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Abstract

The rational functions are shown to coincide with the compositions
of endmarkings, morphisms and inverses of injective morphisms. To
represent a rational function τ we need one endmarking µm, two mor-
phisms α1, α3 and one inverse of an injective morphism α2 and then
τ = µmα1α

−1
2 α3.
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1 Introduction

In [5] and [9] it has been shown that a mapping τ is a rational transduction
if and only if it has a factorization of the form xτ = (xm)σ for all x.
Here m is an endmarker symbol and σ is a composition of morphisms and
inverse morphisms. The endmarker can in general not be avoided, see [7]
and [4]. The transductions realized by simple transducers can, however, be
represented without the use of endmarkers. In [10] and in [7] it has been
shown that they form precisely the class of mappings representable by a
composition of morphisms and inverse morphisms. In addition it is known
from [7] and [8] that such compositions can be assumed to be of length four.
As a matter of fact length four is necessary and sufficient to characterize the
whole class of these compositions.

In this paper we investigate the effect on the compositional representa-
tions when the class of rational transductions is restricted to the class of
rational functions. We are in particular interested in obtaining an ”injec-
tive” compositional characterization. It turns out that indeed the inverse
morphisms can be replaced by inverses of injective morphisms. Moreover,
in this case length three is necessary and sufficient to characterize the whole
class of compositions of morphisms and inverses of injective morphisms. This
class turns out to coincide with the rational functions realizable by simple
transducers and having a free monoid as their domain.

In the case of rational functions that are realized by simple transducers
we lack a characterization in terms of naturally arising compositions. In
fact, these functions do not seem to possess such a characterization.

2 Preliminaries

We refer to [1] and [3] for the preliminary results on automata theory. For
convenience we give here some notations and terminology which come into
use in this paper.

A transducer T = (QT ,ΣT ,∆T , δT , qT , FT ) consists of a finite set QT

of states, input alphabet ΣT , output alphabet ∆T , finite transition relation
δT ⊆ QT × Σ∗

T × ∆∗
T × QT , initial state qT , and final state set FT . The

morphisms IT : δ∗T → Σ∗
T and WT : δ∗T → ∆∗

T are defined by (q, x, y, p)IT = x
and (q, x, y, p)WT = y for all (q, x, y, p) ∈ δT . A sequence g of transitions
(qi, xi, yi, qi+1), i = 1, 2, . . . , k, is a computation of T from q1 to qk+1 and
it produces the output gWT = y1y2 . . . yk from the input gIT = x1x2 . . . xk.
For q, p ∈ QT , CT (q, p) denotes the set of all computations of T from q to p.
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By convention, the empty computation is an element of CT (q, q) for all states
q. The set of all computations of T forms a regular subset CT of δ∗T . Further,
a computation g ∈ CT is accepting if g ∈ CT (qT , p) for some p ∈ FT . The
set of all accepting computations of T forms a regular subset AT of δ∗T .

Let T be a transducer defined as above. T realizes the rational trans-
duction τT ⊆ Σ∗

T ×∆∗
T defined by

τT = {(gIT , gWT ) |g ∈ AT }.

By xτT we denote the set {y | (x, y) ∈ τT }. The domain of a rational
transduction τT is the regular subset dom(τT ) = {x | xτT 6= ∅} of Σ∗

T .
Similarly, ran(τT ) = {y | y ∈ xτT for some x}. In this paper we consider
only transducers with nonempty domains. This is not a restriction to our
results.

The transducer T is said to realize a rational function τT if τT is a
partial function from Σ∗

T into ∆∗
T , that is, if card(xτT ) ≤ 1 for all x ∈ Σ∗

T .
The transducer T is unambiguous if for all x ∈ Σ∗

T there exists at most
one accepting computation g ∈ AT with gIT = x. Clearly the rational
transduction realized by an unambiguous transducer is a rational function.

