
The Equivalence Problem of Multitape Finite

Automata

Tero Harju and Juhani Karhumäki
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Abstract

Using a result of B.H. Neumann we extend Eilenberg’s Equality
Theorem to a general result which implies that the multiplicity equiv-
alence problem of two (nondeterministic) multitape finite automata is
decidable. As a corollary we solve a long standing open problem in
automata theory, namely, the equivalence problem for multitape de-
terministic finite automata. The main theorem states that there is a
finite test set for the multiplicity equivalence of finite automata over
conservative monoids embeddable in a fully ordered group.

1 Introduction

One of the oldest and most famous problems in automata theory is the
equivalence problem for deterministic multitape finite automata. The no-
tion of multitape finite automaton, or multitape automaton for short, was
introduced by Rabin and Scott in their classic paper of 1959, [16]. They
also showed that, unlike for ordinary (one-tape) finite automata, nondeter-
ministic multitape automata are more powerful than the deterministic ones.
This holds already in the case of two tapes.

As a central model of automata, multitape automata have gained plenty
of attention. However, many important problems have remained open, in-
cluding the equivalence problem in the deterministic case. For nondetermin-
istic multitape automata (even for two-tape automata, which are normally
called finite transducers) the equivalence problem is a standard example of
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an undecidable problem, see [1]. This undecidability result was first proved
by Griffiths in 1968, [8].

The equivalence problem of multitape deterministic automata has, as far
as we know, been expected to be decidable. It seems that in this context
”equivalence” implies ”structural similarity”. Despite this the equivalence
problem has been solved only in a few special cases. The oldest result is that
of Bird from 1973,[3] which solves the problem for two-tape deterministic
automata. An alternative solution to the two-tape case was given in [19].
Numerous attempts, see [13], [12], [5], to solve the general problem have
lead to only modest success so far. The difficulty of the equivalence problem
is already manifested in the fact that the inclusion problem for multitape
deterministic automata is easily seen to be undecidable.

Our approach is as follows. Instead of deterministic multitape automata
we consider nondeterministic multitape automata with multiplicities. Thus
we ask whether two given multitape automata are multiplicitly equivalent,
that is, whether they accept the same n-tuples of words exactly the same
number of times. The multiplicity equivalence clearly reduces to ordinary
equivalence if the automata are deterministic, and even when they are un-
ambiguous. The multiplicity equivalence problem for finite transducers has
been considered an important open problem of its own, see [11].

Consequently, we attack a nontrivial generalization of one of the famous
open problems in automata theory. Hence a few explaining words are in
order. First of all, intuitively, the deterministic behaviour of nondetermin-
istic devices is in a sense captured by multiplicities. A nice example of this
correspondence is Eilenberg’s Equality Theorem, [6]. It shows that in order
to test the equivalence of two deterministic (one-tape) automata and to test
the multiplicity equivalence of two nondeterministic (one-tape) automata it
is enough to consider the computations of exactly the same lengths (in terms
of the size of state sets). Secondly, the multiplicity considerations provide
new tools to attack the original problem. Indeed, as shown by Eilenberg’s
proof of Equality Theorem, methods of classical algebra become applicable.
This turns out decisive.

Eilenberg showed that the multiplicity equivalence of one-tape automata
is decidable when the multiplicities are taken from a subsemiring R of a
field. Eilenberg’s proof extends immediately to one-tape automata, where
the multiplicities are taken from a subsemiring R of a division ring. In par-
ticular, the semiring R need not be commutative. We shall use a restriction
(to unary alphabet) of this Equality Theorem. However, a more general
semiring R yields a proof of the decidability of the multiplicity equivalence
problem for the multitape automata.
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Here we need a result of B.H. Neumann [14], which states that the ring of
all formal power series over a fully ordered group with well ordered supports
is a division ring.

For the elementary results of division rings we refer to [10]. Formal
power series in connection to automata theory are well treated in [18] and
[2]. Fully ordered groups and the results needed for these, including the
above mentioned Neumann’s result, can be found in [7] and in a more general
setting in [4] and [15]. For the automata theoretic prerequisites we refer to
[1] and [6].

