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1 Introduction

Words (strings of symbols) are fundamental in computer processing. Indeed,
each bit of data processed by a computer is a string, and nearly all computer
software use algorithms on strings. There are also abundant supply of applica-
tions of these algorithms in other areas such as data compression, DNA sequence
analysis, computer graphics, cryptography, and so on.

Combinatorics on words belongs to discrete mathematics and theoretical
computer science, and it is, also historically, close to many branches of math-
ematics and computer science. Related areas in discrete mathematics include
automata, formal languages, probability, semigroups, groups, dynamical sys-
tems, combinatorial topology and number theory.

The history of combinatorics on words goes back almost 100 years to Axel
Thue and his work on repetitions in words. Systematic study of combinatorial
properties on words was initiated in late 1950s by Marcel Schützenberger. Good
overviews of the present state of art can be found in the books of Lothaire [11, 12]
and in the survey chapter [5] by Choffrut and Karhumäki in the Handbook of
Formal Languages.

The generic topic of the combinatorics on words is to study general properties
of words (strings or sequences of discrete events), as well as sets, functions and
sequences of words. The theory covers both finite and infinite words. In these
lectures we concentrate mostly on (special problems of) finite words.

Combinatorics on words has the Mathematical Reviews classification 68R15.

2 First notions

Let A be a finite alphabet. Then A∗ denotes the set of all words (or strings)
over A, that is, A∗ consists of all concatenations a1a2 . . . an of letters ai ∈ A.
We include the empty word λ in A∗. For a subset X ⊆ A∗ of words, let X+

and X∗ = X+ ∪ {λ} be the semigroup and the monoid, respectively, generated
by X. Hence X+ is the set of all concatenations of words from X. If λ ∈ X,
then X∗ = X+. For w ∈ A∗, we shall write simply w∗ = {w}∗. AN will denote
the set of all infinite words in the alphabet A:

w = a1a2 . . . (ai ∈ A).
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AZ denotes the set of all bi-infinite words in the alphabet A:

w = . . . a−2a−1a0a1a2 . . . (ai ∈ A).

Recall that the length |w| of a word w ∈ A∗ is the number of occurrences of
letters in it. If w = a1a2 . . . an with ai ∈ A, then |w| = n. For the empty word,
we have |λ| = 0. We write wn for the nth power ww . . . w (n times).

Let u, v ∈ A+ be two words. Then u is a factor (or a substring) of v, if
v = w1uw2 for some w1, w2 ∈ A∗; u is a prefix of v, if v = uw for some w ∈ A∗;
u is a suffix of v, if v = wu for some w ∈ A∗; u is a subsequence (or a subword)
of v if v = v1u1v2u2 . . . unvn+1, where u = u1u2 . . . un.

Example 2.1. Let u, v ∈ A∗ be such that uw = wv for some word w. Then
one can show that u and v are conjugates, that is, there are words x, y ∈ A∗

such that u = xy and v = yx. In this case, also w = (xy)kx for some k ≥ 0.

A mapping α : A∗ → B∗, where A and B are alphabets, is a morphism, if it
satisfies the condition

α(uv) = α(u)α(v) for all u, v ∈ A∗.

In particular, α(a1a2 . . . an) = α(a1)α(a2) . . . α(an) for all ai ∈ A and n ≥ 1,
and thus a morphism is determined by the images of the letters.

3 A short cavalcade of topics

We shall now mention some examples of popular problems in combinatorics on
words. The list in the below is by no means exhaustive.

3.1 Unavoidable patterns

By a pattern we mean a word p ∈ X∗, where X is an alphabet. We say that
the pattern p occurs in a word w ∈ A∗ (over an alphabet A), if there exists a
morphism α : X∗ → A∗ such that α(p) is a factor of w.

Example 3.1. Consider a sequence of events of throwing a coin. In this case,
the alphabet can be chosen to be A = {h, t}, where h denotes ‘head’ and t
denotes ‘tail’. Typically we have words such as tththht that represent sequences
resulting in coin throwing. Let X = {x, y}, and consider the pattern p = xyxy.
Then p occurs in w = htthhtthhtt, since w = ht(thh)(t)(thh)(t)t, and so the
required morphism can be defined by α(x) = thh and α(y) = t. Now α(xyxy) =
thhtthht is a factor of w.

If the pattern p does not occur in w, then w is said to avoid p. We shall
also say that a pattern p is unavoidable in an alphabet A, if p occurs in every
sufficiently long word w ∈ A∗, that is, if there exists a constant c (depending
only on card(A)) such that |w| ≥ c implies that p occurs in w.

