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Abstract
A different proof for the following result due to J. West is given: the
Schroder number s,,—1 equals the number of permutations on {1,2,...,n} that

avoid the pattern (3,1,4,2) and its dual (2,4,1,3).
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1 Introduction

We give here a different and shorter proof of a result due to J. West [12], and con-
jectured by Shapiro and Getu: the number of permutations on [1,n] = {1,2,...,n}
avoiding the pattern o = (3,1,4,2) and its dual ¢ = (2,4,1,3), is the Schréder
number s,,_1 that is known to satisfy
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where ¢, = %H(Q:
of permutations that avoid ¢ and ¢? to Schréder’s original problem from 1870 in
[9] of counting parenthesis words.
Closely related results on the number of permutations that avoid a pattern, and
also on the non-crossing partitions, are proved by Dershowitz and Zaks [2], [3] and

Edelman [4], see also Prodinger [8].

) is the nth Catalan number. We reduce the counting problem
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Schréder numbers occur in many enumeration problems, see e.g. Stanley [11].
Even more so do the Catalan numbers, see e.g. Klazar [7], Shapiro and Stephens
[10] and West [12]. The connection between the permutations that avoid the pattern
o and graphs is well known in the context of P,-free graphs, or cographs, as they
are also called, see especially [1]. For a general treatment in terms of edge-coloured
directed graphs (or 2-structures), see [5], and also [6].

We end this section with some notations and definitions.

Denote [m,n] = {m,m +1,...,n} for the positive integers m < n.
The set of all permutations on a set A is denoted by Sym A, and we let
8§ = U Sym([1,n]
n>1

be the set of all permutations on the sets [1,n] for n > 1. We identify each ¢ €
Sym[1,n] with a linear order of [1,n] such that 6 = (iy,12,...,4,), where §(k) = i
for all k € [1,7n]. In this case, the dual of § is the permutation 6% = (i, ip_1,...,i1).

A permutation § € Sym|[1,n] is said to contain a pattern p € Sym|[1,k]| if there
exists a mapping a: [1, k] — [1,n] such that a(i) < a(j) for i < j, and

p(i) < p(j) < d(afi)) < 5(a(d))-

Let
c=(3,1,4,2) and 0% =(2,4,1,3).

If § € 8 does not contain the pattern o nor its dual ¢?, then it is said to be
o*-avoiding. Denote by

Sy« ={0] 6 € 8 is o*-avoiding} .

Example 1.1. The permutation § = (1,5,4,2,6,3) € Sym[1, 6] contains the pattern
o, since in ¢ there is a subsequence (5,2,6,3) = («(3), (1), a(4), «(2)), where the
mapping «a: [1,4] — [1,6] is defined by a(1) =2, a(2) =4, a(3) =5 and «a(4) = 6.

2 Sums of permutations

We define the sum of two permutations, 01 = (i1,...,4,) € Sym[l,n] and Jy =
(J1,---,Jm) € Sym|[l,m], as

(516952:(il,...,in,jl—I—n,...,jm—i—n).

Clearly, ;1 @ d2 is a permutation on [1,n + m|. The sum of permutations in § is
easily seen to be associative, and therefore 8 forms a (noncommutative) semigroup
under this operation.
Let, for each n > 1,
tm=(1,2,...,n),

be the identity permutation of Sym][1,n].



Example 2.1. Let 6 = (2,1,3,5,4), t1 = (1), and 12 = (1,2) = ¢t1 @ ¢t1. Then
5:L§G§L1@L§:(1469L1)8@L1EB(L1@L1)8-

We give here a shorter proof of the next theorem which is proved in the context
of 2-structures in [5].

Theorem 2.2. The set of o*-avoiding permutations is the smallest class of per-
mutations containing 11 = (1) and closed under the operations of taking duals and
sums.