A transducer T is called simple if FT = {qT }, that is, if the unique
final state of T equals the initial state of T . If T is simple, then clearly
(x1τT )(x2τT ) ⊆ (x1x2)τT . whenever xi ∈ dom(τT ) for i = 1, 2. Moreover, if
T is simple and τT is a partial function then the domain of τT is a monoid.
Also, in this case 1τT = 1 and (x1x2)τT = (x1τT )(x2τT ) for all x1, x2 ∈
dom(τT ).

We use T (F, respectively) to denote the family of all rational transduc-
tions (rational functions, respectively). T∗ (F∗, respectively) is the family
of all rational transductions (rational functions, respectively) realizable by
simple transducers. Further, U (U∗, respectively) denotes the family of all
rational transductions realizable by unambiguous (simple unambiguous, re-
spectively) transducers.

A finite automaton A is identified with a transducer which has a transi-
tion relation δA ⊆ QA × ΣA × {1} ×QA.

3 Normalized Transducers

In this section we establish some normal form results for transducers and in
particular for transducers which realize rational functions. Emphasis is on
the elimination of transitions which read the empty word 1.
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For an arbitrary transducer T we may assume without loss of generality
that T satisfies the following five conditions.
(1) δT ⊆ QT × (ΣT ∪ {1})×∆∗

T ×QT ,
(2) for all q ∈ QT , there is a computation g1g2 ∈ AT such that g1 ∈
CT (qT , q) and g2 ∈ CT (q, p) for some p ∈ FT ,
(3) either T is simple or (q, x, y, p) ∈ δT implies that p 6= qT ,
(4) (q,1, y, p) ∈ δT implies that either y 6= 1 or q = qT and p 6= qT .
(5) FT is a singleton and either T is simple or (q, x, y, p) ∈ δT implies that
q /∈ FT .

These conditions are valid also for the unambiguous transducers. We
omit here the straightforward proofs of these normal form results.

Let then T be a transducer which realizes a rational function. By the
above T may be assumed to satisfy the conditions (1) - (5). Since τT is
a partial function, there is a bound on the lengths of the computations
g ∈ CT for which gIT = 1. This is because otherwise, by (4), there would
be a q ∈ QT and a computation g1 ∈ CT (q, q) such that g1IT = 1 and
g1WT 6= 1. Hence, by (2), for some computations g0, g2 we would have
g0g1g2, g0g2 ∈ AT with (g0g1g2)WT 6= (g0g2)WT , which would contradict
the functionality of τT . After this observation we can continue by standard
methods and eliminate the transitions (q,1, y, p) of T for which q 6= qT or
p /∈ FT by combining them with the neighbouring transitions. Hence the
transitions that read the empty word are of the form (qT ,1, y, p), where
p ∈ FT − {qT }. The resulting transducer is equivalent to T and satisfies
(1), (3), (4) and (5). Condition (2) is easily restored. If T is unambiguous
(simple) then the new transducer is also unambiguous (simple).

All this leads to the conclusion that a transducer T realizing a rational
function can be assumed to satisfy the conditions (1) - (6), where
(6) if (q,1, y, p) ∈ δT , then q = qT , qT /∈ FT , and FT = {p}.

Thus transducers realizing rational functions do not need more than
one transition reading the empty word. In particular, simple transducers
realizing rational functions can be assumed to have no transitions reading
the empty word.

A transducer T realizing a rational function and satisfying the condi-
tions (1) - (6) is called normalized . Our observations lead to the following
conclusion.

Lemma 1. Let T be a (simple, unambiguous) transducer realizing a rational
function. Then a normalized (simple, unambiguous) transducer realizing τT

can be constructed.
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Unambiguous transducers realize rational functions. Conversely, in [1]
and [3] it was shown by using the cross section theorem that each rational
function can be realized by an unambiguous transducer. Our representa-
tion results are based on the structure of the transducers realizing rational
functions. For this reason we reprove this unambiguity result by purely
automata theoretic means.

Lemma 2. Let τ ∈ F. Then an unambiguous normalized transducer realiz-
ing τ can be constructed.

