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Abstract

A different proof for the following result due to J. West is given: the
Schröder number sn−1 equals the number of permutations on {1, 2, . . . , n} that
avoid the pattern (3, 1, 4, 2) and its dual (2, 4, 1, 3).
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1 Introduction

We give here a different and shorter proof of a result due to J. West [12], and con-
jectured by Shapiro and Getu: the number of permutations on [1, n] = {1, 2, . . . , n}
avoiding the pattern σ = (3, 1, 4, 2) and its dual σ∂ = (2, 4, 1, 3), is the Schröder
number sn−1 that is known to satisfy

sn =
n∑

i=0

(
2n− i

i

)
cn−i , (1)

where cn = 1
n+1

(
2n
n

)
is the nth Catalan number. We reduce the counting problem

of permutations that avoid σ and σ∂ to Schröder’s original problem from 1870 in
[9] of counting parenthesis words.

Closely related results on the number of permutations that avoid a pattern, and
also on the non-crossing partitions, are proved by Dershowitz and Zaks [2], [3] and
Edelman [4], see also Prodinger [8].

∗All correspondence to Dr Tero Harju in the above address, or by e-mail: harju@utu.fi
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Schröder numbers occur in many enumeration problems, see e.g. Stanley [11].
Even more so do the Catalan numbers, see e.g. Klazar [7], Shapiro and Stephens
[10] and West [12]. The connection between the permutations that avoid the pattern
σ and graphs is well known in the context of P4-free graphs, or cographs, as they
are also called, see especially [1]. For a general treatment in terms of edge-coloured
directed graphs (or 2-structures), see [5], and also [6].

We end this section with some notations and definitions.
Denote [m,n] = {m,m + 1, . . . , n} for the positive integers m ≤ n.
The set of all permutations on a set A is denoted by Sym A, and we let

S =
⋃
n≥1

Sym[1,n]

be the set of all permutations on the sets [1, n] for n ≥ 1. We identify each δ ∈
Sym[1,n] with a linear order of [1, n] such that δ = (i1, i2, . . . , in), where δ(k) = ik
for all k ∈ [1, n]. In this case, the dual of δ is the permutation δ∂ = (in, in−1, . . . , i1).

A permutation δ ∈ Sym[1,n] is said to contain a pattern ρ ∈ Sym[1, k] if there
exists a mapping α : [1, k] → [1, n] such that α(i) < α(j) for i < j, and

ρ(i) ≤ ρ(j) ⇐⇒ δ(α(i)) ≤ δ(α(j)) .

Let
σ = (3, 1, 4, 2) and σ∂ = (2, 4, 1, 3) .

If δ ∈ S does not contain the pattern σ nor its dual σ∂ , then it is said to be
σ∗-avoiding. Denote by

Sσ∗ = {δ | δ ∈ S is σ∗-avoiding} .

Example 1.1. The permutation δ = (1, 5, 4, 2, 6, 3) ∈ Sym[1, 6] contains the pattern
σ, since in δ there is a subsequence (5, 2, 6, 3) = (α(3), α(1), α(4), α(2)), where the
mapping α : [1, 4] → [1, 6] is defined by α(1) = 2, α(2) = 4, α(3) = 5 and α(4) = 6.

2 Sums of permutations

We define the sum of two permutations, δ1 = (i1, . . . , in) ∈ Sym[1,n] and δ2 =
(j1, . . . , jm) ∈ Sym[1,m], as

δ1 ⊕ δ2 = (i1, . . . , in, j1 + n, . . . , jm + n) .

Clearly, δ1 ⊕ δ2 is a permutation on [1, n + m]. The sum of permutations in S is
easily seen to be associative, and therefore S forms a (noncommutative) semigroup
under this operation.

