < V2.

Choose T € S""1(—e;,2) N Dy with [T—e1| = |z — e1].

z
.S"""l(el, |z — ey1])
g
—eq 0 / €1
o :Zo

|zo — 20| = % — 4sin2(%ﬂ)

|20 —Z| = %+25in,6

Diagram 8.2.

Then |T — e;| = 4sin 28 where 8 is the acute angle between the segments [—ey, 1]

and [—ey,Z|. Let zo = %(61 —€y). Then

% — zo|® = (2sinB + 3)% + (§ — 4sin® 18)?
=1 +12sin® 18+ 2sinf = L(1 + A4)
where A = 24sin® -;-ﬂ + 4sin . Hence

l'f—zol 4 A

lzo—er] T 1+VI+A
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It is left as an exercise for the reader to show that

4 |T — e1| = 4sin 18

1+vVita = ' 2

holds for all z in D, \ B™®(—e1,2). Let Ey = [zo,e€1], Eg =[0,z0], and
F={zo+t(Z—1z0):t>1}. By 5.27 and the last two inequalities we obtain

= — Zo|

M(A(E;, F)) < r( 1) <r([F—e1]) .

|zo — e1] B

Because |T — e1| = |z — e1]|, we obtain by 5.27 and 5.9
p(z) < M(A(E1 U Ez,F)) <27(|lz—e1])

as desired. Note that the condition |z —e1| < v/2 was used only for the construction
of T.
Case B. |z —e1| > V2.

It is easy to see that in this case for z € D,

lz] -1 _ v2-1
>
|z — e1] V2

1
>
— 4

and hence by 8.14(1)
p(2) < (lel — 1) < (3o —er])

Because 7(s) < 47(4s) by 5.63(2) we obtain the desired inequality also in Case B.
a

8.18. Exercise. Show that 4/(1++1+ A) >4sin1f in the above proof.

8.19. Theorem. For z € D\ B"(—%(e1 + 3e,/tana), 3/(2tanc)) and
O<a< %w , the following inequality holds

p(z) < 4r(2(sina)|z —e1]) .

Proof. Let zo = ;(e1 — en/tanc). Let E; = [zo,e1], Bz = [0,z0], F =
{zo+t(z—z0):t>1}, [; =A(E;, F), 7 =1,2. It follows from 8.15(1) that

M(r,) < (1222l _y)

|zo — €1
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for 7 = 1,2. Because of the choice of z, 8.15 yields

|z — zo| ) ({x—ell) )
T ———-—-—_1 <27-___...___._. :27‘ 2SIna r—e R
(Ixo—ell - |$0"‘811 (( )I ll)

These inequalities together with 5.9 yield the desired bound
p(z) < M(A(E, UE,, F)) <4r((2sina)lz—e]) . O

8.20. Proof of Theorem 8.12(2). We may assume that z € D; \ B™. Let

a=1r and zo = (e — en/tanc). As in the proof of Theorem 8.19 we get
p(2) < 4r(VEfo— eal) < 47(jz - es)
as desired. O

8.21. Proof of Theorem 8.12(3). We may assume that z € D;. I z, >
1V3(1 — z1) , then Lemma 8.19 with o = /6 yields

oo
(8.22) p(z) <4r(lz —e1]) . F
If z, < %\/g(l — 1), choose T € Dy _ /5
with Z; = £; and F, = 3v3(1 - F1) - *
Let To = %(81 - ‘\/§€n) ) OA €1
E = {O,xo] U [zo,el] ,
and /6
F=[z,T|U{zo +t(T—zo): t>1}. %o
Diagram 8.3.

By (8.22) and 5.53
() < M(A(E, F) < 47(5 - ex]) + M(A((z,), E))
<dr(z—e|) +M(T) < 47(]z — e1]) +7(2)
=47(|lz— e1]) + 2"~ 1r(3) < 2ma.x{4,2"_1}'r(|z —e1)

< 2"+1T([a: —e1))

where ' = A([z,%], S" 1T, [T~ e1])). O
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For z € R™\ {0} we denote by r; a similarity map with »,(0) = 0 and
rz(z) = €1 . Then it is easy to see that |r,(y)—e;1| = |z—y|/|z|. It follows immediately
from the definitions (8.2) and (8.10) that

(8.23) Arny\{0} (2, ) = min{ p(rz()) , p(ry(z)) } .