Proof. Let T be a normalized transducer realizing τ : Σ∗ → ∆∗ and let
QT = {q0, . . . , qn}, where qT = q0. Define a new transducer V by letting
QV = QT×P, where P is the family of all subsets of QT : for each (q, S) ∈ QV

and a ∈ Σ ∪ {1} let
((q, S), a, y, (qi, R)) ∈ δV

if and only if (q, a, y, qi) ∈ δT and

R =
⋃
p∈S

{r | (p, a, u, r) ∈ δT for some u ∈ ∆∗} ∪

{qj | (q, a, v, qj) ∈ δT for j < i and for some v ∈ ∆∗}.

Finally, let qV = (qT , ∅) and FV = {(p, R) | p ∈ FT , R ∩ FT = ∅}.
Let ρ : δ∗V → δ∗T be a morphism defined by ((q, S), a, y, (p, R))ρ =

(q, a, y, p) for all ((q, S), a, y, (p, R)) ∈ δV . Then gρ ∈ AT for all g ∈ AV

and thus τV ⊆ τT . On the other hand let h ∈ AT be a minimal computation
of T for a given input x and an output y = xτT according to the ordering
of the states qi, i = 0, 1, . . . , n, of T . By the construction of V there is a
unique computation g ∈ AV such that gρ = h. Thus τT ⊆ τV . Clearly V is
unambiguous.

Finally we normalize the transducer V . This process preserves the unam-
biguity. In fact, we need only to normalize V with respect to the condition
(2).

Note that the construction given in the above proof does not preserve
simplicity. Hence we have obtained (only) that F = U.

Theorem 1. Let τ ∈ T. Then τ ∈ F if and only if it can be realized by an
unambiguous normalized transducer.
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4 Rational Compositions and Rational Functions

Let H (HI , respectively) be the family of all morphisms (injective mor-
phisms, respectively) between finitely generated word monoids, and let H−1

(H−1
I , respectively) be the set of the inverses of morphisms from H (HI ,

respectively).
A morphic composition τ is a composition of morphisms and inverses

of morphisms between word monoids, τ = αε1
1 · · ·αεn

n , where εi = 1 or −1
for all i = 1, 2, . . . , n. The family of the morphic compositions is denoted
by (H ∪ H−1)∗ and the family of all morphic compositions with injective
morphisms as inverses is denoted by (H ∪H−1

I )∗.
A marker µm is a mapping which sets a special symbol m at the end of

each word, that is, µm : Σ∗ → (Σ ∪ {m})∗ is defined by xµm = xm for all
x ∈ Σ∗. We denote by M the family of all markers.

Compositions of markers and morphic compositions are called rational
compositions. It is clear that every rational composition is a rational trans-
duction. Also the converse holds, see [5], [9].

The following was proved in [7], [8], and [10].

Theorem 2. (a) T = MH−1HH−1H = (M ∪H ∪H−1)∗.
(b) T∗ = H−1HH−1H = HH−1HH−1 = (H ∪H−1)∗.

We adapt now the general idea (see [7] or [10]) behind the construction
of equivalent rational compositions for transducers in order to obtain an
’injective’ representation for rational functions.

Lemma 3. For each τT ∈ F there is a τV ∈ F∗ such that τT = µm·τV , where
µm is a marker.

Proof. The transducer T can be assumed to be unambiguous and normal-
ized. Let m be a new symbol. Define V = (QT ,ΣT ∪{m},∆T , δV , qT , {qT }),
by δV = δT ∪ {(p, m,1, qT )}, where FT = {p}. Clearly, V is simple,
normalized and unambiguous. Since in T either qT = p or qT has no
in-coming transitions and p has no out-going transitions, it follows that
dom(τV ) = ((dom(τT ))·m)∗, and (xm)τV = xτT for all x ∈ dom(τT ).

Let T be a normalized simple transducer. Let QT = {q0, . . . , qn} with
q0 = qT . Let Σ = ΣT ∪ {d}, where d is a new symbol. Define

(i) α1 : Σ∗
T → Σ∗ by aα1 = ad2n−1 for all a ∈ ΣT ;

(ii) α2 : δ∗T → Σ∗ by (qi, a, y, qj)α2 = d2i−1ad2n−2j
for all (qi, a, y, qj) ∈

δT ;
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(iii) α3 : δ∗T → ∆∗
T by (qi, a, y, qj)α3 = y for all (qi, a, y, qj) ∈ δT .

