THE NUMBER OF EULERIAN GRAPHS

 $g: E_2(D) \to \mathbb{Z}_2$ is **eulerian** if it has a closed walk $x_0 \to x_1 \to \ldots \to x_m = x_0$
containing overy edge exactly once containing every edge exactly once.

Theorem

A graph *g* is eulerian \iff it is connected and **even**:
the degree $d_g(x) = |\{y \mid g(x, y) = 1\}|$ is even for all *x*.

HOW MANY?

For *even graphs, up to isomorphism, that need not be connected*:

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\ \hline 2 & 3 & 7 & 16 & 54 & 243 & \cdots \\ \hline \end{array}
$$

WHAT?

$$
\sum_{\alpha} \frac{2^{\nu(\alpha)-\lambda(\alpha)}}{\prod_i i^{\alpha_i} \alpha_i!}
$$

where*^α*'s go through all*ⁿ*-tuples and*ν* and *λ* are ..., well, complicated; see R. W. Robinson, Enumeration of Euler graphs (1969):

- OK, but much of the complications come from "up to isomorphisms"
- $n = 5$: The first 3 correspond to the case $n = 4$. The last 4 are true eulerian graphs.
- **These belong to different switching classes!**

Theorem 8.7

For odd |*D*|, each [*g*] has ^a unique even graph.

Proof. Let

$$
\sigma(x) = \begin{cases} 1 & \text{if } x \in B = \{x \mid d_g(x) \text{ odd}\}, \\ 0 & \text{if } x \in A = \{x \mid d_g(x) \text{ even}\}. \end{cases}
$$

Claim. *^g^σ* is even.

By Handshaking Lemma, |*B*| is even, and so |*A*| is odd.

Case *^x* [∈] *^A* (even):

The parity of $x \in A$ does not change while switching.

Case *^x* [∈] *^B* (odd):

The parity of *^x* [∈] *^A* does change.

Uniqueness: Let $g^{\sigma} \neq g$.

- The even graphs are closed under sum:If both *g* and g^{σ} are even, so is $g + g^{\sigma} = \mathbb{O}_{OI}$ (where $O = \sigma^{-1}(0)$ and $I = \sigma^{-1}(1)$).
- \mathcal{O}_{OI} (complete bip) is even =⇒ [|]*O*[|] and [|]*I*[|] are both even (as neighbourhoods) $\implies |D| = |O| + |I|$ is even.

Hence [*g*] has ^a unique even graph, whenever |*D*| is odd.

⊓⊔

^A graph *^g* is **odd**, if the degrees are all odd.

Theorem 8.8

Let $|D| = n$ be **even**. Then either $[g]$ has no even and no odd graphs, or exactly half of its graphs are even and half odd.

Proof. Write *^x* [∼]*^g ^y* if *^x* and *^y* have degrees of the same parity in *^g*.

Let $\sigma = \sigma_x$ be elementary. Then

 $|D \setminus \{x\}|$ odd

$$
d_{g^{\sigma}}(y) = \begin{cases} (n-1) - d_g(y) & \text{if } y = x \\ d_g(y) + 1 & \text{if } g(x, y) = 0 \\ d_g(y) - 1 & \text{if } g(x, y) = 1 \end{cases}
$$
 $d_g(x)$ $d_{g^{\sigma}}(x)$

- Every vertex changes its parity (including *^x*). Thus [∼]*^g* and [∼]*g^σ* agree.
- Let $\sigma = \sum_{i=0}^{k} \sigma_i$ for elementary σ_i .
- [∼]*^g* and [∼]*g^σ* agree for all *^σⁱ* and thus for all *^σ*. So $d_g(x)$ and $d_{g^{\sigma}}(x)$ have the same parity $\iff k$ is even.