2 Reduction to One-Tape Automata

In this section we reduce the multiplicity equivalence problem for multitape
automata to the corresponding problem for one-tape automata, which, in
addition, has a unary input alphabet. In this reduction the behaviour of a
multitape automaton is encoded to the multiplicities of the new one-tape
automaton.

In order to make the result more general and at the same time to sim-
plify the notations we consider automata over (conservative) semigroups. A
reader who wishes a less abstract treatment is advised to consult our first
report of the subject, [9].

Let S be a finitely generated monoid, that is, a semigroup with an iden-
tity element 1. We denote by S+ the subset S − {1}. For a subset B ⊆ S
we let [B] denote the submonoid of S generated by B.

The monoid S is said to be finitely factored if each element s ∈ S has
only finitely many factorizations s = s1s2 . . . sn with each si ∈ S+. In a
finitely factored monoid S from s1 ·s2 = 1 it follows that s1 = 1 = s2, and
thus S is torsion-free and S+ is a subsemigroup of S. Also, a finitely factored
monoid cannot have idempotents other than the identity element 1.

A finitely factored S is said to be conservative if there is a generator set
B for S such that s1s2 . . . sn = r1r2 . . . rm, si, ri ∈ B, implies that n = m.

As an example the free monoid Σ∗ and the free commutative monoid cΣ∗

over a (finite or infinite) alphabet Σ are conservative. Also, if S1, . . . , Sk are
conservative monoids then so is their direct product S1 × S2 × · · · × Sk and
their free product S1 ∗ S2 ∗ · · · ∗ Sk.

Let now S be a finitely factored monoid and define

S(i) = S −
⋃
j>i

(S+)j
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for all i = 0, 1, . . . , where (S+)j = {s1s2 . . . sj | sk ∈ S+ for k = 1, 2, . . . , j}.
Thus S0 = {1} because in a finitely factored monoid no product of noniden-
tity elements can be identity.

Lemma 1. Let S be a finitely factored monoid. Then

1.
⋃

i≥0 S(i) = S,

2. S(1) generates S,

3. S(i) ⊂ S(i+1) for all i ≥ 0.

Moreover, if S is conservative then (S+)i = S(i) − S(i−1) for all i.

Proof. Let s ∈ S. There are only finitely many factorizations of s and
thus there exists a factorization of maximum length, s = s1s2 . . . sn, where
si ∈ S+ for all i = 1, 2, . . . , n. This means that s ∈ S(n) and hence the first
claim follows. It follows also that si /∈ (S+)j for j ≥ 2 and hence si ∈ S(1)

for all 1 ≤ i ≤ n. Consequently, S(1) generates S.
If S(i) = S(i+1) for some i ≥ 0, then clearly S would be a finite semigroup

and hence not finitely factored.
Finally, if S is conservative then for each s ∈ S there is a unique integer

k such that s = s1s2 . . . sn for si ∈ S(1), i = 1, 2, . . . n, implies that n = k.
The last claim follows from this.

The generator set S(1) obtained for a finitely factored monoid S is unique
as a minimal generator set (i.e., the base) for S. The existence of a base for
a monoid is equivalent to its being finitely factored.

Lemma 2. Monoid S is finitely factored if and only if S has a base.

Proof. Suppose S has a base B. Then for every s ∈ S(1) there are generators
t1, . . . , tk in B such that s = t1t2 . . . tk. This implies immediately that k = 1
and hence that B = S(1).

For a conservative monoid S we let |s| denote the length of the element
s ∈ S, that is, |s| = k, if s ∈ (S(1))k.

Clearly, for a finitely factored (resp. conservative) monoid S the sub-
semigroups [B] generated by subsets B ⊆ S(1) are finitely factored (resp.
conservative).

The following definition of an R-S-automaton is in accordance with
Eilenberg’s definition of the corresponding one-tape automaton for free monoids,
[6]. We assume that a semiring R always contains an identity element.
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Let S be a finitely factored semigroup and R a semiring. An R-S-
automaton is defined as a tuple A = (Q,E, µ, I, T ), where Q is a finite set
of nodes (or states), E ⊆ Q×S+×Q is a finite set of edges ( or transitions),
µ : E → R is a multiplicity (weight) function, I is a set of initial nodes and
T is a set of final nodes.