Next we deduce the following two-sided inequality for ’\R"\ {0}(:1:, ) .
8.24. Theorem. For distinct z,y € R™\ {0} the following inequality holds

1 < Agm\(o}(2,9)/7(|z — y|/ min{|2|, [y[}) < 4.

Proof. We may assume that |z| < |y|. Denote G =R"\ {0}.
We prove first the lower bound. By (8.23) and 8.11 we get

Aa(z,y) 2 min{ 7(|rs(y) — e}, 7(Iry(z) — e1]) }
= r(max{|z - yl/|z|, |z — yl/ly|}) = 7(|z — y|/|e]) ,
which is the desired lower bound.

For the proof of the upper bound let V' be the (n — 1)-dimensional plane or-

thogonal to [0,z] at -%a: and let Ho, H, be the components of R*\V, z € H,.

Consider two cases.
Case A. y € H, . Because |y| > |z| it follows from 8.12(2) that

Ac(z,y) < p(rz(y)) < 47(|z—yl/I=]) -

Case B. y € Hy. Let Ey =[0,3z], E; = [1z,z], and F={iz+ity—1iz):
t>1}, T'j=A(E;,F), 7 =1,2. Then by 5.27

M(T;) < T(M ~1)

||
for j =1,2. Because |y — %z[ > %ﬁ{y] and |y| > |z| we obtain
V3
Ag(z,y) < M(Ty) + M(Ty) < 21‘( lzl‘yl - 1)

< 27((\/'—-.1)-@-) < 27(-;-(\/5—1)1—?—331) .

|| ||

From 5.63 it follows that 7(s) < 27(4s) and hence the above inequalities imply

Ag(z,y) < 4T(2(\/§— 1)'—”5:—"il) < 47(15:_3{1)

Ed ||

as desired. O
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The above results provide us with some efficient estimates for A, which we now

give.

8.25. Corollary. Let G be a proper subdomain of R™, = and y distinct
points in G and m(z,y) = min{d(z), d(y)}. Then

AG’(Q” y) S zle%fG ARn\{z} (:B’ y) ..<.. 47’(|$ - y[/m(za y)) '

Proof. The first inequality follows from 8.5. For the second omne fix 29 € 3G
with m(z,y) = d({z,y},{z0}) . Applying 8.24 to R"\ {20} yields the desired result.
' a

We next show that 8.25 fails to be sharp for a Jordan domain G in R™. For

t € (0, 1) consider the family Gy = B"(—e1,1)UB™(e1,1)UB"™(t) of Jordan domains.
Then by 8.25

Ag,(—e1,e1) < 47(2)
for all t € (0,%) . But this is far from sharp because in fact

AG, (_els 81) < M(A( [“261‘1 _61] ’ [617 281] ) Gt))
1\ 1i—n
< Wp—1 <1°g "t'> —0

as t — 0. However, for a wide class of domains, which we shall now consider, the

upper bound in 8.25 is essentially best possible.

8.26. QED domains. A closed set E in R" is called a c—quasiextremal dis-
tance set or c-QED ezceptional set or c-QED set, ¢ € (0,1], if for each pair of
disjoint continua F;, F; C R" \E

(827) M(A(Fl,Fz;_Rn \ E)) > cM(A(Fl,F:g)) .

If G is a domain in R"™ such that ﬁ”\G isa ¢;QED set, then we call G a ¢-QED
domain. If ¢ = 1 then the set E is called a null set for eztremal distances or a
NED- set.

8.28. Examples. (1) The unit ball B™ is a $—QED set by [GM1] or by the
above Lemma 5.22.

(2) If E is a compact set of capacity zero, then E is a 1-QED set. For instance
all isolated sets are 1-QED sets. The class of all 1-QED sets contains all closed sets
in R" of vanishing (n — 1)-dimensional Hausdorff measure (see [V3], [GM1]).

(3) B%\ [0,e1) isnot a c-QED set for any ¢ > 0.
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8.29. Theorem. Let G be a ¢-QED domain in R™. Then
Ag(z,y) > er(s® +25) > 21" "cr(s)
where s = |z — y|/ min{d(z), d(y)} .

