## PANCYCLIC HAMILTONIAN SWITCHING CLASSES

Theorem

Let *g* be a graph of  $n \ge 3$  vertices. Then [g] contains a hamiltonian graph  $\iff [g] \ne [\mathbb{O}]$  with *n* odd.

For odd *n*,  $\mathbb{O}_{AB} \in [\mathbb{O}]$  is never hamiltonian because you have to visit both sides *A* and *B* equally many times.

For even *n*,  $\mathbb{O}$  has a switch  $\mathbb{O}_{AB}$  with |A| = |B|, and this is hamiltonian.

Choose g so that it has the <u>maximum number of edges</u> in its switching class. Hence

$$d_g(x) \ge (n-1)/2$$

for all *x*, since otherwise you switch at *x*.

(1) If *n* is even, then  $d_g(x) \ge n/2$  for all *x*, and then *g* is hamiltonian by:

**Theorem** (Dirac-Ore 1952,1962)

Let g be a graph of  $n \ge 3$  vertices. If  $d_g(x) + d_g(y) \ge n$ for all x, y with g(x, y) = 0, then g is hamiltonian. Recall

$$N_g(x) = \{y \mid g(x, y) = 1\}.$$

(2) Assume *n* is <u>odd</u>, and choose any  $x \in D$ . Then  $g[D \setminus \{x\}]$  is even and it has a Hamilton cycle:

$$x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_{n-1}.$$

If, for some *i* (modulo n-1),  $g(x, x_i) = 1 = g(x, x_{i+1})$ , then

$$x_1 \rightarrow \ldots \rightarrow x_i \rightarrow x \rightarrow x_{i+1} \rightarrow \ldots \rightarrow x_{n-1}.$$

is a Hamilton cycle of *g*. The same holds, if  $g(x, x_i) = 0 = g(x, x_{i+1})$ , since we can make a switch  $\sigma_x$  at *x*.

Suppose not.

Then  $N_g(x) = \{x_{2i} \mid i = 1, 2, ...\}$ (or  $N_g(x) = \{x_{2i+1} \mid i = 1, 2, ...\}$ ).



Replacing each  $x_{2i+1}$  by x,

$$x_1 \rightarrow \ldots x_{2i} \rightarrow x \rightarrow x_{2i+2} \rightarrow \ldots \rightarrow x_{n-1}$$

we obtain

$$N_g(x_{2i+1}) = \{x_{2i} \mid i = 1, 2, \ldots\} (= N_g(x))$$



In  $g^{\sigma_x}$  the vertex x is adjacent to all odd vertices. Now,

$$N_g(x_{2i}) = \{x_{2i+1} \mid i = 0, 1, \ldots\} (= N_{g^{\sigma_x}}(x))$$

П

But now, *g* is an odd complete bipartite graph, with  $[g] = [\mathbb{O}]$ .