Since T has no transitions reading the empty word we immediately ob-
tain

Lemma 4. Let T be a normalized simple transducer and let the morphisms
αi, i = 1, 2, 3, be defined for T as above. Then τT = α1α

−1
2 α3.

Clearly, for every T the morphism α1 is injective. In the case of a
normalized unambiguous simple transducer also α2 is injective.

Lemma 5. Let T be a normalized unambiguous simple transducer. Then
the morphism α2 defined above for T is injective.

Proof. Let w1 ∈ δ∗T be a word of minimal length such that there exists
another word w2 ∈ δ∗T with w1 6= w2 and w1α2 = w2α2. Clearly w1α2 6= 1.
Let w1 = e1e2 . . . et and w2 = f1f2 . . . fk for some t, k ≥ 1 and ei, fi ∈ δT

with e1 6= f1. Let ei = (qg1(i), ai, yi, qg2(i)) and fi = (qh1(i), bi, zi, qh2(i)). It
follows immediately that t = k and ai = bi for all 1 ≤ i ≤ t. Further,
qg1(1) = qh1(1). Consider now the matched word between the letters ai,
ai+1 in eiei+1α2 and fifi+1α2. We obtain that 2n − 2g2(i) + 2g1(i+1) − 1 =
2n − 2h2(i) + 2h1(i+1) − 1, from which it follows that either qg2(i) = qh2(i)

and qg1(i+1) = qh1(i+1) or qg2(i) = qg1(i+1) and qh2(i) = qh1(i+1). The first of
these alternatives would imply, however, that (e1e2 · · · ei)α2 = (f1f2 · · · fi)α2

contradicting the minimality of w1. Hence we may assume that for all i <
t, qg2(i) = qg1(i+1) and qh2(i) = qh1(i+1). This means that w1 and w2 are
computations of T from qg1(1) to qg2(t). Since T is unambiguous and satisfies
the condition (2), it must be that w1 = w2. This contradiction completes
the proof.

On the other hand if τ is a rational composition with injective morphisms
as its inverses then clearly τ is a rational function. Thus we have obtained

Theorem 3. F = U = MHIH
−1
I H = (M ∪H ∪H−1

I )∗.

In contrast to the general case described in Theorem 4.1, the above the-
orem does not state that the absence/presence of markers characterizes the
difference between the compositional representation of F and the composi-
tional representation of F∗. In the next section we investige (H∪H−1

I )∗ and
its relationship with F∗.
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5 Morphic Compositions and Rational Functions

From the observations in the previous section it follows that U∗ ⊆ (H ∪
H−1

I )∗ ⊆ F∗. In Section 3 the inclusion F ⊆ U has been proved, but the
construction there does not preserve simplicity. Indeed, not every rational
function realizable by a simple transducer can be realized by an unambiguous
simple transducer. It turns out that U∗ = (H ∪ H−1

I )∗, which is precisely
the class of simple rational functions with a free monoid as their domain.
Since every regular set of the form R∗ is a domain of a transducer from F∗,
F∗ strictly includes U∗.

From [2, p.188] it follows that the functions from U∗ have a free monoid as
their domain. We shall now prove that also the functions from (H ∪H−1

I )∗

enjoy this property. In fact we prove a more general result based on the
notion of an unambiguous composition.

Let τ = αε1
1 nε2

2 . . . αεn
n (εi = ±1) be a morphic composition and let us

denote τi = αε1
1 iε22 . . . αεi

i for i = 1, 2, . . . , n. We shall say that τ is un-
ambiguous if uτi ∩ dom(αεi+1

i+1 · · ·αεn
n ) is a singleton for all u ∈ dom(τ),

i = 1, 2, . . . n. (Here an empty composition is identified with the identity
function.) Clearly, every unambiguous morphic composition is a rational
function.

