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The Aim

The structure of ∆-graphs, i.e., edge

coloured directed graphs.

Framework for decomposition and transformation of systems with

binary relations.
• Colours are usually represented by letters

a, b, . . .

• The graphs will be complete because it is

no restriction: a missing connection is a

colour of its own.
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Decompositions

There are various methods to decompose graphs and related structures.

Decompositions of combinatorial and algebraic structures (groups, rings,

and, indeed, general algebras) employ the divide-and-conquer method:

(1) a large problem is partitioned into smaller parts.

(2) A method to retrace a solution of the original problem.

Clan decomposition, or modular decomposition, of graphs is closely

related to the decomposition by quotients in algebra:

g 7→

�

g/X

X

�

7→ g
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Two topics

• The static part: the decomposability and indecomposability

(i.e., primitivity).

The key notion: clan – a subset X of elements (vertices) such that

no element y /∈ X distinguishes elements of X by the colours.

• The dynamic part: local transformation of switching.

The colours form a group, and graphs are transformed to graphs.
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Notation

• Sets of numbers: R, Q, Z, and N.

• The cardinality of a finite set X , denoted by |X | or #X , is the num-

ber of its elements.

• A set X with k elements (|X |= k) is called a k-set.

• Singletons {x} are often identified with the sole member x .

• Subsets Y and Z are comparable if Y ⊆ Z or Z ⊆ Y .

Otherwise they are disjoint (X ∩ Y = ;) or they overlap:

X ∩ Y 6= ;, Y \ Z 6= ;, Z \ Y 6= ;.
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• 2Z = {Y | Y ⊆ Z} is the power set of Z .

• For a family X ⊆ 2X of sets, let

∪X =
⋃

Y∈X

Y = {x | ∃Y ∈ X : x ∈ Y } ,

∩X =
⋂

Y∈X

Y = {x | ∀Y ∈ X : x ∈ Y } .

• Let X = {X i | i ∈ I} ⊆ 2X be a partition of X , i.e., its sets are

pairwise disjoint and X = ∪X .

A subset T ⊆ X is a transversal of X , if |T ∩ X i|= 1 for all i ∈ I .

Equivalently, an injective function τ : X → X is a transversal, if

τ(X i) ∈ X i for all i.

•
•

• •
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• ιX is the identity function on X . So ιX (x) = x .

If α : X → Y is a bijection, then α−1α = ιX and αα−1 = ιY .

• For α : X → Y and Z ⊆ X , the restriction to Z:

α ↾ Z(x) = α(x) for all x ∈ Z .

The image and the co-image:

α(Z) = {α(z) | z ∈ Z} and α−1(U) = {x | x ∈ X , α(x) ∈ U}.

• The kernel of α : X → Y :

ker(α) = {(x , y) ∈ X × X | α(x) = α(y)}.
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Undirected graphs

Let

E2(D) = {(x , y) | x , y ∈ D with x 6= y}

be the set of all ordered non-reflexive pairs of a set D.

An undirected graph g = (D, E) has a nonempty finite set D of

vertices and a set of edges E ⊆ E2(D) satisfying

(u, v) ∈ E ⇐⇒ (v, u) ∈ E .

for all u, v ∈ D.

Example. The undirected graph KD = (D, E2(D)) is complete on D.
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Characteristic function and ∆-graphs

g = (D, E) can be identified with the characteristic function of E:

g : E2(D)→ {0, 1}, g(e) =

¨

1 if e ∈ E,

0 if e /∈ E.

We generalize to arbitrary colour sets.

For e = (x , y) ∈ E2(D), let e−1 = (y, x) be its reverse.

Let ∆ be a set of colours (or labels).

A∆-graph on the domain D = Dg is a function

g : E2(D)→∆ ,

such that, for all e1, e2 ∈ E2(D),

g(e1) = g(e2) ⇐⇒ g(e−1
1
) = g(e−1

2
)

Reversibility

condition
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Remarks

• The reversibility condition g(e1) = g(e2) ⇐⇒ g(e−1
1
) = g(e−1

2
) is

adopted only for simplicity.

Reversibility implies an involution δ : ∆→∆ of the colours:

δ2 = ι and g(e−1) = δ(g(e)) .

• Later when ∆ has a group structure δ will satisfy the condition

δ(ab) = δ(b)δ(a) with respect to the given group operation.

• A colour a ∈∆ is symmetric, if a = δ(a).
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Examples

• ∆= {0, 1}: Undirected graph if both colours are symmetric (with

ambiguity: 0/1). Otherwise a tournament.

• ∆= {a, b, c}: One colour, say c, must be symmetric, δ(c) = c,

a and b can be reverse colours, b = δ(a) (and so δ(a) = b).

In this case a ∆-graph presents an oriented graph:

g(x , y) =









a if (x , y) is an edge,

b if (y, x) is an edge,

c otherwise.

a

b
c

b

a
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In general

• ∆= {a, b, c, d}:

Every directed graph can be presented as a ∆-graph, where

• a is symmetric: an edge in both directions,

• b is symmetric: a non-edge in both direction,

• and c = δ(d): an oriented edge.
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Remarks

• Ambiguity: The definition distinguish edges and non-edges with-

out an interpretation. So ∆ is up to isomorphism.

• A ∆-graph g is drawn by representing the vertices as points in the

plane and the edges as connecting arcs together with the label g(e).

• The picture can be complicated, but reversibility makes things more

convenient: we can

• omit the reverse colours of the chosen non-symmetric colours,

• draw a line without arrow heads for symmetric colours, and

• omit one symmetric colour.
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Example

Consider the ∆-graph g on the domain D = {x1, x2, x3, x4, x5}, where

∆= {a, b, c} with with δ(a) = a and δ(b) = c (and hence δ(c) = b).

x1

x2

x3

x4x5

a

a

a

b

b

b

b

b

b

b

You do not see the reverse colour c. We could have omitted the edges

having the symmetric colour a, but we didn’t.
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There you are

x1

x2

x3

x4x5

b
b

b

b

b

b

b

x1

x2

x3

x4x5

b

b

b

b

b

b

b

15



Isomorphisms and subgraphs

• g and h are isomorphic, g ∼= h, if there are bijections α : Dg → Dh

and ψ : ∆g →∆h such that

ψ(g(x , y)) = h(α(x),α(y)) .

x

y

α(x)

α(y)

a ψ(a)

• h: E2(A)→∆h with A⊆ D is a subgraph of g : E2(D)→∆g ,

denoted

h= g[A]

if ∆h ⊆∆g , and h= g ↾A.

In particular,

g[A](e1) = g[A](e2) ⇐⇒ g(e1) = g(e2) for all e1, e2 ∈ E2(A) .
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