A path of A is any sequence p = e1e2 . . . ek of edges such that ei =
(qi−1, si, qi) ∈ E (i = 1, 2, . . . , k). The label of p is the element s = s1s2 . . . sk,
and p is successful if q0 is an initial node and qk is a final node. The
multiplicity of the path p is the element pµ = e1µ · . . . · ekµ of R. The
multiplicity of an element s ∈ S is defined as the sum sA =

∑
p pµ over all

successful paths p with label s. Since S is supposed to be finitely factored,
sA ∈ R for all s. Thus an R-S-automaton A defines a mapping A : S → R.
Two R-S-automata A1 and A2 are multiplicitely equivalent if they define
the same mappings.

An R-S-automaton A is normalized if its edges are in Q × S(1) × Q.
Each R-S-automaton A can be transformed to a multiplicitly equivalent
normalized R-S-automaton by dissecting the edges e ∈ E of A to paths
(with additional new nodes) corresponding to a chosen factorization of the
label s ∈ S of e. The function µ is modified so that it gives the value 1 for all
but one of the added edges, and the remaining edge obtains the value of the
original edge e of A. We omit the details of this staightforward construction.

Let S be a monoid and consider the set of all formal power series, R〈〈S〉〉,
over S with coefficients in the semiring R. Define the sum and product in
R〈〈S〉〉 in a natural way:∑

s

nss +
∑

s

mss =
∑

s

(ns + ms)s,

(
∑

s

nss)(
∑

s

mss) =
∑

s

(
∑
uv=s

numv)s.

We note that the product in R〈〈S〉〉 is well defined for finitely factored
monoids S. In fact, the product is needed here only in the polynomial
semiring R〈S〉 which consists of all finite formal sums

∑
s∈S nss and which

is a subsemiring of R〈〈S〉〉. However, in Section 3 formal power series over
(fully ordered) groups are used and then the product is not automatically
well defined any more.

If S is a finitely factored monoid then in an R-S-automaton A the mul-
tiplicity sA ∈ R for each s ∈ S.

We reduce the equivalence problem of an R-S-automata with S conser-
vative to the equivalence problem of R〈S〉-Σ∗-automata, where Σ is a finite
alphabet. In fact, Σ will be a one-letter alphabet, Σ = {a}.
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Let S be a conservative monoid and let A = (Q,E, µ, I, T ) be a normal-
ized R-S-automaton. Define an R〈S〉-Σ∗-automaton A(a) = (Q,E(a), µ(a), I, T )
with

E(a) = {(q, a, p) | (q, s, p) ∈ E}, (q, a, p)µ(a) =
∑

s∈S(1)

(q, s, p)µ·s.

Theorem 1. Let A1 and A2 be two normalized R-S-automata for a con-
servative monoid S. Then sA1 = sA2 holds for all s ∈ S if and only if
uA

(a)
1 = uA

(a)
2 holds for all u ∈ Σ∗.

Proof. Every successful path for s in Ai, i = 1, 2, has length |s| and thus
sA1 = sA2 for all s ∈ S if and only if for all k ≥ 0, sA1 = sA2 for all
s ∈ S(k). This is equivalent to

∑
|s|=k(sA1)s =

∑
|s|=k(sA2)s for all k. Here∑

|s|=k(sAi)s = akA
(a)
i for i = 1, 2 and hence the claim follows.

Above we assumed that an R-S-automaton reads a nonidentity element
in its edges, that is, we do not allow edges of the form (q, 1, p). In fact,
the multiplicity equivalence problem for finite transducers is undecidable if
we allow the transitions which ’read and write’ the empty word, that is,
(q, (1, 1), p) ∈ E. To see this consider two finite transducers T1 and T2 and
define two new transducers by adding the loops (q, (1, 1), q) to each state q of
T1 and T2, respectively. The new transducers have infinitely many computa-
tions for each input-output pair and, consequently the original transducers
are equivalent (without multiplicity) just in case the modified transducers
are ’multiplicitly’ equivalent. Hence the undecidability follows.

3 Decidability Results

We firstly restate Eilenberg’s Equality Theorem [6, pp 143 - 145], for division
rings.

Theorem 2. Let R be a subsemiring of a division ring P and let Σ be an
alphabet. Then the normalized R-Σ∗-automata A1 and A2 are multiplicitly
equivalent if and only if sA1 = sA2 for all s ∈ Σ∗ with |s| < card(Q1) +
card(Q2), where Qi is the state set of Ai for i = 1, 2.

