Combinatorial Structures 2019 Problem set 5 Feb 19

Exercise 5.1. Let $g: E_2(D) \to \mathbb{Z}_2$ and let $\alpha: D \to D$ be a permutation. Show that $\alpha([g]) =$ $[\alpha(g)]$. In particular, if $\alpha(h) \in [g]$ for some $h \in [g]$, then α is an automorphism of $[g]$.

Solution. By Lemma 8.4, we have $\alpha(g^\sigma) = \alpha(g)^{\sigma a^{-1}} \in [\alpha(g)]$ for each σ , and so $\alpha([g]) \subseteq$ $[\alpha(g)]$. Now if $h \in [\alpha(g)]$, say $h = \alpha(g)^\tau$, then, again by Lemma 8.4, $h = \alpha(g^{\tau\alpha}) \in \alpha([\mathfrak{g}])$, and the claim follows.

Let *∆* be a set of colours containing the special *symmetric* **zero label** 0. We do not assume that 0 occurs in a *∆*-graph *g*, and so there is no essential restriction to the *g*'s. Denote

$$
E_g = \{e \mid g(e) \neq 0\}.
$$

For a fixed edge *e* ∈ *E^g* , let *g*−*e* be obtained by recolouring the edges *e* and *e* [−]¹ by 0:

$$
(g-e)(e') = \begin{cases} g(e') \text{ if } e' \notin \{e, e^{-1}\}, \\ 0 \text{ if } e' = e \text{ or } e' = e^{-1}. \end{cases}
$$

So $E_{g-e} = E_g \setminus \{e, e^{-1}\}\$. A truly primitive *g* is said to be **unstable** if *g*−*e* is not primitive for all $e \in \check{E_g}$.

Exercise 5.2. Characterize all *n*-vertex unstable Δ -graphs for *n* = 3 and 4.

Solution. Systematic search.

Exercise 5.3. Let a Δ -graph *g* be **triangle-free**, i.e., every 3-subset $X = \{x_1, x_2, x_3\}$ has a zero edge $g(x_i, x_j) = 0$ for some $i \neq j$. Let

$$
N_g(x) = \{ y \mid (x, y) \in E_g \}.
$$

Show that

(i) for each vertex *x*, either $N_g(x) = \emptyset$ or $g[N_g(x)]$ is discrete (all zero edges);

(ii) each $g[X]$, with $X \in \mathcal{C}(g)$, is discrete, or X is a union of connected components of g .

Solution. For (i), suppose that $N_g(x) \neq \emptyset$. If $y, z \in N_g(x)$, then (x, y) and (x, z) are non-zero edges, and thus $g(y, z) = 0$, since *g* is triangle-free.

For (ii), assume that *X* is a proper clan of *g*, which is not a union of connected components. This means that $N_g(X) \neq \emptyset$. Let $z \in N_g(X)$. Since $X \in \mathcal{C}(g)$, we have $X \subseteq N_g(z)$. By (i), $g[N_g(z)]$ is discrete and thus $g[X]$, as a subgraph of $g[N_g(x)]$, is also discrete.

Exercise 5.4. Assume that *g* is a triangle-free *∆*-graph such that the associated undirected graph (*D*, *E^g*) is connected. Show that the maximal proper clans of *g* are disjoint. In particular, the quotient $g/\mathcal{P}_{max}(g)$ is primitive.

Solution. Let *X*₁ and *X*₂ be two maximal proper clans. If they intersect, then $X_1 \cup X_2 \in \mathcal{C}(g)$, and hence *X*₁ ∪ *X*₂ = *D*. Let *y* ∈ *X*₁ ∩ *X*₂ ∈ $\mathcal{C}(g)$. By connectivity, there exists *x* ∈ *X*₁ \ *X*₂ (or symmetrically $x \in X_2$) such that $g(x, y) = a \neq 0$, and hence $g(x, z) = a$ for all $z \in X_2$. Since *g* is triangle free, $g[X_2]$ is discrete, and so $|X_2| = 2$ and $Y = \{z\}$. Now $g(z, y) = 0$ implies that $g(z, x) = 0$ for all $x \in X_1$ contradicting the connectivity.

The proof of the next result is bit complicated.

Theorem 5.1. *Each unstable ∆-graph is triangle-free.*

Exercise 5.5. Let $|D| \ge 3$ be a finite set.

- (i) Show that for a family of 3-subsets Ω of *D*, Ω is a two-graph if and only if there exists $g: E_2(D) \to \mathbb{Z}_2$ such that $\Omega = \Omega(g)$.
- (ii) Show that for $g, h: E_2(D) \to \mathbb{Z}_2$, $\Omega(g) = \Omega(h)$ if and only if $[g] = [h]$.

Solution. Let $g: E_2(D) \to \mathbb{Z}_2$, and consider the 4-sets with elements $\{1, 2, 3, 4\} \subseteq D$. Then do a systematic search of triangles in these vertices: *Ω*(*g*) is a two-graph.

Let then Ω be a two-graph on *D*. Fix $x \in D$. We construct a graph g_{Ω} as follows. Let $g_{\Omega}(x, y) = 0$ for all $y \neq x$, and let for all $y, z \neq x$,

$$
g_{\Omega}(y,z) = 1 \iff \{x,y,z\} \in \Omega.
$$

Hence, for each 3-subset $\{x, y, z\}$ of *D*, $g(\langle x, y, z \rangle) = 1$ if and only if $\{x, y, z\} \in \Omega$. Moreover, for all 3-subsets $\{y, z, u\}$ of $D \setminus \{x\}$,

$$
g(\langle x,y,z\rangle)+g(\langle x,y,u\rangle)+g(\langle x,z,u\rangle)=g(\langle y,z,u\rangle),
$$

from which it follows that $g(\langle y, z, u \rangle) = 1$ if and only if $\{y, z, u\} \in \Omega$. Therefore $\Omega = \Omega(g_{\Omega})$. For (ii), suppose $Ω(g) = Ω(h)$, i.e., $g(\langle x, y, z \rangle) = h(\langle x, y, z \rangle)$ for all 3-subsets $\{x, y, z\}$ of *D* (same parity). Hence [*g*] = [*h*] by Theorem [8.4](#page-0-0) (and the fact that *g* and *h* are undirected). The converse claim follows similarly from Theorem [8.4.](#page-0-0)