Let, for each n ≥ 1,
ιn = (1, 2, . . . , n) ,

be the identity permutation of Sym[1,n].
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Example 2.1. Let δ = (2, 1, 3, 5, 4), ι1 = (1), and ι2 = (1, 2) = ι1 ⊕ ι1. Then
δ = ι∂2 ⊕ ι1 ⊕ ι∂2 = (ι1 ⊕ ι1)∂ ⊕ ι1 ⊕ (ι1 ⊕ ι1)∂ .

We give here a shorter proof of the next theorem which is proved in the context
of 2-structures in [5].

Theorem 2.2. The set of σ∗-avoiding permutations is the smallest class of per-
mutations containing ι1 = (1) and closed under the operations of taking duals and
sums.

Proof. First of all we show that the σ∗-avoiding permutations are closed under
duals and sums. For the dual the claim is trivial. For the sum, we observe that if
δ = δ1 ⊕ δ2, where δ1 ∈ Sym[1,n], and δ contains the pattern σ, say (i1, i2, i3, i4),
then i4 > n implies that also i1 > n, and in this case δ2 contains the pattern σ. The
case i4 ≤ n implies that δ1 contains the pattern σ by the definition of the sum. A
similar argument is valid for σ∂ , and thus the closure properties are verified.

Let δ = (i1, . . . , in) ∈ Sym[1,n] be σ∗-avoiding, where n ≥ 2. We prove that δ
or δ∂ is a sum of two permutations from which the claim follows by induction.

Let ir = 1 and is = n, where we may suppose that r < s; for, otherwise, we
consider δ∂ instead of δ. If r = 1 then δ = (1) ⊕ (i2 − 1, . . . , in − 1); and if s = n
then δ = (i1, . . . , in−1)⊕ (1). Now assume that 1 < r < s < n. Denote

Mr = max{iq | q < r} and Ms = min{ip | p > s} .

We have Mr < Ms, since otherwise δ would contain the pattern σ: (iq, 1, n, ip) for
iq > ip with q < r and p > s. Let t ∈ [1, n] be the last index such that it < Ms.
Clearly, r ≤ t < s (since ir = 1 and is = n), and im ≥ Ms for all m > t.

If there exists an index j with r < j < t such that ij > Ms, then δ contains the
pattern σ, namely, (ij , it, n, iq) for q > s with iq = Ms. In conclusion, ij < Ms ≤ im
for all j ≤ t and m > t, which implies that δ = (i1, . . . , it) ⊕ (it+1 − t, . . . , in − t).
This proves the claim.

Denote by `δ the last integer in the domain of a permutation δ ∈ S, that is,
δ ∈ Sym[1, `δ]. The set Sσ∗ can be partitioned into two subsets according to whether
1 or `δ comes before the other:

Sσ∗,1 = {δ | δ−1(1) < δ−1(`δ)} and Sσ∗,` = {δ | δ−1(1) > δ−1(`δ)} .

From the proof of Theorem 2.2 we obtain

Lemma 2.3. A permutation δ ∈ Sσ∗ with δ 6= ι1 is a sum of two permutations from
Sσ∗ if and only if δ ∈ Sσ∗,1.
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3 Parenthesis words and Schröder numbers

We shall now give an alternate description to the σ∗-avoiding permutations using
parenthesis words. For this let ı be a symbol and let A = {ı, (, )} be an alphabet.
Denote by A∗ the free word monoid generated by A, that is, A∗ consists of the
words in the letters of A with the product of concatenation of words.

Let P be the smallest subset of A∗ such that

(i) (ı) ∈ P ;

(ii) if w1, w2 ∈ P then also w1w2 ∈ P ;

(iii) for all w ∈ P , also (w) ∈ P .

By condition (ii), P is a subsemigroup of A∗. A word w ∈ P is said to be reduced,
if it has no subwords in P of the form ((u)). Hence in a reduced word we do not
have ‘unnecessary’ parentheses. Denote the set of all reduced words in P by

Pred = {w | w reduced} .

We map the reduced words into the set of all permutations as follows. Let
α : Pred → S be defined by

α((ı)) = ι1, α(w1w2) = α(w1)⊕ α(w2), α((w)) = α(w)∂ .