The proof in [6] for a subsemiring of a (commutative) field K is based
on the following properties of fields: Let V be a finite dimensional vector
space over the field K. If U is a subspace of V then the dimension of U is at
most that of V , and if U has the same dimension as V then U = V . These
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dimension results are equally valid for division rings, see [10], and hence the
proof of Theorem 8.1 of [6] generalizes as such to subsemirings of division
rings.

Our next step is to use a result of Neumann [14]. We refer also to [4],
[7] and [15] for this result. We begin by introducing the formal power series
needed in the theorem.

A group G is fully ordered if there exists a linear ordering ≤ of G, which
respects right and left multiplication: for all g, h, t, if g < h then gt < ht
and tg < th. Let P be a division ring, G a fully ordered group and let
B =

∑
g ngg ∈ P 〈〈G〉〉. The support of B is the set {g ∈ G : ng 6= 0}. Let

Pwo〈〈G〉〉 denote the family of all series from P 〈〈G〉〉 with well ordered support,
i.e., the series for which every subset of the support has a least element with
respect to the ordering of G. The well ordered power series are used instead
of the general power series in order to obtain a ring structure. Indeed, the
product of two (general) series from P 〈〈G〉〉 is not necessarily well defined,
see e.g. [4].

Theorem 3. Let G be a fully ordered group and P a division ring. Then
Pwo〈〈G〉〉 is a division ring.

If S is a submonoid of a fully ordered group G then P 〈S〉 is a subsemiring
of P 〈G〉 and the latter is contained in the division ring Pwo〈〈G〉〉. Hence

Theorem 4. Let S be a submonoid of a fully ordered group and let R be
a subsemiring of a division ring. Then R〈S〉 is a subsemiring of a division
ring.

Combining the above two theorems with Theorem1 we obtain the fol-
lowing general result.

Theorem 5. Let R be a subsemiring of a division ring P and let S be a
conservative monoid that can be embedded in a fully ordered group G. Then
the normalized
R-S-automata A1 and A2 are multiplicitly equivalent if and only if sA1 =
sA2 for all s ∈ S with |s| < card(Q1) + card(Q2), where Qi is the state set
of Ai for i = 1, 2.

Proof. Let r = card(Q1) + card(Q2) and let A
(a)
i , i = 1, 2, be as in Theo-

rem 1. Now by Neumann’s result Pwo〈〈G〉〉 is a division ring. The polynomial
semiring R〈S〉 is a subsemiring of this division ring and thus we can consider
A

(a)
1 and A

(a)
2 as

Pwo〈〈G〉〉-Σ∗-automata. By Equality Theorem A
(a)
1 = A

(a)
2 if and only if
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akA
(a)
1 = akA

(a)
2 for all k < r. But, by the proof of Theorem 1 this is

equivalent to
∑

|s|=k(sA1)s =
∑

|s|=k(sA2)s for all k < r. This proves the
theorem.

Thus the multiplicity equivalence problem for R-S-automata satisfying
the demands of the previous theorem reduces to testing the equality for
a finite set of elements. The effectiveness of the testing depends on the
semiring R and the conservative monoid S.

For our original goals we need the result that every direct product of free
groups is fully ordered. It is by no means an easy task to fully order a free
group. This can be done using a general result of Neumann stating that a
group G is fully ordered if the factor groups in the lower central series of G
are torsion-free and the series terminates at the trivial group. The Magnus-
Witt theorem says that the free groups possess this lower central series
property. Another proof makes use of the following Vinogradov’s result, see
[15]: The free product of fully ordered groups is again fully ordered. Now
a free group is the free product of cyclic groups and since the cyclic groups
are easily fully ordered we obtain the result for free groups.

Theorem 6. Every free group is fully ordered.

Also every torsion free Abelian group is fully ordered and hence the free
Abelian groups are fully ordered, see [7].

Now, if the groups G1, . . . , Gk are fully ordered then their direct product
G1 ×G2 × · · · ×Gk can also be fully ordered. To see this let ≤i be the full
ordering for Gi, i = 1, 2, . . . , k, and define the ordering ≤ for G1 × G2 ×
· · · ×Gk by: (g1, . . . , gk) < (h1, . . . , hk) if and only if there is a j such that
gj < hj and for all i < j, gi = hi. Clearly, the ordering ≤ is a full ordering
in the direct product.