Proof. Let C, and C, be connected sets as in (8.2) with z € C, and y € Cy .
Let Ty = A(C,,Cy;G) and T = A(C,,Cy). We may assume that d(z,dG) <
d(y,0G). Fix w € C; and v € Cy with |z —u| = d(2,0G) and |y —v| =
d(y, 0G) > d(z,0G) . Because |u—v| < |u—z|+|z—y|+ |y —v| we obtain by 7.26
and 5.63(1)

sl sl
[z —ully—o]

1 |z — y| 1 )
> —
~”<"" W= * Toely = T o

> cr(s® +25) > er(4s? +4s) > 21" 7(s)

M(T1) > cM(T3) > c'r<

as desired. O

It should be noted that the lower bound of 8.29 is very close to that of 8.24; in
fact it differs only by a multiplicative constant.
In the next few theorems we shall give some estimates for the conformal

metric pqg .

8.30. Lemma. Let G be a proper subdomain of R™, s € (0,1), z,y € G. If
kg(z,y) < 2log(l+ s), then

1
1 balz,y) <9 .
W =9 <)
Moreover, there exist positive numbers b; and bs depending only on n such that
(2) we(z y) < bikg(z,y) + b,
for all z,y € G.

Proof. (1) Choose a quasihyperbolic geodesic segment J;[z,y| connecting = to
y and let z € Jg[z,y] with kg(z,y) = 2kg(z, 2) = 2kg(y,2) . Then by (3.4)

o ;-
Ja(z,2) = log (1 + min{d(z), d(2)}

) < ko2, 2) < log(1 + )
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and hence z € B™(z,5d(z)). Let B, = B"(z,d(z)). By 3.7(1), (3.6), and (3.4) we

obtain

kg, (2,2) < 1og(1 + ZGXIE;TEI:ET) < log (1 +g I_ﬂi ;‘)2@)

lz’;é;') = 1}-5

Because of the symmetric choice of the point z, we get a similar upper bound also

1 . 1
< < — .
<1 log(l—}— Jalz,2) < T ka(z, 2)

for kp_(2z,y) . Hence

kB,(z’y) < kB (:I: z) +kB ( »Y)
—(ka(m,2) + kal2,1)) = T ka(my)

Denote by pp_ the hyperbolic metric of B, (see 4.25). Now by 3.3 and the above

results we get
; 2
pp,(z,y) < 2kp (z,y) < 1 kg(z,y)

and hence by 8.5, 8.6(1), and 5.53

pa(z,y) < pp,(z,y) =27 <m>

1
“(wpen) < (wEEama)

where p = pp_.

(2) Choose points zi,...,Tpt1 € Jg[z,y] with z; =z, zpy; =y and
kg(zj,zj41) = 2log(14s) for j =1,...,p—1 and kg(zp,Tp+1) < 2log(1+s) and
p < 1+4kg(z,y)/(2log(1 +s)) (cf. the proof of Lemma 4.9(1)). Then by part (1)

pe(z,y) < c(Z5,Tj41) < pbe

Il Mﬁ

where by = ~(1/th[(2log(1 + s))/(1 — 8)]) . The desired result with b5, =
b2/(2log(1 + s)) follows. O

It should be observed that Lemma 8.30(2) is a generalization of the upper bound
in (7.31) to the case of an arbitrary domain. The lower bound in (7.31) will next be

generalized to the case of domains with connected boundary.
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8.31. Lemma. Let G be a domain in R™ such that 9G is connected. Then
for all a,be G, a+#b,

(1) pe(a,b) > 7(4m® + 4m) > ¢n jo(a, b)

where ¢y, is the constant in 5.28 and m = min{d(a), d(b)}/|a—b|. If, in addition, G

is uniform, then

(2) ko(a,b) > Bkg(a,b)

for all a,be G.

Proof. Statement (1) follows from 7.38 and (8.4), while (2) follows from (1)
and 3.8. O

The above results in 8.29 and 8.31 are invariant under similarities but not under
GM(R™). This is an aesthetic flaw; since Ay and g are conformal invariants one
would naturally expect conformally invariant results. Next we proceed to give bounds
for Ay and uo in terms of conformally invariant majorant/minorant functions.

