Thm 5.1 Every truly primitive Δ -graph *g* has a primitive subgraph of 3 or 4 vertices.

Suppose not: Assume that *g* has no proper, truly primitive subgraphs. (Contradiction + reduction on the size proves the claim.)

We may assume that $|D_g| \ge 5$.

UNP= uniformly non-primitive

$$h = g[D \setminus \{x\}]$$
$$Z \qquad X \setminus \{x\}$$

h UNP: partition to *Z*, *X* \ {*x*} ∈ *C*(*h*). Here *x* ∈ *X*.
One of them has at least two vertices, say *X* \ {*x*}.

• $x \in X$ and $|X| \ge 3$

∴ g[X] UNP: partition $A, B \in \mathcal{C}(g[X])$. Assume $x \in A$.

- $\therefore B \in \mathscr{C}(g)$
- $\therefore B = \{y\}$ since g is primitive.

- $X \notin \mathscr{C}(g)$ $\therefore \exists z \in Z : g(z, x) \neq g(z, y)$, i.e., Blue \neq Green
 - $\therefore \{z, y\} \in \mathscr{C}\{g[x, z, y]\}$ and so Blue=Red⁻¹

• Note: $A \notin \mathscr{C}(g)$ and so

 $\{z, x\} \notin \mathcal{C}\{g[x, z, y]\}.$

- $X\setminus\{x\}\notin \mathscr{C}(g)$
- A :: $\exists v \in A : \operatorname{Red} \neq \operatorname{Cyan}$

$$\therefore$$
 Cyan = Green (by { x, z, v })

But now g[x, y, z, v] is primitive