Of particular interest are the patterns that are the powers, p = xk for x ∈ X.
As a special case, a word is said to be square-free if it avoids the pattern x2,
and it is cube-free if it avoids the pattern x3.
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Example 3.2. There are only finitely many square-free words in {a, b}∗. Hence
repetition in coin throwing is unavoidable. Indeed, the pattern p = xx occurs
in every word w ∈ {a, b}∗ of length at least 4.

On the other hand, Thue showed that x2 can be avoided in larger alphabets.
For a survey of Thue’s work, see Berstel [2].

Theorem 3.3 (Thue (1906)). There are arbitrarily long square-free words
over any alphabet A of at least 3 letters.

Hence, e.g., repetition is avoidable in throwing dice (where the alphabet has
six letters, A = {1, 2, . . . , 6}).

It is an open problem in general to determine which patterns p ∈ X∗ are
unavoidable in an alphabet of k letters?

Bean, Ehrenfeucht and McNulty [1], and, independently, Zimin [15] gave a
characterization of those words which are avoidable on sufficiently large alpha-
bets. According to this characterization, a pattern p ∈ X∗ with card(X) = n
is avoidable on some alphabet, if the word Zn avoids p, where the words Zn ∈
{1, 2, . . . , n}∗ are defined as follows:

Z1 = 1, Zn+1 = Zn(n + 1)Zn.

Example 3.4. Consider the pattern p = xyzxzy (with n = 3). Then Z3 =
1213121 avoids p, and therefore p is avoidable for sufficiently large alphabets.
(How large is sufficiently large here?)

There are no known avoidable patterns that are not avoidable on a 4-letter
alphabet. The avoidable binary patterns p ∈ {x, y}∗ have been completely
characterized by Casseigne and Roth, see [4].

3.2 Local properties of words

Quite many problems relate global properties of words to local ones. In this
problem setting one can ask which local properties determine the words (with
given properties).

Example 3.5. Let S be a set of words, and define fw : S → N as follows:

fw(s) = the number of factors s in w.

For which sets S, does the function fw determine w? That is, when does fu = fv

for all u, v ∈ S imply u = v? If S = {ab, ba}, then the answer is negative, since
for u = abba and v = baab we have

fu(ab) = 1 = fv(ab) and fu(ba) = 1 = fv(ba).

On the other hand, for S = A+, of course, fw determines every word w ∈ A∗.

Example 3.6. It is not always easy to show that a word is not ultimately
periodic, that is, of the form w = uvv . . . , where the word v repeats itself
infinitely many times. As an example, consider the infinite Kolakoski word:

w = 22112122 . . .

which is a self-similar word w = w1w2 . . . where w2i ∈ {1, 11} and w2i+1{2, 22}
such that |wi| = the ithletter of w.
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For w ∈ A∗ or w ∈ AN,

Cn(w) = the number of factors of length n in w

Example 3.7. The infinite Fibonacci word f is defined as the limit of the
following sequence: f1 = 1, f2 = 12, fn+2 = fn+1fn, so that f = 12112121 . . .
Then it can be shown that Cn(f) = n + 1. An infinite word is Sturmian if it
satisfies Cn(w) = n + 1. Sturmian words have many characterizations, see [12].

Theorem 3.8 (Morse and Hedlund (1940)). An infinite word w ∈ {a, b}N

is not ultimately periodic if and only if Cn(w) ≥ n + 1 for all n.

3.3 Periodicity

Let w ∈ A+ be a nonempty word. An integer 1 ≤ p ≤ |w| is a period of w if
ai = ai+p for all i, 1 ≤ i ≤ |w| − p. Let ∂(w) be the minimum period of w:

∂(w) = min(Per(w)) where Per(w) = {p | p is a period of w}.

Note that we always have |w| ∈ Per(w), and hence ∂(w) ≤ |w| for all words w.

Example 3.9. An integer p with 1 ≤ p ≤ |w| is a period of w iff there is a word
v such that |v| = p and w is a factor of vn for some n. (1) Let w = aabaaa
with |w| = 6. Then Per(w) = {4, 5, 6}, and ∂(w) = 4. Here w is a factor of
(aaba)2, (aabaa)2, and w. (2) Let w = abacabaaabacaba with |w| = 15. Then

w = abacabaa · abac · ab · a

and Per(w) = {8, 12, 14, 15}, and ∂(w) = 8.

