THE NUMBER OF EULERIAN GRAPHS

 $g: E_2(D) \to \mathbb{Z}_2$ is **eulerian** if it has a closed walk $x_0 \to x_1 \to \ldots \to x_m = x_0$ containing every edge exactly once.

Theorem

A graph g is eulerian \iff it is connected and **even**: the degree $d_g(x) = |\{y \mid g(x, y) = 1\}|$ is even for all x.

HOW MANY?

For even graphs, up to isomorphism, that need not be connected:

WHAT?

$$\sum_{\alpha} \frac{2^{\nu(\alpha)-\lambda(\alpha)}}{\prod_i i^{\alpha_i} \alpha_i!}$$

where α 's go through all *n*-tuples and ν and λ are ..., well, complicated; see R. W. Robinson, Enumeration of Euler graphs (1969):

- OK, but much of the complications come from "up to isomorphisms"
- *n* = 5: The first 3 correspond to the case *n* = 4.
 The last 4 are true eulerian graphs.
- These belong to different switching classes!

Theorem 8.7

For odd |D|, each [g] has a unique even graph.

Proof. Let

$$\sigma(x) = \begin{cases} 1 & \text{if } x \in B = \{x \mid d_g(x) \text{ odd}\}, \\ 0 & \text{if } x \in A = \{x \mid d_g(x) \text{ even}\}. \end{cases}$$

Claim. g^{σ} is even.

By Handshaking Lemma, |B| is even, and so |A| is odd.

Case $x \in A$ (even):

The parity of $x \in A$ does not change while switching.

Case $x \in B$ (odd):

The parity of $x \in A$ does change.

Uniqueness: Let $g^{\sigma} \neq g$.

- The even graphs are closed under sum:
 If both g and g^σ are even, so is g + g^σ = O_{OI} (where O = σ⁻¹(0) and I = σ⁻¹(1)).
- \mathbb{O}_{OI} (complete bip) is even $\implies |O|$ and |I| are both even (as neighbourhoods) $\implies |D| = |O| + |I|$ is even.

Hence [g] has a unique even graph, whenever |D| is odd.

A graph *g* is **odd**, if the degrees are all odd.

Theorem 8.8

Let |D| = n be **even**. Then either [g] has no even and no odd graphs, or exactly half of its graphs are even and half odd.

Proof. Write $x \sim_g y$ if x and y have degrees of the same parity in g.

Let $\sigma = \sigma_x$ be elementary. Then $|D \setminus \{x\}| \text{ odd}$ $d_{g^{\sigma}}(y) = \begin{cases} (n-1) - d_g(y) \text{ if } y = x \\ d_g(y) + 1 & \text{ if } g(x, y) = 0 \\ d_g(y) - 1 & \text{ if } g(x, y) = 1 \end{cases} \qquad (x - 1) - (x - 1) -$

• Every vertex changes its parity (including *x*). Thus \sim_g and $\sim_{g^{\sigma}}$ agree.

- Let $\sigma = \sum_{i=0}^{k} \sigma_i$ for elementary σ_i .
- ~_g and ~_{gσ} agree for all σ_i and thus for all σ.
 So d_g(x) and d_{gσ}(x) have the same parity ⇔ k is even.