Combinatorial Enumeration (2017) Problem Set 1 (Jan. 19)

1 (a) How many elements are there in $2^{[1,12]}$?

(b) How many $X \subseteq [1, 12]$ contain at least one odd integer?

(c) How many $X \subseteq [1, 12]$ contain exactly one odd integer?

Solution. (a) The set [1, 12] has $2^{12} = 4096$ subsets.

(b) There are 6 even integers in [1, 12], and thus $2^6 = 64$ subsets of [1, 12] have only even integers (including the empty set \emptyset). Now 4096 - 64 = 4032.

(c) $64 \cdot 6 = 384$ (add one odd integer to each of the 64 sets).

2 (Finite symmetry). Let $k \in \mathbb{N}$. Show that there exists a bound $n \in N$ such that if $|X| \ge n$ and $f: X \to 2^X$ is any assignment with |f(x)| = k for all $x \in X$, then there are $x, y \in X$ such that $x \notin f(y)$ and $y \notin f(x)$. **Hint.** n = (k+1)k+1.

Solution. (Hamkins) Choose n = (k + 1)k + 1. Let $x_0, x_1, \ldots, x_k \in X$. Now

$$\left| \bigcup_{i=0}^{k} f(x_i) \right| \le (k+1)k \text{ and hence there exists } y \notin \bigcup_{i=0}^{k} f(x_i).$$

For this *y* (and, indeed, for every element of *X*), there exists a *j* such that $x_j \notin f(y)$ (since |f(y)| = k). This proves the claim.

(Pigeohole) Let $f : A \to B$ be a function between finite nonempty sets *A* and *B*. Show that there exists an element $b \in B$ such that $|f^{-1}(b)| \ge |A|/|B|$, where $f^{-1}(b) = \{x \mid f(x) = b\}$.

Solution. If $|f^{-1}(b)| < |A|/|B|$ to all $b \in B$, then

$$|A| = \sum_{b \in B} |f^{-1}(b)| < \frac{|A|}{|B|} \cdot |B| = |A|;$$

a contradiction. (Here the sets $f^{-1}(b)$ for a partition of *A*.)

4 Let $f : A \rightarrow B$ be a function between finite nonempty sets. Prove

$$|f(A)| = \sum_{x \in A} \frac{1}{|f^{-1}(f(A))|}.$$

Solution. We count the sum in a different way by summing over $y \in f(A)$:

$$\sum_{x \in A} \frac{1}{|f^{-1}(f(x))|} = \sum_{y \in f(A)} \sum_{x \in f^{-1}(y)} \frac{1}{|f^{-1}(f(x))|}$$
$$= \sum_{y \in f(A)} \sum_{x \in f^{-1}(y)} \frac{1}{|f^{-1}(y)|} = \sum_{y \in f(A)} 1 = |f(A)|.$$

5 Let *X* be an *n*-set. How many pairs (*A*, *B*) are there for which $A \subseteq B \subseteq X$?

Solution. There are 3^n such pairs, because the solutions (A, B) are in 1-1 correspondence with the triples $(A, B \setminus A, X \setminus B)$ (of disjoint subsets that form a partition of *X*). The elements of *X* can be placed in 3^n different ways to these three sets.

6 Let $\pi: X \to X$ be a permutation of prime order p on a finite set X, i.e., $\pi^p = \pi \pi \cdots \pi$ (p times) is the identity function on X. Shown that $|X| \equiv k \pmod{p}$, where k is the number of the fixed points of $\pi: \pi(x) = x$.

Solution. For each $x \in X$, $\pi^i(x) = x$ if and only if *i* divides the order *p* of π . Hence i = 1 or *p*, since *p* is a prime number. Hence each orbit $Orb(x) = \{x, \pi(x), \ldots\}$ has size 1 or *p*. The orbits form a partition of *X*. Those of size 1 consist of the fixed points.

7 Let *A* and *B* be finite sets and $\alpha: A \times B \to \mathbb{R}$ a (weight) function. Show that

$$\sum_{f:A\to B} \prod_{a\in A} \alpha(a, f(a)) = \prod_{a\in A} \sum_{b\in B} \alpha(a, b).$$

Solution. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_k\}$. Each ordered *n*-tuple $(x_1, x_2, ..., x_n) \in B^n$ corresponds to a unique function $f : A \to B$ specified by $f(a_i) = x_i$. Therefore

$$\sum_{f:A \to B} \prod_{a \in A} \alpha(a, f(a)) = \sum_{(x_1, x_2, \dots, x_n) \in B^n} \alpha(a_1, x_1) \alpha(a_2, x_2) \cdots \alpha(a_n, x_n)$$

$$= \sum_{x_1 \in B} \sum_{x_2 \in B} \dots \sum_{x_n \in B} \alpha(a_1, x_1) \alpha(a_2, x_2) \cdots \alpha(a_n, x_n)$$

$$= \sum_{x_1 \in B} \alpha(a_1, x_1) \cdot \left(\sum_{x_2 \in B} \dots \sum_{x_n \in B} \alpha(a_2, x_2) \cdots \alpha(a_n, x_n) \right)$$

$$= \dots$$

$$= \sum_{x_1 \in B} \alpha(a_1, x_1) \sum_{x_2 \in B} \alpha(a_2, x_2) \cdots \sum_{x_n \in B} \alpha(a_n, x_n)$$

$$= \sum_{x_1 \in B} \alpha(a_1, x) \sum_{x_2 \in B} \alpha(a_2, x) \cdots \sum_{x_n \in B} \alpha(a_n, x)$$

$$= \prod_{a \in A} \sum_{b \in B} \alpha(a, b).$$

Remark. The field \mathbb{R} can obviously be replaced by any commutative ring.