COMBINATORIAL STRUCTURES IN GRAPH THEORY

Tero Harju

http://users.utu.fi/harju/Structures/Structures.htm

Department of Mathematics and Statistics University of Turku FIN-20014 Turku, Finland

The Aim

The structure of Δ -graphs, i.e., edge coloured directed graphs.

Framework for decomposition and transformation of systems with binary relations.

- Colours are usually represented by letters *a*, *b*, . . .
- The graphs will be complete because it is no restriction: a missing connection is a colour of its own.

Decompositions

There are various methods to decompose graphs and related structures. Decompositions of combinatorial and algebraic structures (groups, rings, and, indeed, general algebras) employ the divide-and-conquer method:

(1) a large problem is partitioned into smaller parts.(2) A method to retrace a solution of the original problem.

Clan decomposition, or modular decomposition, of graphs is closely related to the decomposition by quotients in algebra:

$$\left(\begin{array}{ccc}g \mapsto \left\{\begin{matrix} g/\mathscr{X} \\ \mathscr{X} \end{matrix}\right\} \mapsto g \end{array}\right)$$

Two topics

• The **static part**: the decomposability and indecomposability (i.e., primitivity).

The key notion: **clan** – a subset *X* of elements (vertices) such that no element $y \notin X$ distinguishes elements of *X* by the colours.

• The **dynamic part**: local transformation of **switching**. The colours form a group, and graphs are transformed to graphs.

Notation

- Sets of numbers: \mathbb{R} , \mathbb{Q} , \mathbb{Z} , and \mathbb{N} .
- The **cardinality** of a finite set *X*, denoted by |X| or #X, is the number of its elements.
 - A set *X* with *k* elements (|X| = k) is called a *k*-set.
 - Singletons {*x*} are often identified with the sole member *x*.
- Subsets *Y* and *Z* are **comparable** if $Y \subseteq Z$ or $Z \subseteq Y$.

Otherwise they are disjoint $(X \cap Y = \emptyset)$ or they **overlap**:

 $X \cap Y \neq \emptyset, \quad Y \setminus Z \neq \emptyset, \quad Z \setminus Y \neq \emptyset.$

- $2^Z = \{Y \mid Y \subseteq Z\}$ is the **power set** of *Z*.
- For a family $\mathscr{X} \subseteq 2^X$ of sets, let

$$\bigcup_{Y \in \mathscr{X}} Y = \{ x \mid \exists Y \in \mathscr{X} : x \in Y \},$$

$$\bigcap_{Y \in \mathscr{X}} Y = \{ x \mid \forall Y \in \mathscr{X} : x \in Y \}.$$

• Let $\mathscr{X} = \{X_i \mid i \in I\} \subseteq 2^X$ be a **partition** of *X*, i.e., its sets are pairwise disjoint and $X = \bigcup \mathscr{X}$.

A subset $T \subseteq X$ is a **transversal** of \mathscr{X} , if $|T \cap X_i| = 1$ for all $i \in I$. Equivalently, an injective function $\tau : \mathscr{X} \to X$ is a **transversal**, if $\tau(X_i) \in X_i$ for all *i*.

•	٠
•	•

- ι_X is the **identity function** on *X*. So $\iota_X(x) = x$. If $\alpha : X \to Y$ is a bijection, then $\alpha^{-1}\alpha = \iota_X$ and $\alpha\alpha^{-1} = \iota_Y$.
- For $\alpha: X \to Y$ and $Z \subseteq X$, the **restriction** to *Z*:

$$\alpha \upharpoonright Z(x) = \alpha(x)$$
 for all $x \in Z$.

The **image** and the **co-image**:

$$\alpha(Z) = \{\alpha(z) \mid z \in Z\}$$
 and $\alpha^{-1}(U) = \{x \mid x \in X, \ \alpha(x) \in U\}.$

• The **kernel** of $\alpha: X \to Y$:

$$\ker(\alpha) = \{(x, y) \in X \times X \mid \alpha(x) = \alpha(y)\}.$$

Undirected graphs

Let

$$E_2(D) = \{(x, y) \mid x, y \in D \text{ with } x \neq y\}$$

be the set of all ordered *non-reflexive* pairs of a set *D*.