Lemma 6. Let τ be an unambiguous morphic composition. Then dom(τ)
is a free monoid.

Proof. Let τ = αε1
1 nε2

2 . . . αεn
n , εi = ±1, be an unambiguous morphic compo-

sition. In order to prove that the domain is free we need to show that the
condition uw = wv ∈ dom(τ) for u, v ∈ dom(τ) implies w ∈ dom(τ), see
e.g. [6, p.106]. Let

uτi ∩ dom(αεi+1

i+1 · · ·α
εn
n ) = {ui}, vτi ∩ dom(αεi+1

i+1 · · ·α
εn
n ) = {vi},

(uw)τi ∩ dom(αεi+1

i+1 · · ·α
εn
n ) = {zi} = (wv)τi ∩ dom(αεi+1

i+1 · · ·α
εn
n )

for i = 0, 1, . . . , n, where u0 = u, v0 = v and uw = z0 = wv. Hence we have
for i = 0, 1, . . . , n− 1 either
(1) εi+1 = +1 and uiαi+1 = ui+1, viαi+1 = vi+1 and ziαi+1 = zi+1, or
(2) εi+1 = −1 and ui+1αi+1 = ui, vi+1αi+1 = vi and zi+1αi+1 = zi.

By unambiguity, (uwv)τi ∩ dom(αεi+1

i+1 · · ·αεn
n ) = {uizi} = {zivi} for

all i, and thus there are words ri, si such that ui = risi, vi = siri and
zi = (risi)kiri for some integer ki ≥ 0.

In case (1), ((risi)kiri)αi+1 = (ri+1si+1)ki+1ri+1, where (risi)αi+1 =
ri+1si+1, and thus (ri+1si+1)ki+1ri+1 = (ri+1si+1)ki(riαi+1). It follows that
riαi+1 = ri+1 and further that siαi+1 = si+1.
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In case (2) a similar argumentation yields ri+1αi+1 = ri and si+1αi+1 =
si.

Now, w = (r0s0)k0−1r0 and thus w ∈ dom(τ).

From this lemma we obtain immediately

Lemma 7. If τ ∈ (H ∪H−1
I )∗, then dom(τ) is a free monoid.

In the other direction we have

Lemma 8. Let τ ∈ F∗ be such that dom(τ) is a free monoid. Then τ ∈ U∗.

Proof. Let C be a code such that dom(τ) = C∗, and let T be a normalized
simple transducer realizing τ . Since T is simple, it has no transitions reading
1. From the cross section theorem it follows that there exists a regular set
R ⊆ CI−1

T ∩AT such that IT is injective on R and RIT = (CI−1
T ∩AT )IT =

C ∩AT IT = C. Since C is a code and IT is injective on R it follows that R
is a code. Furthermore, IT preserves the lengths of the words and thus IT

is injective on R∗.
Let D be an unambiguous simple finite automaton with ΣD = δT that

recognizes R∗. We refer to [2, p.187] for the existence of such a finite automa-
ton. From D a new transducer V = (QD,ΣT ,∆T , δV , qD, {qD}) is obtained
by setting δV = {(p, eIT , eWT , q) | (p, e,1, q) ∈ δD}.

Now, dom(τV ) = R∗IT = C∗ and hence dom(τV ) = dom(τT ). More-
over, for all x ∈ dom(τV ) we have xτV ⊆ xτT , and because τT is a function,
this implies that τV = τT .

It remains to show that V is unambiguous. For this let g1, g2 ∈ AV be
such that g1IV = g2IV . By the definition of V there are h1, h2 ∈ AD such
that (hiID)IT = giIV and (hiID)WT = giWV for i = 1, 2. By the injectivity
of IT on R∗, h1ID = h2ID. Since D is unambiguous, h1 = h2, and thus
g1 = g2 follows from the definition of δV .

By combining the above results we obtain

Theorem 4.

U∗ = HIH
−1
I H = (H ∪H−1

I )∗

= {τ ∈ F∗ |dom(τ) a free monoid}.

