Permutations, Parenthesis Words, and Schröder Numbers^{*}

A. Ehrenfeucht¹ T. Harju²

G. Rozenberg^{1,4}

May 5, 2005

P. ten Pas^3

¹ Department of Computer Science, University of Colorado at Boulder Boulder, Co 80309, U.S.A.

² Department of Mathematics, University of Turku, FIN-20014 Turku, Finland

³ Mn Services, P.O. Box 5210, 2280 HE Rijswijk, the Netherlands

⁴ Department of Computer Science, Leiden University

P.O.Box 9512, 2300 RA Leiden, The Netherlands

Abstract

A different proof for the following result due to J. West is given: the Schröder number s_{n-1} equals the number of permutations on $\{1, 2, ..., n\}$ that avoid the pattern (3, 1, 4, 2) and its dual (2, 4, 1, 3).

Keywords: Permutations, pattern, Schröder numbers, Catalan numbers, parenthesis words

1 Introduction

We give here a different and shorter proof of a result due to J. West [12], and conjectured by Shapiro and Getu: the number of permutations on $[1, n] = \{1, 2, ..., n\}$ avoiding the pattern $\sigma = (3, 1, 4, 2)$ and its dual $\sigma^{\partial} = (2, 4, 1, 3)$, is the Schröder number s_{n-1} that is known to satisfy

$$s_n = \sum_{i=0}^n \binom{2n-i}{i} c_{n-i}, \qquad (1)$$

where $c_n = \frac{1}{n+1} \binom{2n}{n}$ is the *n*th Catalan number. We reduce the counting problem of permutations that avoid σ and σ^{∂} to Schröder's original problem from 1870 in [9] of counting parenthesis words.

Closely related results on the number of permutations that avoid a pattern, and also on the non-crossing partitions, are proved by Dershowitz and Zaks [2], [3] and Edelman [4], see also Prodinger [8].

^{*}All correspondence to Dr Tero Harju in the above address, or by e-mail: harju@utu.fi

Schröder numbers occur in many enumeration problems, see *e.g.* Stanley [11]. Even more so do the Catalan numbers, see *e.g.* Klazar [7], Shapiro and Stephens [10] and West [12]. The connection between the permutations that avoid the pattern σ and graphs is well known in the context of P_4 -free graphs, or cographs, as they are also called, see especially [1]. For a general treatment in terms of edge-coloured directed graphs (or 2-structures), see [5], and also [6].

We end this section with some notations and definitions.

Denote $[m, n] = \{m, m + 1, ..., n\}$ for the positive integers $m \le n$. The set of all permutations on a set A is denoted by Sym A, and we let

$$\mathbb{S} = \bigcup_{n \ge 1} \operatorname{Sym}[1, \mathbf{n}]$$

be the set of all permutations on the sets [1, n] for $n \ge 1$. We identify each $\delta \in$ Sym[1, n] with a linear order of [1, n] such that $\delta = (i_1, i_2, \ldots, i_n)$, where $\delta(k) = i_k$ for all $k \in [1, n]$. In this case, the *dual* of δ is the permutation $\delta^{\partial} = (i_n, i_{n-1}, \ldots, i_1)$.

A permutation $\delta \in \text{Sym}[1, n]$ is said to *contain a pattern* $\rho \in \text{Sym}[1, k]$ if there exists a mapping $\alpha \colon [1, k] \to [1, n]$ such that $\alpha(i) < \alpha(j)$ for i < j, and

$$\rho(i) \le \rho(j) \iff \delta(\alpha(i)) \le \delta(\alpha(j)).$$

Let

$$\sigma = (3, 1, 4, 2)$$
 and $\sigma^{\partial} = (2, 4, 1, 3)$

If $\delta \in S$ does not contain the pattern σ nor its dual σ^{∂} , then it is said to be σ^* -avoiding. Denote by

$$S_{\sigma^*} = \{ \delta \mid \delta \in S \text{ is } \sigma^* \text{-avoiding} \}.$$

Example 1.1. The permutation $\delta = (1, 5, 4, 2, 6, 3) \in \text{Sym}[1, 6]$ contains the pattern σ , since in δ there is a subsequence $(5, 2, 6, 3) = (\alpha(3), \alpha(1), \alpha(4), \alpha(2))$, where the mapping $\alpha : [1, 4] \rightarrow [1, 6]$ is defined by $\alpha(1) = 2$, $\alpha(2) = 4$, $\alpha(3) = 5$ and $\alpha(4) = 6$.