It is clear that α is a well defined function, and by the second equality, it is a
semigroup homomorphism.

Example 3.1. The reduced word w = (ı)((ı)((ı)(ı)(ı)))(ı) has the image α(w) =
(1)⊕ ((1)⊕ ((1)⊕ (1)⊕ (1))∂)∂ ⊕ (1) = (1, 3, 4, 5, 2, 6).

Lemma 3.2. The mapping α is a bijection from Pred onto Sσ∗.

Proof. For this we observe (without the easy proofs) that in S, for all δi ∈ S,

δ1 ⊕ δ2 = δ1 ⊕ δ3 =⇒ δ2 = δ3 and δ1 ⊕ δ2 = δ3 ⊕ δ2 =⇒ δ1 = δ3 , (2)
δ1 ⊕ δ2 = δ3 ⊕ δ4 =⇒ δ1 = δ3 or ∃δ ∈ S : [δ1 = δ3 ⊕ δ or δ3 = δ1 ⊕ δ] , (3)

(δ1 ⊕ δ2)∂ 6= δ3 ⊕ δ4 . (4)

The surjectivity of α is proved inductively. Let δ ∈ Sσ∗ with δ 6= ι1. If δ ∈ Sσ∗,1

then, by Lemma 2.3, δ = δ1⊕ δ2 for some δi ∈ Sσ∗ , and by the induction hypothesis
there are words w1, w2 ∈ Pred such that α(wi) = δi. In this case, α(w1w2) =
δ1⊕ δ2 = δ. If, on the other hand, δ ∈ Sσ∗,`, then δ∂ ∈ Sσ∗,1, and hence there exists
a word w ∈ Pred such that α(w) = δ∂ . It follows that either w = (v) and α(v) = δ,
or (w) ∈ Pred and α((w)) = δ.

We show the injectiveness of α inductively. For this let w, v ∈ Pred be two words
such that α(w) = α(v). Clearly, if w = (ı) or v = (ı) then α(w) = α(v) implies
w = v.
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We have then three cases to consider:
(a) If w = (w1) and v = (v1), then from α(w) = α(v) we obtain α(w1) = α(v1)

and, by the induction hypothesis, w1 = v1, from which w = v follows.
(b) If w = (w1) and v = v1v2 for some v1, v2 ∈ Pred then, by (4), α(w) =

α(w1)∂ 6= α(v1)⊕ α(v2) = α(v).
(c) Let then w = w1w2 and v = v1v2 for words w1, w2, v1, v2 ∈ Pred. If α(w1) =

α(v1), then by (2) also α(w2) = α(v2), and in this case, the induction hypothesis
gives w1 = v1 and w2 = v2, and therefore also w = v. Suppose then that α(w1) 6=
α(v1). By (3), there exists a permutation δ such that α(w1) = α(v1)⊕ δ (or in the
symmetric case α(v1) = α(w1) ⊕ δ). Now α(w) = α(v) implies δ ⊕ α(w2) = α(v2)
using the property (2). Since α is surjective, δ = α(u) for some u ∈ Pred, and
therefore α(uw2) = α(v2), which by the induction hypothesis, gives uw2 = v2. By
these considerations, we obtain

α(w1)⊕ α(w2) = α(w1w2) = α(v1v2) = α(v1uw2) = α(v1)⊕ α(u)⊕ α(w2) ,

and further, α(w1) = α(v1u) by (2). The induction hypothesis gives w1 = v1u, and
finally also w = w1w2 = v1uw2 = v1v2 = v. This shows that α is injective, and
therefore a bijection.

The number of words in Pred with n occurrences of the symbol ı is known as the
Schröder number sn−1, which can be shown to satisfy the equation (1). Therefore
the number of words on Pred with n symbols ı is exactly sn−1.

The following result was proved by West [12] using a somewhat different ap-
proach to the problem.

Theorem 3.3. The number of the σ∗-avoiding permutations on [1, n] equals sn−1.
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