Combinatorial Structures 2019

Problem set 4 Feb 14

Exercise 4.1. Let δ be an inversion of Δ . Show that, for all Δ^{δ} -graphs g,

$$g \in [\mathbb{O}] \iff g(x, y)g(y, z) = g(x, z)$$
 for all different vertices $x, y, z \in D$.

Solution. Suppose first that $g = \mathbb{O}^{\sigma}$ for some σ . Then

$$g(x, y) = \sigma(x)\mathbb{O}(x, y)\sigma(y)^{-1} = \sigma(x)\sigma(y)^{-1}$$
$$g(y, z) = \sigma(y)\sigma(z)^{-1}, \text{ and so}$$
$$g(x, y)g(y, z) = \sigma(x)\sigma(z)^{-1} = g(x, z).$$

Assume then that *g* satisfies the condition. Let $x \in D$ be fixed with $\sigma(x) = \varepsilon$ (horizon), and $\sigma(y) = g(x, y)$ for all $y \neq x$. Now,

$$g^{\sigma}(x,y) = \varepsilon \cdot g(x,y) \cdot g(x,y)^{-1} = \varepsilon.$$

Moreover, given $y, z \in D \setminus \{x\}$, using the condition,

$$g^{\sigma}(y,z) = \sigma(y)g(y,z)\sigma(z)^{-1} = g(x,y)g(y,z)g(x,z)^{-1} = g(x,z)g(x,z)^{-1} = \varepsilon.$$

Exercise 4.2. Let Δ be a finite group of order $k \ge 2$. Show that if g is a Δ^{δ} -graph having a complete factor g[X] for some X with $|X| \ge k + 1$, then the switching class [g] has no primitive Δ^{δ} -graphs.

Solution. Let σ be a selector. Since $|X| \ge k + 1$, there are two elements $x_1, x_2 \in X$ such that $\sigma(x_1) = \sigma(x_2)$. For all $y \notin \{x_1, x_2\}$ (also for $y \in X \setminus \{x_1, x_2\}$), we have

$$g^{\sigma}(y,x_1) = \sigma(y)g(y,x_1)\sigma(x_1)^{\delta} = \sigma(y)g(y,x_2)\sigma(x_2)^{\delta} = g^{\sigma}(y,x_2).$$

Therefore g^{σ} has a clan $\{x_1, x_2\}$ and it is not primitive.

Exercise 4.3. Prove the following claims.

(a) The set S(D) of the selectors $D \to \Delta$ forms an abelian group under addition; see page 42.

(b) Let $\sigma: D \to \mathbb{Z}_2$ be a selector where $\sigma^{-1}(1) = \{x_0, x_1, \dots, x_k\}$ for some $k \ge 0$. Denote by σ_i the elementary selector at x_i . Then

$$\sigma(x) = \sum_{i=0}^{k} \sigma_i(x).$$
(4.1)

Therefore every selector is a sum of elementary selectors.

Solution. (a) In this group $\sigma(x) + \sigma(x) = 0$ for all $x \in D$. The zero element of S(D) is the selector satisfying

 $\zeta(x) = 0$

for all $x \in D$. Each selector is its own inverse. (b) OK. **Exercise 4.4.** An undirected graph $g: E_2(D) \to \mathbb{Z}_2$ is **even** (in the *eulerian sense*), if for all $x \in D$, $n_g(x) = |\{y \mid g(x, y) = 1\}|$ is even. Show that if both $g, h: E_2(D) \to \mathbb{Z}_2$ are even, so is their sum g + h.

Solution. Suppose *g* and *h* are even, and let $x \in D$. Then (g+h)(x, y) = g(x, y) + h(x, y) for the neighbours *y* of *x*. Now, (g+h)(x, y) = 1 if and only if $g(x, y) \neq h(x, y)$. We count: let $r = |\{y \mid g(x, y) = 1 = h(x, y)\}|$. Then $n_{g+h} = n_g - r + n_h - r$, which is even.

Exercise 4.5. We say that two subsets *X* and *Y* of a set *D* **cross** if they overlap and $X \cup Y \neq D$. Let *g* be a Δ -graph with $X, Y \in \mathscr{C}[g]$ be two crossing clans of the switching class [g]. Show that $X \cup Y, X \cap Y, X \setminus Y \in \mathscr{C}[g]$.

Solution. By assumption, there exists a node $x \notin X \cup Y$. Let $h \in [g]$ be such that x is a horizon of h. By Theorem 7.5, $X, Y \in \mathcal{C}(h)$, and the claim follows from this. by a basic lemma.