The following theorem is a corner stone of periodicity studies. It is due
to Fine and Wilf (1965). The result improves the fact that if f : N → N is a
function with two periods p and q, then also gcd(p, q) is a period of f .

Theorem 3.10 (Fine and Wilf). Let p, q ∈ Per(w) and d = gcd(p, q). If
|w| = p + q − d then also d ∈ Per(w).

Among other things Guibas and Odlyzko proved in 1981 that each word in
an arbitrarily large alphabet has a corresponding word in the binary alphabet
having exactly the same periods. For a short proof of this result, see [7].

Theorem 3.11. Let w ∈ A∗ be a word. There exists a binary word w′ ∈ {a, b}∗

such that Per(w′) = Per(w).

3.4 Critical factorizations

The critical factorization theorem relates local and global periodicity of words.
It was first considered by Schützenberger in 1976, and proved by Césari and
Vincent in 1978. The present stronger form of the result is due to Duval (1979,
1983). For a short proof, see Crochemore and Perrin in 1991, or the modification
given in [10].

Let w ∈ A+ be a fixed word. A nonempty word z 6= λ is called a central
repetition at point k if w = uv with |u| = k and there are words x, y such that
z is a suffix of xu and a prefix of vy. Let

Γ(w, k) = {z | z central repetition at k in w}.
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(Left and right) internal

︷ ︸︸ ︷︷ ︸︸ ︷

Left external and right internal

︷ ︸︸ ︷︷ ︸︸ ︷

Left internal and right external

︷ ︸︸ ︷︷ ︸︸ ︷

(Left and and right) external

︷ ︸︸ ︷︷ ︸︸ ︷

Figure 1: Choices for the central repetitions

In Figure 1 we have illustrated the four possibilities for a central repetition
to occur at a given position.

Example 3.12. Let w = abaabab. Then the central repetitions of w at the
position 3 are Γ(w, 3) = {a, aba, ababa, . . . }. Of these a and aba are internal:
ab(a.a)bab and (aba.aba)b. The rest are (left and right) external. For k = 1,
ba ∈ Γ(w, 1) is left external and right internal (ba.ba)abab.

For a point k in w, let

∂(w, k) = min{ |z| | z ∈ Γ(w, k) }.

Hence ∂(w, k) is the length of the shortest central repetition of w at k.

Example 3.13. Let w = abaaaba. The following table gives the values for
∂(w, i) and the smallest central repetitions at each point i:

∂(w, 1) = 2 (z1 = ba) ∂(w, 2) = 4 (z2 = aaab)

∂(w, 3) = 1 (z3 = a) ∂(w, 4) = 1 (z4 = a)

∂(w, 5) = 4 (z5 = baaa) ∂(w, 6) = 2 (z6 = ab)

A point k in w is critical if

∂(w, k) = ∂(w).

Theorem 3.14 (Critical Factorization Theorem). Every word w, |w| ≥ 2,
has a critical point.

The proof of Theorem 3.14 states that a critical point of a word w can be
obtained as follows: Let the alphabet A be ordered, a1 C a2 C . . . C an. Then
the inverse order is an C

−1 an−1 C
−1 . . . C

−1 a1. Consider the lexicographic
ordering of the words w.r.t C:

u C v ⇐⇒ u prefix of v or u = xau′, v = xbv′ with a C b.

Let s and r be the maximal suffixes of w = us = vr w.r.t. the orders C and
C

−1, respectively. If |s| < |r|, then |u| is a critical point of w, and otherwise |v|
is a critical point of w.

Example 3.15. Let w = acbabb with a C b C c. Then cbabb is the maximal
suffix w.r.t. C. However, the point 1 is not critical. Indeed, here ∂(w, 1) = 3,
since w has a central repetition cba at 1: (cba.cba)bb. But ∂(w) = 6, since the
word w is unbordered. W.r.t. the inverse order C

−1 (that is, c C
−1 b C

−1 a),
the maximal suffix is abb, and a critical point is given by this.
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Theorem 3.16. Let |w| ≥ 2. Each set of ∂(w)− 1 consecutive points in w has
a critical point.

Corollary 3.17. Every primitive word w has a conjugate that is unbordered.
That is, w = uv such that vu is unbordered.

Example 3.18. Let w = aabaaabaa, and let the ordering of A = {a, b} be
a C b. The words aaabaa and baaabaa are the maximal suffixes w.r.t. C and
C

−1. Here ∂(w) = 4, and k = 3 is a critical point, aab.aaabaa, and k = 6 is a
critical point, aabaaa.baa.