Proof. First of all we show that the o*-avoiding permutations are closed under
duals and sums. For the dual the claim is trivial. For the sum, we observe that if
d = 1 @ b2, where 6; € Sym[1,n], and § contains the pattern o, say (i, i2,13,1%4),
then i4 > n implies that also 71 > n, and in this case d5 contains the pattern o. The
case i4 < n implies that d; contains the pattern o by the definition of the sum. A
similar argument is valid for ¢?, and thus the closure properties are verified.

Let § = (i1,...,in) € Sym[l,n] be o*-avoiding, where n > 2. We prove that ¢
or 69 is a sum of two permutations from which the claim follows by induction.

Let 7., = 1 and i; = n, where we may suppose that r < s; for, otherwise, we
consider 69 instead of 6. If r = 1 then § = (1) @ (ia — 1,...,i, — 1); and if s = n
then § = (i1,...,ip—1) ® (1). Now assume that 1 < r < s < n. Denote

M, =max{i, | ¢ <r} and My =min{i,|p> s}.

We have M, < Mj, since otherwise § would contain the pattern o: (iq,1,n,1,) for
ig > ip with ¢ < r and p > s. Let t € [1,n] be the last index such that i; < M,.
Clearly, r < t < s (since i, = 1 and i = n), and i, > M, for all m > t.

If there exists an index j with » < j <t such that i; > M, then  contains the
pattern o, namely, (4,14, n,iq) for ¢ > s with i, = M,. In conclusion, i; < My < iy,
for all j <t and m > t, which implies that § = (i1,...,4) ® (ig41 — &, ..., 0p — ).
This proves the claim. O

Denote by £s5 the last integer in the domain of a permutation § € §, that is,
d € Sym[1, £s]. The set S, can be partitioned into two subsets according to whether
1 or ¢5 comes before the other:

Sor1=1{6107 1) <5 (ls)} and Sprp={5]6 (1) > (¢s)}.
From the proof of Theorem 2.2 we obtain

Lemma 2.3. A permutation & € 85+« with § # 11 is a sum of two permutations from
8o+ if and only if 6 € 84+ 1.



3 Parenthesis words and Schroder numbers

We shall now give an alternate description to the o*-avoiding permutations using
parenthesis words. For this let ¢+ be a symbol and let A = {4, (,)} be an alphabet.
Denote by A* the free word monoid generated by A, that is, A* consists of the
words in the letters of A with the product of concatenation of words.

Let P be the smallest subset of A* such that

1) () € P
(ii) if wy,wq € P then also wiwy € P;
(iii) for all w € P, also (w) € P.

By condition (ii), P is a subsemigroup of A*. A word w € P is said to be reduced,
if it has no subwords in P of the form ((u)). Hence in a reduced word we do not
have ‘unnecessary’ parentheses. Denote the set of all reduced words in P by

Preq = {w | w reduced} .

We map the reduced words into the set of all permutations as follows. Let
a: Peq — 8 be defined by

a((r) =1, alwiws)=a(wr)®alws), a((w))= a(w)a.

It is clear that « is a well defined function, and by the second equality, it is a
semigroup homomorphism.

Example 3.1. The reduced word w = (2)((2)((2)(2)(2)))(z) has the image a(w) =
Me(ae (e 1) e 1)) e 1) =I(1,3,4,5,2,6).

Lemma 3.2. The mapping « is a bijection from P,eq onto Sg+.

Proof. For this we observe (without the easy proofs) that in 8, for all §; € 8,

DI =01Dd3 — do=03 and 0§ DIy =093Pdy — 01 = I3, (2)
0N POy =03P04 — 07 =03 or 3568:[512(53@5 or (532(51@(5], (3)
(01 ® 02)° # 63 ® 0. (4)

The surjectivity of « is proved inductively. Let 0 € 85+ with 0 # ¢1. If § € S5+ 1
then, by Lemma 2.3, § = §; @ o for some 9; € 8,+, and by the induction hypothesis
there are words wy,ws € Peq such that a(w;) = ¢;. In this case, a(wiwy) =
01 @ 02 = 4. If, on the other hand, § € 85+ 4, then 89 e 85+,1, and hence there exists
a word w € Pyeq such that a(w) = 69. Tt follows that either w = (v) and a(v) = 6,
or (w) € Preq and a(w)) = 0.