For distinct a,b,c,d in R" let

(8.32) m(a,b,c,d) = max{|a,b,d,c|, |a,c,d,b]|} .
If GCR" is a domain with card(R™\ G) > 2 then let

(8.33) mg(b, ¢) = sup{m(a,b,c,d) : a,d € 3G }.
It is clear that m is symmetric, that is,

(8.34) m(a,b,c,d) = m(a,c,b,d) = m(b,a,d,c)
and also gM(R™) -invariant, that is,

(8.35) m¢(a,b,c,d) = m(fa, fb, fe, fd) = m(a,b,c,d)

for all f € GM(R™) (cf. (1.28)). For z,y € R"\ {a} (a €R"™)

|z — u|

8.36 mia, T, Y, 0) = — .
( ) ( ) min{ |z — al, |y — a|}

It follows from (8.36) that
(8.37) Jo(z,y) =log(l +mg(z,y)) , G=R"\ {a},

for all z,y € G where j, is as in (2.34).
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8.38. The point—pair invariant m, . Next let us consider the conformally
invariant symmetric function mg for an arbitrary domain G < R™ with
card(R™ \ G) > 2. The following properties are immediate:

(1) Gic G and z,ye G, = mg, (2,9) > mg_(z,y) .

(2) For a fixed y € G, mg(z,y) — 0 iff z — y and meg(z,y) — oo iff

z — 0G.
(3) mg(z,y) > q(9G) ¢(z,y) .
(4) mg(z,y) < 9(9G) ¢(z,y)/9({z,v},8G)? .

8.39. Lemma. p(b,c) = log(1 + mga.(b,¢)) for b,c € B™.

Proof. By gM(B")-invariance we may assume b = —re; = —c. Then p(b,c) =
2log[(1+r)/(1 —r)] or, equivalently, r = th 1p(b,c) . For all a,d € 6B

2b—c| = 4r
(1-r)2 (1-7)2

m(a,b,c,d) < = m(—ey, —re,re;, eq)

and hence
4th 1p(b,¢c)

=ere) _ 1. O
(1—thip(b,e))2 °

mBn (b, C) =

The similarities between m(a,b,c,d) and s(a,b,c,d) (see (3.21)) should be ob-
served. In fact one could use s(e,b,c¢,d) instead of m(a,b,¢,d) and prove analogous
estimates.

Let a and d be distinct points in R® and D =R"\ {a,d}.

8.40. Theorem. 1 < Ap(b,c)/r(mp(b,c)) < 4 for distinct b,c € D =
R"\ {a,d}.

Proof. The proof follows readily from (8.35) and 8.24. I

8.41. Corollary. Let D C R™ be a ¢-QED domain with card(R™\ D) > 2.
Then for distinct z,y € D

2'""er(m) < er(m? + 2m) < Ap(z,y) < 47(m)

where m = mp(z,y) .

Proof. The proof follows from 8.29, 8.25, and 8.40. O
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8.42. Exercise. Let b,c € B". Show that

2|b— ¢
p(bsc) < log(1+ (@infl = o1 |c|})2> ’
2|b— ¢
plbre) 2 log 1+ min{1 — B, 1 — [e[} (1 + min{1 — [5],1 - 1c|})) '
Let d € S® 1. Show that
(bye) > 1 (1 __?__‘f:_ﬁl__)
plbre) 2 o1+ —a 3 1)

8.43. Remarks. For n = 2 an explicit expression for the function p(z) can
be deduced from [KU, Theorem 5.2, p. 192]. This explicit expression is a real number
determined by certain elliptic integrals with a complex argument. Because of this fairly
complicated definition it is difficult to see how the exact value of p(z) changes with
T or, say, with the angles o between [0,z] and [0,e;] and 8 between [0,e1] and
[e1, ], Tespectively. In [VU13, 4.3] it was conjectured that for n = 2 the constant
4 in 8.24 can be replaced by a smaller one, ¢ = 1.1712... = u(1/v/3)/u(1/v2),
which would be sharp as shown in [VU13, 4.3]. A weaker version of this cbnjectured
two—dimensional result with ¢? in place of ¢ was established in [LEVU]J. Also some

bounds for Aga\(oy(z,y) were found in [LEVU]J.

8.44. Exercise. Mori’s ring RM’Z(a, B) in R? has two complementary com-
ponents C; = {te; :t >0} and Co = {(cosp,sinp) eRZ:r—a < p < T+ 8},
0 < a< B <. Find an expression for cap Rps2(,8) by mapping R?\ C; confor-
mally onto H?. (For n = 2 P((3,9)) can be expressed in terms of the capacity of
Mori’s ring, see [KU, Theorem 5.2, p. 192].)