Theorem 7. The direct product of fully ordered groups is fully ordered.

The direct product S = Σ∗
1 × Σ∗

2 × · · · × Σ∗
k of the free monoids Σ∗

i is a
submonoid of the fully ordered group F1 × F2 × · · · × Fk, where Fi is the
free group generated by Σi for i = 1, 2, . . . , k. Thus we have the following
special case of Theorem 5.

Theorem 8. Let S be a direct product of free monoids and let R be a
subsemiring of a division ring. For two normalized R-S-automata A1 and
A2, sA1 = sA2 holds for all s ∈ S if and only if sA1 = sA2 holds for all s
with |s| < card(Q1) + card(Q2), where Qi is the state set for Ai, i = 1, 2.
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When we choose R to be N, Z or Q in the above theorem we can decide
whether or not two given polynomials from R〈S〉 are equal.

Theorem 9. Let S be a direct product of finitely many free monoids. Then
it is decidable whether or not two Q-S-automata are multiplicitly equivalent.

The same reasoning is valid for direct products of free commutative
monoids.

Theorem 10. Let S be a direct product of finitely many free commutative
monoids and free monoids. Then it is decidable whether or not two Q-S-
automata are multiplicitly equivalent.

We obtain the n-tape finite automata as Q-S-automata by setting the
multiplicity eµ equal to 1 for each edge e = (p, s, q) of the automaton.

Theorem 11. The multiplicity equivalence problem for n-tape finite au-
tomata is decidable.

An n-tape finite automaton A is unambiguous if for each s ∈ S there is
at most one computation of A which accepts s. Hence A is unambiguous if
and only if sµ = 1 when A accepts s and sµ = 0 otherwise. In this case the
semiring R does not play any role and by the above theorem we can decide
whether two given unambiguous n-tape finite automata are equivalent. We
note here that it is undecidable to determine whether a multitape automaton
is unambiguous.

No matter how an n-tape deterministic finite automaton is defined in
details (for example, with or without endmarkers) it is natural to require
the unambiguity. Hence we have a solution to the equivalence problem in
this case.

Theorem 12. The equivalence problem for the n-tape deterministic finite
automata is decidable.

4 Discussion

In solving the equivalence problem of deterministic multitape automata we
generalized the problem considerably to the multiplicity equivalence problem
for nondeterministic multitape automata. The generalization to conserva-
tive monoids is not essential for this problem. However, we have tried to
be general because the approach of this paper may turn out to be useful
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in solving other equivalence problems. In particular, we had in mind an-
other famous open problem of formal languages: the equivalence problem of
deterministic pushdown automata.

As in our considerations above the fact that the ordinary equivalence
problem (of nondeterministic devices) is undecidable does not mean that
the multiplicity equivalence should be undecidable as well. Indeed, we have
the following example of a subfamily of context-free languages supporting
this view.

Let us call a linear context-free grammar G = (N,Σ, S, P ) marked, if
either
(i) the sets ∪p∈P {a ∈ Σ | ∃(X, α) ∈ P : α ∈ Σ∗aΣ∗NΣ∗} and
∪p∈P {a ∈ Σ | ∃(X, α) ∈ P : α ∈ Σ∗NΣ∗aΣ∗} are disjoint,
or
(ii) for each (X, α) ∈ P with α ∈ Σ∗, there exists a letter in
alph(α) − {a ∈ Σ | ∃(Y, β) ∈ P : β ∈ Σ∗aΣ∗NΣ∗ ∪ Σ∗NΣ∗aΣ∗}, where
alph(α) denotes the letters occurring in α.

Consequently, a linear grammar is marked if the ’middle’ of each gener-
ated word can be locally identified.

Now, since marked linear context-free grammars can be simulated by
two-tape automata (respecting the multiplicities), it follows from Theorem
3.10 that the multiplicity equivalence of marked linear context-free gram-
mars is decidable. On the other hand, it follows from [17] that their ordinary
equivalence is undecidable.

Acknowledgement. The authors are grateful to G. Duchamp and J.
Sakarovitch for their critical comments which improved the presentation
of this paper.
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