We show the injectiveness of « inductively. For this let w,v € P,oq be two words
such that a(w) = a(v). Clearly, if w = () or v = (2) then a(w) = a(v) implies
w=v.



We have then three cases to consider:

(a) If w = (w1) and v = (vy), then from a(w) = a(v) we obtain a(w;) = a(v1)
and, by the induction hypothesis, w; = v1, from which w = v follows.

(b) If w = (w1) and v = wvyvy for some v1,vy € Pieq then, by (4), a(w) =
a(wr)? # a(vy) @ a(vs) = alv).

(c) Let then w = wiwy and v = v1ve for words wy, wa, v1,v2 € Preg. If a(wy) =
a(v1), then by (2) also a(wz) = a(v2), and in this case, the induction hypothesis
gives w1 = v1 and we = ve, and therefore also w = v. Suppose then that a(wq) #
a(vy). By (3), there exists a permutation 0 such that a(w;) = a(v1) @ § (or in the
symmetric case a(v1) = a(wy) ® ). Now a(w) = a(v) implies § ® a(wsz) = a(vs)
using the property (2). Since « is surjective, § = a(u) for some u € P4, and
therefore a(uws) = a(vy), which by the induction hypothesis, gives uws = v9. By
these considerations, we obtain

a(wy) ® a(wy) = a(wwy) = a(vivy) = a(viuws) = a(vy) & alu) ® a(ws) ,

and further, a(w;) = a(viu) by (2). The induction hypothesis gives w; = vju, and
finally also w = wiws = viuwy = vivy = v. This shows that « is injective, and
therefore a bijection. O

The number of words in P,e.q with n occurrences of the symbol 2 is known as the
Schréder number s,,_1, which can be shown to satisfy the equation (1). Therefore
the number of words on P,..q with n symbols ¢ is exactly s,_1.

The following result was proved by West [12] using a somewhat different ap-
proach to the problem.

Theorem 3.3. The number of the o*-avoiding permutations on [1,n] equals sp—_1.



References

[1]

D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs,
Discrete Appl. Math. 3 (1981), 163 — 174.

N. Dershowitz and S. Zaks, Enumeration of ordered trees, Discrete Math. 31
(1980), 9 — 28.

N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete
Math. 62 (1986), 215 — 218.

P.H. Edelman, Chain enumeration and non-crossing partitions, Discrete Math. 31
(1980), 171 — 180.

A. Ehrenfeucht and G. Rozenberg, T-structures, T-functions, and texts, Theoret.
Comput. Sci. 116 (1993), 227 — 290.

J. Engelfriet, T. Harju, A. Proskurowski and G. Rozenberg, Characterization and
complexity of uniformly nonprimitive labeled 2-structures, Theoret. Comput. Sci.
154, (1996), 247 — 282.

M. Klazar, On abab-avoiding and abba-avoiding set partitions, Furopean J. Combin.
17 (1996), 53 — 68.

H. Prodinger, A correspondence between ordered trees and non-crossing partitions,
Discrete Math. 46 (1983), 205 — 206.

E. Schroder, Vier kombinatorische Probleme, Z. fiir Math. Physik 15 (1870), 361 —
376.

L.W. Shapiro and A.B. Stephens, Bootstrap percolation, the Schréder numbers,
and the n-kings problem, SIAM J. Discrete Math. 4 (1991), 275 — 280.

R.P. Stanley, Hipparchus, Plutarch, Schréder, and Hough, Amer. Math. Monthly
104 (1997), 344 — 350.

J. West, Generating trees and the Catalan and Schréder numbers, Discrete Math.
146 (1995), 247 — 262.