Note that the condition τ ∈ F∗ in the above statement is necessary.
For, even if a rational function τ with a free monoid as its domain has the
property that 1τ = 1, in general it is not realizable by a simple transducer.
As an example consider the nonsimple transducer T with transitions δT =
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{(qT , a, a, q1), (q1, b, a, q1), (q1, a, a, qT ), (qT , b, b, q2), (q2, a, b, q2), (q2, b, b, qT )},
and final states qT , q1, q2. Here τT ∈ F and dom(τT ) = {a, b}∗. However,
the conditions aτ = a, bτ = b, abτ = aa imply that τ /∈ F∗.

In conclusion U∗ ( F∗ but U = F = MU∗ = MF∗.

6 Hierarchic Results

In this chapter we present a hierarchy for the morphic compositions with
injective morphisms as inverses according to their compositional length. We
start with a general result which connects these compositions to the general
morphic compositions for which a hierarchy was given in [7].

Lemma 9. For every transducer T there exist a morphism α and a rational
function σ such that τT = α−1σ. Moreover, if T is simple then σ is a
morphic composition.

Proof. By Nivat’s Theorem each rational transduction τT can be represented
as I−1

T (∩AT )W T . The transduction σ = (∩AT )W T is a rational function
which can be realized by a simple transducer if T is simple. Hence by
choosing α = IT the claim follows.

Using this result we prove

Lemma 10. H−1HH−1 and HH−1
I H are incomparable.

Proof. Clearly, H−1HH−1 is not contained in HH−1
I H, because the latter

class consists of functions only.
It was shown in [7] that there is a morphic composition τT which is not
in H−1HH−1. By Lemma 6.1 there exist a morphism α and a rational
function σ ∈ (H ∪H−1)∗ such that τT = α−1σ. If σ = α−1

1 α2α
−1
3 for some

morphisms αi, i = 1, 2, 3, then τT = (α1α)−1α2α
−1
3 would be in H−1HH−1

contradicting the assumption made for τT . Thus σ /∈ H−1HH−1.

In particular, because H−1
I HH−1

I ⊆ HH−1
I H by Theorem 5.1, we obtain

the following theorem.

Theorem 5. H−1
I HH−1

I is properly contained in HH−1
I H.

It immediately follows from the preceding theorem that the sets H−1
I H

and HH−1
I are incomparable. The conclusions are collected in Figure 6.1,

where elements without a connecting line are incomparable as sets and a
connecting line indicates that the lower class is properly included in the
upper one.
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Figure 6.1

In addition we have the following characterizations for four of the above
classes.

Theorem 6. (a) H = {τ ∈ F∗ | dom(τ) = Σ∗ for an alphabet Σ}.
(b) H−1

I = {τ ∈ F∗ | ran(τ) = Σ∗,dom(τ) = C∗ with C a code such
that card(C) = card(Σ)}.
(c) H−1

I H = {τ ∈ F∗ | dom(τ) = C∗ for a finite code C}.
(d) HH−1

I H = {τ ∈ F∗ |dom(τ) is a free monoid }.

Proof. (a). Immediate from the observations that 1τ = 1 and (uv)τ =
(uτ)(vτ) for all u, v ∈ Σ∗, whenever τ ∈ F∗ and dom(τ) = Σ∗.
(b). Immediate.
(c). Let τ = α−1β for an injective morphism α : Γ∗ → Σ∗ and a morphism
β : Γ∗ → ∆∗. Then dom(τ) = Γ∗α = (Γα)∗. Since α is injective, Γα is a
finite code.

