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Permutable Transformation Semigroups

A. Ehrenfeuct, T. Harju and G. Rozenberg

Let A be a finite set and 7a the full transformation semigroup on A. In
this note we shall prove that if S and R are two permutable transitive subsemi-
groups of 7a, i.e., they commute elementwise,

af = fa foralla € S, e R,

then they are simply transitive groups of permutations and centralizers of each
other.

The problem under consideration has its origin in the theory of networks,
[2], where permutability of two transformation semigroups (with respect to a
network) refers to an independence relation and hence to concurrency of events in
the network.

For the results and definitions needed here for the permutation groups we
refer to [3].

We shall consider transformation semigroups on a finite set A. A subsemi-
group S of 7 is said to be transitive if for all a,b € A there exists an a € S
such that a(a) = b. A subsemigroup S of 7a is a permutation group, if S is a
subgroup of the symmetric group Sym(A).

Let

C(S)={B€Ta | af = Pa for all a € S}

be the centralizer of the transformation semigroup S. It is immediate that C(.5)
is a submonoid of 7o . The identity transformation is denoted by ¢.

Lemma 1.  Let S be a transitive transformation semigroup on A. An element
B € C(S) has a fized point if and only if B =1¢.

Proof. Let 5 € C(S) have a fixed point, say 3(a) = a. Now, for each a € S,
Ba(a) = af(a) = a(a), and hence [ fixes the elements of {a(a) | « € S}. The
claim follows from this by the assumption of transitivity for S. |

In general if S is a subgroup of 7a, it does not follow that S is a
permutation group. Moreover, if S is a permutation group, then the centralizer
C(S) of S in 7a need not coincide with the group centralizer of S in Sym(A).
Indeed, the centralizer of the trivial subgroup (i) is the whole of 7an. However,
a transitive subgroup of 7a is a permutation group and the two centralizers of it
are equal.

Lemma 2. Let S be a transitive subgroup of Tan. Then S is a subgroup of
Sym(A) and C(S) coincides with the group centralizer of S in Sym(A).

Proof. It is immediate that the identity element ¢ of S is an idempotent of
Ta and, moreover, € € C(S). Hence €2(a) = e(a) for all a € A and, consequently,
€ = ¢ by Lemma 1. It follows from this that S is a permutation group.

Let then 8 € C(S). For each a € A there exists an a € S such that
af(a) = a, because S is transitive. Hence ((a(a)) = a, which shows that 3
maps A onto A. Since A is finite it follows that § is a permutation on A. As
a submonoid of the finite group Sym(A), the centralizer C(S) is a permutation
group, which proves the claim. [
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Let S be a transformation semigroup on A. For each a € A let
Se={a €S| ala)=a}

be the stabilizer of a in S.

A permutation subgroup S of Sym(A) is said to be semireqular if S, is
the trivial group () for each a € A. Further, the group S is simply transitive (or
reqular) if it is a transitive semiregular group.

From the definition it follows easily that a permutation group S is simply
transitive if and only if for all a,b € A there exists a unique a € S such that
ala) =b.

Theorem 1. If S is a transformation semigroup on A with a transitive cen-
tralizer C(S), then S is a semiregular group.

Proof. Let a € S. To show that « is onto A, let a € A. By transitivity of
C(S) there exists a 8 € C(S) such that f(a(a)) = a. Since fa = af, we have
a(f(a)) = a as required. Just like in the previous proof it follows from this that
S is a permutation group.

Since by assumption C(S) is transitive and S C C(C(S5)), Lemma 1
implies that S, = (¢) for all @ € A. This shows that S is a semiregular group. =

Suppose S is a simply transitive group on A and fix an element a € A.
It easily follows, see [3], that S can be written in the form

S={a | be A, ap(a) =0},

where oy, # a, for all distinct b, ¢ € A. In particular, the order of S equals |A|,
the cardinality of A. From the previous result we have thus obtained

Theorem 2. If S is a transitive transformation semigroup such that C(S) is
transitive, then S is a simply transitive group of order |A|. ]

In [1] (p.174, Theorem II) it was shown that if S is a transitive permutation
group on A of order |A|, then C(S) is also transitive and isomorphic with S.
Indeed, if S ={ap | b€ A} and C(S) = {6 | b € A} are simply transitive, where
ap(a) = b= Fy(a) for a fixed a € A, then the mapping ¢: S — C(S) defined by

o(aw) =B, !

is a desired isomorphism.

Theorem 3. Two transitive transformation semigroups S and R on A are
permutable if and only if they are isomorphic simply transitive groups and central-
izers of each other.

Proof. If S and R are transitive and a8 = Ba for all @« € S and § € R, then
R C C(S) and C(S) is thus transitive. By Theorem 2, R is a simply transitive
group of order |A|. Similarly, C(S) is a simply transitive group of the same order.
Hence R = C(S), which proves the claim.

The proof in the other direction is trivial. [

As is well known one cannot pose any restrictions on the structure of the
simply transitive groups, since every group G has a simply transitive representa-
tion, see [3]. Indeed, take A = G and define for each g € G the permutations ¢,
and 1, by right and left multiplication:

@g(a) =ga Yg(a) =ag™t .

Now, S = {¢s | g € A} and R = {¢py | ¢ € A} are two permutable simply
transitive groups and they are centralizers of each other in the symmetric group
Sym(A).
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