2 Sums of permutations

We define the sum of two permutations, $\delta_1 = (i_1, \ldots, i_n) \in \text{Sym}[1, n]$ and $\delta_2 = (j_1, \ldots, j_m) \in \text{Sym}[1, m]$, as

$$\delta_1 \oplus \delta_2 = (i_1, \ldots, i_n, j_1 + n, \ldots, j_m + n).$$

Clearly, $\delta_1 \oplus \delta_2$ is a permutation on [1, n + m]. The sum of permutations in S is easily seen to be associative, and therefore S forms a (noncommutative) semigroup under this operation.

Let, for each $n \ge 1$,

$$\iota_n = (1, 2, \dots, n)$$

be the *identity permutation* of Sym[1, n].

Example 2.1. Let $\delta = (2, 1, 3, 5, 4)$, $\iota_1 = (1)$, and $\iota_2 = (1, 2) = \iota_1 \oplus \iota_1$. Then $\delta = \iota_2^{\partial} \oplus \iota_1 \oplus \iota_2^{\partial} = (\iota_1 \oplus \iota_1)^{\partial} \oplus \iota_1 \oplus (\iota_1 \oplus \iota_1)^{\partial}$.

We give here a shorter proof of the next theorem which is proved in the context of 2-structures in [5].

Theorem 2.2. The set of σ^* -avoiding permutations is the smallest class of permutations containing $\iota_1 = (1)$ and closed under the operations of taking duals and sums.

Proof. First of all we show that the σ^* -avoiding permutations are closed under duals and sums. For the dual the claim is trivial. For the sum, we observe that if $\delta = \delta_1 \oplus \delta_2$, where $\delta_1 \in \text{Sym}[1, n]$, and δ contains the pattern σ , say (i_1, i_2, i_3, i_4) , then $i_4 > n$ implies that also $i_1 > n$, and in this case δ_2 contains the pattern σ . The case $i_4 \leq n$ implies that δ_1 contains the pattern σ by the definition of the sum. A similar argument is valid for σ^{∂} , and thus the closure properties are verified.

Let $\delta = (i_1, \ldots, i_n) \in \text{Sym}[1, n]$ be σ^* -avoiding, where $n \geq 2$. We prove that δ or δ^{∂} is a sum of two permutations from which the claim follows by induction.

Let $i_r = 1$ and $i_s = n$, where we may suppose that r < s; for, otherwise, we consider δ^{∂} instead of δ . If r = 1 then $\delta = (1) \oplus (i_2 - 1, \dots, i_n - 1)$; and if s = n then $\delta = (i_1, \dots, i_{n-1}) \oplus (1)$. Now assume that 1 < r < s < n. Denote

$$M_r = \max\{i_q \mid q < r\}$$
 and $M_s = \min\{i_p \mid p > s\}$.

We have $M_r < M_s$, since otherwise δ would contain the pattern σ : $(i_q, 1, n, i_p)$ for $i_q > i_p$ with q < r and p > s. Let $t \in [1, n]$ be the last index such that $i_t < M_s$. Clearly, $r \leq t < s$ (since $i_r = 1$ and $i_s = n$), and $i_m \geq M_s$ for all m > t.

If there exists an index j with r < j < t such that $i_j > M_s$, then δ contains the pattern σ , namely, (i_j, i_t, n, i_q) for q > s with $i_q = M_s$. In conclusion, $i_j < M_s \le i_m$ for all $j \le t$ and m > t, which implies that $\delta = (i_1, \ldots, i_t) \oplus (i_{t+1} - t, \ldots, i_n - t)$. This proves the claim.

