CLOSURES OF CLANS

The closure properties of clans of the switching classes differ from those of single Δ -graphs.

Example. The intersection of two clans $X, Y \in \mathcal{C}(g)$ is always a clan. This is **not so** for switching classes.

Indeed, consider $\Delta = \mathbb{Z}_2$, and the next g together with a switch g^{σ} :

- $X = \{x_2, x_3, x_4\} \in \mathcal{C}(g),$ $Y = \{x_1, x_2, x_3\} \in \mathcal{C}(g^{\sigma}).$ Both in $\mathcal{C}[g]$.
 - But the intersection $X \cap Y = \{x_2, x_3\} \notin \mathscr{C}[g]$.

On the other hand, say that two subsets X and Y of a set D cross if they overlap and $X \cup Y \neq D$.

Exercise. Let g be a Δ -graph with $X, Y \in \mathscr{C}[g]$ be two crossing clans of [g]. Show that $X \cup Y$, $X \cap Y$, $X \setminus Y \in \mathscr{C}[g]$.

TOWARDS DECOMPOSITION – AGAIN

In analogy to individual Δ -graphs, let, for [g],

$$G[g] = (D, E)$$

where

$$E = \{(x, y) \in E_2(D \mid \{x, y\} \in \mathscr{C}[g]\}.$$

Lemma:

Let $\{x, y_1\}, \{x, y_2\}, \{x, y_3\} \in \mathscr{C}[g]$ be different 2-node clans, then $\{x, y_1, y_2, y_3\}$ induces a complete subgraph of G[g].

Proof. 1. If $D = \{x, y_1, y_2, y_3\}$, then $\{y_1, y_2\} = D \setminus \{x, y_3\} \in \mathscr{C}[g]$. Similarly, $\{y_2, y_3\}, \{y_1, y_3\} \in \mathscr{C}[g]$ and so G[g] is a complete graph.

2. Suppose then $|D| \ge 5$.

The clans $\{x, y_1\}$ and $\{x, y_2\}$ cross $\implies \{x, y_1, y_2\} \in \mathscr{C}[g]$.

The clans $\{x, y_1, y_2\}$ and $\{x, y_3\}$ cross $\implies \{y_1, y_2\} \in \mathscr{C}[g]$.

Symmetrically, $\{y_1, y_3\}, \{y_2, y_3\} \in \mathcal{C}[g]$, and thus the claim.

Theorem

Let g be a Δ^{δ} -graph. If G[g] is connected, then it is complete or a cycle.

Proof. Suppose $|D| \ge 4$.

By the lemma, if G[g] has a vertex of degree ≥ 3 , then G[g] is complete.

Suppose that the degrees are ≤ 2 .

By connectivity, G[g] is either a cycle or a path.

In both cases, $D = \{x_1, ..., x_n\}$ so that (x_i, x_{i+1}) are the edges of G[g].

Now $\{x_2, \ldots, x_{n-1}\} \in \mathcal{C}[g]$, since $\{x_2, \ldots, x_k\}$ crosses with $\{x_k, x_{k+1}\}$ for each $k = 3, \ldots, n-1$.

Hence $\{x_1, x_n\} = D \setminus \{x_2, \dots, x_{n-1}\} \in \mathscr{C}[g].$

Therefore G[g] is a (hamiltonian) cycle.

QUOTIENTS OF SWITCHING CLASSES

A **factorization** of [g] is a partition D into clans $\mathscr{X} \subseteq \mathscr{C}[g]$.

These are not quite as straightforward as for the individual Δ -graphs, because the clans in \mathscr{X} may come from different switches g^{σ} of g.

The **quotient** of [g] by \mathcal{X} is

$$[g]/\mathscr{X} = \{h/\mathscr{X} \mid h \in [g], \ \mathscr{X} \text{ a factorization of } h\}.$$

We shown that $[g]/\mathcal{X}$ is, **indeed**, a switching class $[h/\mathcal{X}]$ for some $h \in [g]$.

If σ is a constant selector, then $g \cong g^{\sigma}$. Hence

Lemma

Let g be a Δ^{δ} -graph and σ a **constant selector**.

- For each nonempty subset $X \subseteq D$, the subgraphs g[X] and $g^{\sigma}[X]$ are isomorphic.
- For each factorization \mathscr{X} of g, the quotients g/\mathscr{X} and g^{σ}/\mathscr{X} , are isomorphic.

Assume \mathcal{X} is a factorization of g.

For a selector $\sigma: D \to \Delta$, let $\widehat{\sigma}: \mathscr{X} \to D$ be determined by

$$\widehat{\sigma}(X) = \sigma(x)$$
 if $x \in X$ in \mathscr{X} .

It should be clear that

$$g^{\sigma}/\mathscr{X} = (g/\mathscr{X})^{\widehat{\sigma}}$$

simply because g^{σ}/\mathcal{X} is isomorphic to the substructure g[T], where T is a transversal of \mathcal{X} .

Also, the reverse holds: given $\hat{\sigma}$, the selector σ can be recovered.

THEOREM

Let \mathscr{X} be a (proper) factorization of the switching class [g]. There exists a selector σ such that \mathscr{X} is a factorization of g^{σ} , and

$$[g]/\mathscr{X} = [g^{\sigma}/\mathscr{X}].$$

Proof. Denote $\overline{X} = D \setminus X$ for a $X \in \mathcal{X}$.

Isolate X: there exists σ with $X, \overline{X} \in \mathscr{C}(g^{\sigma})$.

Let $Y \in \mathcal{X} \setminus \{X\}$. Hence $Y \subseteq \overline{X}$.

Lemma 7.5(ii): since $\overline{X} \in \mathscr{C}(g^{\sigma})$ and $Y \in \mathscr{C}((g^{\sigma})^{\sigma}) = \mathscr{C}(g)$ then $Y \in \mathscr{C}(g^{\sigma})$.

So: \mathscr{X} is a factorization of g^{σ} and g^{σ}/\mathscr{X} is well defined.

Assume that \mathscr{X} is a factorization of some $h \in [g]$ (among with g^{σ}). Since $[g] = [g^{\sigma}]$, there is a τ with $h = (g^{\sigma})^{\tau}$.

- Now, each $X \in \mathcal{X}$ is a clan in both g^{σ} and $(g^{\sigma})^{\tau}$. By Lemma 7.5(i), τ is **constant on each** $X \in \mathcal{X}$.
- Hence $h/\mathscr{X} = (g^{\sigma}/\mathscr{X})^{\widehat{\tau}}$. Consequently, $h/\mathscr{X} \in [g^{\sigma}/\mathscr{X}]$.
- Finally, let $\widehat{\tau} : \mathscr{X} \to \Delta$ be given.

By Lemma 7.5(ii), \mathcal{X} is a factorization of $g^{\tau\sigma}$.

Since
$$g^{\tau\sigma}/\mathcal{X} = (g^{\sigma}/\mathcal{X})^{\widehat{\tau}}$$
,

$$[g]/\mathscr{X} = \{(g^{\sigma}/\mathscr{X})^{\widehat{\tau}} \mid \widehat{\tau} \text{ a selector}\}$$

as required.