Let X ⊆ A∗ be a set of words. A factorization w = x1x2 . . . xn is an X-
interpretation of w if xi ∈ X for 1 < i < n, and x1 is a suffix of some x ∈ X,
xn is prefix of some y ∈ X. Two X-interpretations x1x2 . . . xn and y1y2 . . . ym

of w are said to be disjoint if |x1x2 . . . xi| 6= |y1y2 . . . yj | for all i < n, j < m.

Example 3.19. Let X = {cab, caca, bcabba}. Then w = abbacacacabca has the
following two disjoint X-interpretations:

ab · baca · caca · bca,

abba · caca · cab · ca.

Here ab (abba, resp.) is a suffix of cab (bcabba), and bca (ca, resp.) is a prefix
of bcabba (cab).

Theorem 3.20. Let X ⊆ A+ with card(X) = n. If w ∈ A+ has n + 1 disjoint
X-interpretations, then the minimum period of w is at most the maximum of
the minimum periods of x ∈ X.

Example 3.21. The above result is optimal. Indeed, see [8], consider

w = (ban+1)kb for k ≥ 1, n ≥ 0, X = {aiban−i+1 | i = 1, 2, . . . , n}.

Then card(X) = n, ∂(w) = n + 2 and ∂(u) ≤ n + 1 for all u ∈ X. The word w
has n disjoint X-factorizations:

w = ba · anba . . . anba · anb

= ba2 · an−1ba2 . . . an−1ba2 · an−1b

...

= ban · aban . . . aban · ab.

3.5 Reconstruction of events

How to reconstruct a word w from its ‘short’ factors? This kind of problem
appear, for instance, in analysing DNA molecules, because the automated se-
quencing machines can decipher only relatively short DNA fragments (about
500 base pairs long).

In shotgun sequencing of (very long) DNA molecules are first (1) randomly
cleaved into short (overlapping) fragments, then (2) the fragments are sequenced
into strings, that is words in the alphabet {A, C, G, T}, and, finally, (3) a super-
string is constructed that represents the original DNA molecule.

In combinatorics of words the reconstruction problem is stated as follows:
Given a set X of words, how to construct a shortest word w such that w has
the elements of X as its factors. The problem is known to be NP-hard.
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There are many related problems that are algorithmically important:

• Finding longest common factor of two words.

• Finding longest repeated factors in a word, see [3] and de Luca [6].

• Finding longest common subsequence of two words. The Unix program
diff compares two versions of the same file by finding a longest common
subsequence of the lines of the files. This problem occurs also in updating
display screens, where the two words correspond to the contents of the
current screen and its update.

• Finding an alignment between two words u and v. This is needed especially
in analysing DNA. For instance, the two words u = CAGCGTA and v =
CAGCACTTGGATTCTCA can be aligned as in the below.

---CAGCGT---A------

CAGCA-C-TTGGATTCTCA

String matching is a central topic in the domain of text processing. Indeed,
string matching algorithms are utilized in practical implementations of all text
processing software.

In this problem area we look for given factors or subsequences from input
words: Given two words u and v from A∗, how to compute the number of
times that u occurs as a factor (or a subsequence) in v? How to find the first
occurrence of u as a factor (or a subsequence) in v?

These questions are algorithmic in nature, that is, one seeks for fast(er)
algorithms to solve the problems. The problems have also approximate variants
where one allows some mismatches in the words.

3.6 Uniqueness conditions (freeness)

The freeness problem concerns sets of words. It is stated as follows: Does a
given set of words x1, . . . , xn satisfy a nontrivial relation? That is, is there a
sequence of events w = xi1xi2 . . . xik

which has an obscure history: also w =
xj1xj2 . . . xjm

. This problem is important in transmission of coded information:

sender
code

−−−−−→
message

channel
decode
−−−−−→
message

reader

i1 . . . in w j1 . . . jm

Let S ⊆ A+ be a subset of words. Then S is an F -semigroup if S is closed
under concatenation, that is, if S = S+. A subset X ⊆ A∗ is a code and the
F -semigroup X+ is called free if each word w ∈ X+ has a unique factorization
in terms of X: if xi, yi ∈ X, then

x1x2 . . . xn = y1y2 . . . ym =⇒ n = m and xi = yi.

Example 3.22. (1) The set X = {a, ab, ba} is not a code, since aba has two
different factorizations, a · ba = ab · a, in terms of X.

(2) The set X = {a, ab, bb} is a code. Indeed, if X were not a code, then
there would exist a word w ∈ X+ with two different X-factorizations,

x1x2 . . . xn = y1y2 . . . ym with x1 6= y1 and xn 6= ym.