Denote by ℓ_{δ} the last integer in the domain of a permutation $\delta \in S$, that is, $\delta \in \text{Sym}[1, \ell_{\delta}]$. The set S_{σ^*} can be partitioned into two subsets according to whether 1 or ℓ_{δ} comes before the other:

$$S_{\sigma^*,1} = \{\delta \mid \delta^{-1}(1) < \delta^{-1}(\ell_{\delta})\}$$
 and $S_{\sigma^*,\ell} = \{\delta \mid \delta^{-1}(1) > \delta^{-1}(\ell_{\delta})\}.$

From the proof of Theorem 2.2 we obtain

Lemma 2.3. A permutation $\delta \in S_{\sigma^*}$ with $\delta \neq \iota_1$ is a sum of two permutations from S_{σ^*} if and only if $\delta \in S_{\sigma^*,1}$.

3 Parenthesis words and Schröder numbers

We shall now give an alternate description to the σ^* -avoiding permutations using parenthesis words. For this let i be a symbol and let $A = \{i, (,)\}$ be an alphabet. Denote by A^* the free word monoid generated by A, that is, A^* consists of the words in the letters of A with the product of concatenation of words.

Let P be the smallest subset of A^* such that

- (i) $(i) \in P;$
- (ii) if $w_1, w_2 \in P$ then also $w_1 w_2 \in P$;
- (iii) for all $w \in P$, also $(w) \in P$.

By condition (ii), P is a subsemigroup of A^* . A word $w \in P$ is said to be *reduced*, if it has no subwords in P of the form ((u)). Hence in a reduced word we do not have 'unnecessary' parentheses. Denote the set of all reduced words in P by

$$P_{\rm red} = \{ w \mid w \text{ reduced} \}$$

We map the reduced words into the set of all permutations as follows. Let $\alpha: P_{\text{red}} \to S$ be defined by

$$\alpha((i)) = \iota_1, \quad \alpha(w_1w_2) = \alpha(w_1) \oplus \alpha(w_2), \quad \alpha((w)) = \alpha(w)^{\partial}$$

It is clear that α is a well defined function, and by the second equality, it is a semigroup homomorphism.

Example 3.1. The reduced word w = (i)((i)((i)(i)))(i) has the image $\alpha(w) = (1) \oplus ((1) \oplus (1) \oplus (1))^{\partial} \oplus (1) = (1, 3, 4, 5, 2, 6).$

Lemma 3.2. The mapping α is a bijection from P_{red} onto S_{σ^*} .

Proof. For this we observe (without the easy proofs) that in S, for all $\delta_i \in S$,

$$\delta_1 \oplus \delta_2 = \delta_1 \oplus \delta_3 \implies \delta_2 = \delta_3 \quad \text{and} \quad \delta_1 \oplus \delta_2 = \delta_3 \oplus \delta_2 \implies \delta_1 = \delta_3, \quad (2)$$

$$\delta_1 \oplus \delta_2 = \delta_3 \oplus \delta_4 \implies \delta_1 = \delta_3 \text{ or } \exists \delta \in \mathbb{S} \colon \left[\delta_1 = \delta_3 \oplus \delta \text{ or } \delta_3 = \delta_1 \oplus \delta \right], \quad (3)$$

$$(\delta_1 \oplus \delta_2)^\partial \neq \delta_3 \oplus \delta_4 \,. \tag{4}$$

The surjectivity of α is proved inductively. Let $\delta \in S_{\sigma^*}$ with $\delta \neq \iota_1$. If $\delta \in S_{\sigma^*,1}$ then, by Lemma 2.3, $\delta = \delta_1 \oplus \delta_2$ for some $\delta_i \in S_{\sigma^*}$, and by the induction hypothesis there are words $w_1, w_2 \in P_{\text{red}}$ such that $\alpha(w_i) = \delta_i$. In this case, $\alpha(w_1w_2) = \delta_1 \oplus \delta_2 = \delta$. If, on the other hand, $\delta \in S_{\sigma^*,\ell}$, then $\delta^{\partial} \in S_{\sigma^*,1}$, and hence there exists a word $w \in P_{\text{red}}$ such that $\alpha(w) = \delta^{\partial}$. It follows that either w = (v) and $\alpha(v) = \delta$, or $(w) \in P_{\text{red}}$ and $\alpha((w)) = \delta$.