An **undirected graph** g = (D, E) has a nonempty finite set D of **vertices** and a set of **edges** $E \subseteq E_2(D)$ satisfying $(u, v) \in E \iff (v, u) \in E$. for all $u, v \in D$.

Example. The undirected graph $K_D = (D, E_2(D))$ is **complete** on *D*.

Characteristic function and Δ -graphs

g = (D, E) can be identified with the **characteristic function** of *E*:

$$g: E_2(D) \to \{0, 1\}, \quad g(e) = \begin{cases} 1 & \text{if } e \in E, \\ 0 & \text{if } e \notin E. \end{cases}$$

We generalize to arbitrary colour sets.

For
$$e = (x, y) \in E_2(D)$$
, let $e^{-1} = (y, x)$ be its **reverse**.

Let Δ be a set of **colours** (or **labels**).

A Δ -graph on the domain $D = D_g$ is a function $g: E_2(D) \rightarrow \Delta$, such that, for all $e_1, e_2 \in E_2(D)$, $g(e_1) = g(e_2) \iff g(e_1^{-1}) = g(e_2^{-1})$

Reversibility condition

Remarks

• The reversibility condition $g(e_1) = g(e_2) \iff g(e_1^{-1}) = g(e_2^{-1})$ is adopted only for simplicity.

Reversibility implies an **involution** $\delta : \Delta \rightarrow \Delta$ of the colours:

$$\delta^2 = \iota$$
 and $g(e^{-1}) = \delta(g(e))$.

- Later when Δ has a group structure δ will satisfy the condition $\delta(ab) = \delta(b)\delta(a)$ with respect to the given group operation.
- A colour $a \in \Delta$ is **symmetric**, if $a = \delta(a)$.

Examples

- Δ = {0,1}: Undirected graph if both colours are symmetric (with ambiguity: 0/1). Otherwise a tournament.
- $\Delta = \{a, b, c\}$: One colour, say *c*, must be symmetric, $\delta(c) = c$, *a* and *b* can be reverse colours, $b = \delta(a)$ (and so $\delta(a) = b$).

In this case a Δ -graph presents an **oriented graph**:

$$g(x,y) = \begin{cases} a & \text{if } (x,y) \text{ is an edge,} \\ b & \text{if } (y,x) \text{ is an edge,} \\ c & \text{otherwise.} \end{cases}$$

In general

• $\Delta = \{a, b, c, d\}$:

Every **directed graph** can be presented as a Δ -graph, where

- *a* is symmetric: an edge in both directions,
- *b* is symmetric: a non-edge in both direction,
- and $c = \delta(d)$: an oriented edge.

Remarks

- **Ambiguity**: The definition distinguish edges and non-edges without an interpretation. So Δ is *up to isomorphism*.
- A Δ-graph *g* is drawn by representing the vertices as points in the plane and the edges as connecting arcs together with the label *g*(*e*).
- The picture can be complicated, but reversibility makes things more convenient: we can
 - omit the reverse colours of the chosen non-symmetric colours,
 - draw a line without arrow heads for symmetric colours, and
 - omit one symmetric colour.

Example

Consider the Δ -graph g on the domain $D = \{x_1, x_2, x_3, x_4, x_5\}$, where $\Delta = \{a, b, c\}$ with with $\delta(a) = a$ and $\delta(b) = c$ (and hence $\delta(c) = b$).

You do not see the reverse colour *c*. We could have omitted the edges having the symmetric colour *a*, but we didn't.

Isomorphisms and subgraphs

g and *h* are **isomorphic**, *g* ≅ *h*, if there are bijections α: D_g → D_h and ψ: Δ_g → Δ_h such that

• $h: E_2(A) \to \Delta_h$ with $A \subseteq D$ is a **subgraph** of $g: E_2(D) \to \Delta_g$, denoted

$$h = g[A]$$

if
$$\Delta_h \subseteq \Delta_g$$
, and $h = g \upharpoonright A$.
In particular,

$$g[A](e_1) = g[A](e_2) \iff g(e_1) = g(e_2) \text{ for all } e_1, e_2 \in E_2(A).$$