However, every word w ∈ X+ has a unique suffix from X.
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Let S ⊆ A+ be an F -semigroup. The base of S is defined by

base(S) = S − S2,

that is, base(S) is the set of all words w ∈ S that cannot be expressed as a
product of two or more words from S. The rank of S is the size of the base,

rank(S) = card(base(S)).

Notice that the rank of an F -semigroup can be infinite, that is, base(S) can be
an infinite subset of S.

Example 3.23. (1) Let X = {ab, ba, abab, abb, bab}. Then X is not a code,
since abab = ab · ab. Most certainly, base(X+) ⊆ X. Moreover, abab /∈
base(X+), since it can be factored to two shorter words of X, ab · ab. We
have base(X+) = {ab, ba, abb, bab} and hence rank(X+) = 4.

(2) Let S = {w | w contains a}. This is an F -semigroup, and now

base(S) = {w | w contains exactly one a}

is infinite, that is, rank(S) = ∞.

Later we consider mostly only those cases where the ranks are finite.

Lemma 3.24. Let S = S+. Then base(S) is the minimum generating set of S:

S = base(S)+ and S = X+ =⇒ base(S) ⊆ X.

If a word w ∈ S can be written as

w = uxv where u, ux ∈ S and xv, v ∈ S (x 6= λ)

then x is called an overflow of S, see Figure 2.

x
xu

v

Figure 2: Overflow x

The following criterium of freeness is due to Schützenberger.

Theorem 3.25. An F-semigroup S ⊆ A+ is free if and only if every overflow
of S is in S.

3.7 The defect effect

The defect theorem is often referred to as a folklore result. In print it has
appeared at least in the article by Skordev and Sendov [14] in 1961. The result
is very basic to combinatorics on words and its applications. It also bears
resemblance to the notion of dimension in linear algebra, see [9].

The defect theorem states that if a set of n words satisfies a nontrivial
relation, then these words can be expressed as products of at most n−1 (possibly
other) words. For the proof of the defect theorem, we need Tilson’s result:
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Theorem 3.26. If Si (i ∈ I) are free F -semigroups of A+, then S =
⋂

i∈I Si

is free or it is empty.

By Theorem 3.26, for any X ⊆ A∗,

X̂ =
⋂

{S | X ⊆ S, S is a free subsemigroup}

is a free semigroup, called the free hull of X. It is clearly the smallest free
F -semigroup containing X.

Example 3.27. Let A = {a, b} and X = {bb, bbaba, abaa, baaba, baa}. Consider
any free F -semigroup S with X+ ⊆ S. Notice that X+ is not free, since

bbaba · abaa = bb · abaa · baa.

Therefore a and aba are overflows of X+, and thus also of S. So a ∈ S. Next
observe that baaba · abaa = baa · baa · baa, and so ba is an overflow of S.
Consequently, ba ∈ S.

Hence {a, ba, bb} ⊆ S, and since {a, ba, bb} is a code, X̂ = {a, ba, bb}+.
Notice that

rank(X) = card(X) = 5 > 3 = rank(X̂).

Theorem 3.28 (Defect theorem). Let X ⊆ A+ be finite. If X is not a code,
then

rank(X̂) ≤ card(X) − 1.

A word w ∈ A+ is said to be primitive, if it is not a proper power of another
word, that is,

w = uk =⇒ k = 1 and u = w.

Corollary 3.29. Each word w ∈ A+ is a power of a unique primitive word.

Corollary 3.30. Two words u, v ∈ A∗ commute, uv = vu iff they are powers
of a common word.

3.8 Test sets

The result of this section was conjectured by Ehrenfeucht in the beginning of
the 1970s in the following language theoretic setting:

Theorem 3.31. Let L ⊆ A∗ be any set of words in a (finite) alphabet A. Then
there exists a finite subset F ⊆ L such that if two morphisms α and β agree on
T (that is, α(w) = β(w) for all w ∈ T ) then α and β agree on the whole L.

Such a subset T ⊆ L is called a test set of L. By the theorem, in order to
check whether two morphisms agree on L, it suffices to check if they agree on
the finite subset T .

The conjecture was reformulated for equations by Culik and Karhumäki in
1983, and this formulation opened the gates for the solution of the conjecture by
Albert and Lawrence and independently by Guba in 1985. The proof techniques
were originated already by Markov in the 1950s.

The result is nowadays known also as Compactness theorem (for equations)
and Noetherian property (of equations).
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