8.45. Remark. One can show that Ag.(z,y)(!=™ is a metric on B"
[AVV3]. It is tempting to conjecture that for all proper subdomains G of R™,
Ag(z,y)Y/ (=) is a metric. Even the particular case n = 2 , G=R?\ {0}, is open.

As shown in [LF2] Ag(z,y)~Y/" is always a metric.

Next we shall find an upper bound for the function Qg o (t) defined as
(8.46) ag () =17 (ra(t)/K), t>0, K>0.
It is easy to show using the basic functional identity 5.53 that

1 - B?
axnlt) = —gz— i B=eyka.(/VIti).
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For n =2 we can go one step further using the identity 5.61(2) and obtaining (7.54)
as a result. Further from (7.54) one can easily deduce that ay ,(t) has a majorant of
the form At/X | A constant as we have pointed out earlier. Although the multidi-
mensional analogue of 5.61(2) is false (recall 7.58), we nevertheless can find a similar

majorant for ag ,(t) valid for all dimensions n > 2.

8.47. Theorem. For n>2, K > 1, and t € (0,2273%) the following inequal-
ity holds
T (ra(t)/K) < 43 V/EE

Proof. Let z = 7, (r,(t)/K) and b= log(1+2(1 ++I+¢%)/t). By 7.26(3)

we obtain
enb < m(t) = Krp(z) < cnK,u,(l +2(1 -1+ z)/z)

and further
4p"1(b/K)
R e (75:9)
The inequality log(1/r) < u(r) < log(4/r) (cf. (5.58)) shows that e™* < p~1(u) <
4e™* for u > 0. Therefore p~!(b/K) < 1 for t € (0,2273K) and also

r < 4° (-————-f—-———-—) v < 43-1/Eyl/K
= \t+2(1+v1+10) =

holds for t € (0,2273%) as desired. I

8.48. Notes. This section is taken from [VU10] and [VU13]. NED sets in
the complex plane were introduced by L. V. Ahlfors and A. Beurling [AB]. J. Vaisila
[V3] studied NED sets in n-space and finally F. W. Gehring and O. Martio [GM1]
introduced QED sets. See also V. V. Aseev and A. V. Sychev [ASY] as well as
J. Viisdla [V12]. The conformal metric pg has been studied by I. S. Gal [GAL] and
T. Kuusalo [K1]. Its dual invariant A, was introduced by J. Ferrand [LF2]. For
n = 2 the function p(z) is closely connected to a modulus problem of O. Teichmiil-
ler and the shape of the extremal ring for p(z) has been thoroughly examined (see
G. V. Kuz’mina [KU, p. 192, Theorem 5.2]).

8.49. An appendix to Section 8. We shall give here an alternative proof for
Theorem 8.12(1) which is slightly simpler than the proof given in 8.17. This proof is

due to M. K. Vamanamurthy. First a lemma is needed.
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8.50. Lemma. If t >0 and s =12/(1 + /1 + ¢2), then the inequality

2s(1++/1+1/s) > /2 holds.

Proof. The assertion is equivalent to

2 t? 2
_.._[__._<1+\/1+_1_.t_\£21_tt_) >t,
1+ v1+1¢2 t

or to

V2(t+VEE+1+vV1+22) .1
1+v1+122 =

This is equivalent to

V2(t+ Y1+ 2 V1+V1+2)
7= ViTE 21

But here the left side

i) > V2V V2u
Vitvire Vize-

since u/+/1+ u? is increasing on [l,00) and u = ¢Y1+t2>1. 0O

8.51. A second proof for Theorem 8.12(1). For z € D; \ B"(—e;,2) we

have t=1x+4€; —e; and z—e; =z +e; — 2¢; . Hence

[a:|2 I:B + 61[2 +1- 2(27 + 81)
lz—ei>=|z+e|?+4—4(z+e;)-e

These inequalities yield 2|z|*> — |z — e1* = |z + €12 — 2 > 2. Thus |z|? —

v

1|z — e1]? = ¢? and hence

|z)2 —1 Lz —e? _ 12

|z +1 ~ 14 /1 + Lz — ]2 T 1+/1¥E2

o~ 1=

By 5.63(2) and 8.50

7(jz] - 1) < 27(2s(1 + 1+ 1/s)) < 27(tV2) = 27(|z — 1))

as desired. O