We show the injectiveness of α inductively. For this let $w, v \in P_{\text{red}}$ be two words such that $\alpha(w) = \alpha(v)$. Clearly, if w = (i) or v = (i) then $\alpha(w) = \alpha(v)$ implies w = v. We have then three cases to consider:

(a) If $w = (w_1)$ and $v = (v_1)$, then from $\alpha(w) = \alpha(v)$ we obtain $\alpha(w_1) = \alpha(v_1)$ and, by the induction hypothesis, $w_1 = v_1$, from which w = v follows.

(b) If $w = (w_1)$ and $v = v_1v_2$ for some $v_1, v_2 \in P_{\text{red}}$ then, by (4), $\alpha(w) = \alpha(w_1)^{\partial} \neq \alpha(v_1) \oplus \alpha(v_2) = \alpha(v)$.

(c) Let then $w = w_1w_2$ and $v = v_1v_2$ for words $w_1, w_2, v_1, v_2 \in P_{\text{red}}$. If $\alpha(w_1) = \alpha(v_1)$, then by (2) also $\alpha(w_2) = \alpha(v_2)$, and in this case, the induction hypothesis gives $w_1 = v_1$ and $w_2 = v_2$, and therefore also w = v. Suppose then that $\alpha(w_1) \neq \alpha(v_1)$. By (3), there exists a permutation δ such that $\alpha(w_1) = \alpha(v_1) \oplus \delta$ (or in the symmetric case $\alpha(v_1) = \alpha(w_1) \oplus \delta$). Now $\alpha(w) = \alpha(v)$ implies $\delta \oplus \alpha(w_2) = \alpha(v_2)$ using the property (2). Since α is surjective, $\delta = \alpha(u)$ for some $u \in P_{\text{red}}$, and therefore $\alpha(uw_2) = \alpha(v_2)$, which by the induction hypothesis, gives $uw_2 = v_2$. By these considerations, we obtain

$$\alpha(w_1) \oplus \alpha(w_2) = \alpha(w_1w_2) = \alpha(v_1v_2) = \alpha(v_1uw_2) = \alpha(v_1) \oplus \alpha(u) \oplus \alpha(w_2),$$

and further, $\alpha(w_1) = \alpha(v_1u)$ by (2). The induction hypothesis gives $w_1 = v_1u$, and finally also $w = w_1w_2 = v_1uw_2 = v_1v_2 = v$. This shows that α is injective, and therefore a bijection.

The number of words in P_{red} with *n* occurrences of the symbol *i* is known as the Schröder number s_{n-1} , which can be shown to satisfy the equation (1). Therefore the number of words on P_{red} with *n* symbols *i* is exactly s_{n-1} .

The following result was proved by West [12] using a somewhat different approach to the problem.

Theorem 3.3. The number of the σ^* -avoiding permutations on [1, n] equals s_{n-1} .

References

- D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163 – 174.
- [2] N. Dershowitz and S. Zaks, Enumeration of ordered trees, *Discrete Math.* 31 (1980), 9 28.
- [3] N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, *Discrete Math.* 62 (1986), 215 218.
- [4] P.H. Edelman, Chain enumeration and non-crossing partitions, *Discrete Math.* 31 (1980), 171 180.
- [5] A. Ehrenfeucht and G. Rozenberg, T-structures, T-functions, and texts, *Theoret. Comput. Sci.* 116 (1993), 227 290.
- [6] J. Engelfriet, T. Harju, A. Proskurowski and G. Rozenberg, Characterization and complexity of uniformly nonprimitive labeled 2-structures, *Theoret. Comput. Sci.* 154, (1996), 247 – 282.
- [7] M. Klazar, On *abab*-avoiding and *abba*-avoiding set partitions, *European J. Combin.* 17 (1996), 53 – 68.
- [8] H. Prodinger, A correspondence between ordered trees and non-crossing partitions, Discrete Math. 46 (1983), 205 – 206.
- [9] E. Schröder, Vier kombinatorische Probleme, Z. für Math. Physik 15 (1870), 361 376.
- [10] L.W. Shapiro and A.B. Stephens, Bootstrap percolation, the Schröder numbers, and the n-kings problem, SIAM J. Discrete Math. 4 (1991), 275 – 280.
- [11] R.P. Stanley, Hipparchus, Plutarch, Schröder, and Hough, Amer. Math. Monthly 104 (1997), 344 – 350.
- [12] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995), 247 – 262.