Conversely, assume that dom(τ) = C∗ for a finite code C = {w1, . . . , wn}
with C ⊆ Σ∗ and let Γ = {a1, a2, . . . , an} be an alphabet. Let α : Γ∗ → Σ be
the morphism defined by aiα = wi for i = 1, . . . , n. Since C is a code, α is
injective. Now, dom(ατ) = Γ∗ which implies that ατ ∈ H. Consequently,
τ = α−1ατ ∈ H−1

I H.
(d). Follows immediately from Theorem 5.1.
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7 On Simple Functions

What we are notably missing in the previous sections is a characterization
of the simple rational functions F∗ in terms of morphic compositions. Notice
that we do have

F∗ = MHH−1
I H ∩HH−1H = (M ∪H ∪H−1

I )∗ ∩ (H ∪H−1)∗

by the previous results. We conjecture that there does not exist any ”natu-
ral” morphic representation of F∗. More precisely

Conjecture. F∗ cannot be represented in the form Hε1
1 Hε2

2 · · ·Hεk
k , where

the morphism classes Hi, i = 1, 2, . . . , k, are closed under renamings.

A renaming is an injective morphism α : Σ∗ → ∆∗ such that aα ∈ ∆ for
all letters a ∈ Σ. Let Hr denote the class of renamings. A morphism class
H is closed under renamings if HrH ⊆ H.

If we do not require that the morphism classes in the conjecture are
closed under renaming then F∗ can be dressed into a compositional form
because every class of simple transductions has an ”artificial” representation
as morphic compositions. To see this let K be a class of simple transductions,
say K = {τi | i = 1, 2, . . . }. Each τi has a representation as a morphic
composition, τi = α−1

i1 αi2α
−1
i3 αi4. Moreover, these morphisms can be chosen

in such a way that the domain alphabets of αik and αjk are disjoint for all
different i, j (k = 1, 2, 3, 4). Hence the morphisms connected to different
transductions do not mix, and, indeed, F∗ = H−1

1 H2H
−1
3 H4, where Hk =

{αik | i = 1, 2, . . . } for k = 1, 2, 3, 4.
However, if we require closure under renamings, then we can prove that

F∗ does not match with our compositional representations of length three.

Theorem 7. There are no classes H1, H2 and H3 of morphisms such that
F∗ = Hε1

1 Hε2
2 Hε3

3 and H3 is closed under renamings.

Proof. First of all F∗ 6= H−1
1 H2H

−1
3 by Lemma 6.2.

Let us assume then that F∗ = H1H
−1
2 H3 and that H3 is closed under

renamings. There is a morphic composition τ = α1α
−1
2 α3 with a nonfree

domain and thus by Lemma 5.1 this composition is ambiguous. Hence there
is a word u such that card(uα1α

−1
2 ) ≥ 2. We need only to prove that for all

integers n there is a morphism α in H3 such that α is injective on Σ∗, where
card(Σ) = n. This is because uα1α

−1
2 (ρα) /∈ F∗ for a suitable renaming ρ

and injective α ∈ H3.

12



Let then Σ be an alphabet and consider the identity function ι : Σ∗ → Σ∗.
Clearly, ι ∈ F∗, and hence by assumption there are morphisms βi ∈ Hi,
i = 1, 2, 3, such that ι = β1β

−1
2 β3. Suppose β3 : Σ∗

3 → Σ∗. For each a ∈ Σ
there is a letter a′ ∈ Σ3 such that a′β3 = a. But now β3 is injective on
{a′ | a ∈ Σ}∗ as required.
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[5] J. Karhumäki and M. Linna, A note on morphic characterization of
languages, Discrete Appl. Math. 5 (1983) 243 - 246.

[6] G. Lallement, Semigroups and Combinatorial Applications, (John Wi-
ley & Sons, New York, 1979).

[7] M. Latteux and J. Leguy, On the composition of morphisms and inverse
morphisms, Lecture Notes in Comput. Sci. 154 (1983) 420 - 432.

[8] M. Latteux and P. Turakainen, A new normal form for the compositions
of morphisms and inverse morphisms, Math. Syst. Theory 20 (1987) 261
- 271.

[9] P. Turakainen, A homomorphic characterization of principal semi-AFLs
without using intersection with regular sets, Inform. Sci. 27 (1982) 141
- 149.

[10] P. Turakainen, A machine-oriented approach to compositions of mor-
phisms and inverse morphisms, EATCS Bull. 20 (1983) 162 - 166.

13


