Combinatorial Enumeration (2017) Problem Set 1 (Jan. 19)

1 (a) How many elements are there in $2^{[1,12]}$?

- **(b)** How many $X \subseteq [1, 12]$ contain at least one odd integer?
- **(c)** How many *X* ⊆ [1, 12] contain exactly one odd integer?

Solution. (a) The set [1, 12] has $2^{12} = 4096$ subsets.

(b) There are 6 even integers in [1, 12], and thus $2^6 = 64$ subsets of [1, 12] have only even integers (including the empty set \emptyset). Now 4096 − 64 = 4032.

- (c) $64 \cdot 6 = 384$ (add one odd integer to each of the 64 sets).
- **2** (Finite symmetry). Let $k \in \mathbb{N}$. Show that there exists a bound $n \in N$ such that if $|X|$ ≥ *n* and *f* : *X* → 2^{*X*} is any assignment with $|f(x)| = k$ for all $x \in X$, then there are $x, y \in X$ such that $x \notin f(y)$ and $y \notin f(x)$.

$$
Hint. \, n = (k+1)k+1.
$$

Solution. (Hamkins) Choose $n = (k+1)k+1$. Let $x_0, x_1, \ldots, x_k \in X$. Now

$$
\left|\bigcup_{i=0}^{k} f(x_i)\right| \leq (k+1)k
$$
 and hence there exists $y \notin \bigcup_{i=0}^{k} f(x_i)$.

For this *y* (and, indeed, for every element of *X*), there exists a *j* such that $x_i \notin f(y)$ (since $|f(y)| = k$). This proves the claim.

3 (Pigeohole) Let $f : A \rightarrow B$ be a function between finite nonempty sets A and B. Show that there exists an element $b \in B$ such that $|f^{-1}(b)| \ge |A|/|B|$, where $f^{-1}(b) = \{x \mid$ $f(x) = b$.

Solution. If $|f^{-1}(b)| < |A|/|B|$ to all $b \in B$, then

$$
|A| = \sum_{b \in B} |f^{-1}(b)| < \frac{|A|}{|B|} \cdot |B| = |A| \, ;
$$

a contradiction. (Here the sets *f −*1 (*b*) for a partition of *A*.)

4 Let $f : A \rightarrow B$ be a function between finite nonempty sets. Prove

$$
|f(A)| = \sum_{x \in A} \frac{1}{|f^{-1}(f(A))|}.
$$

Solution. We count the sum in a different way by summing over $y \in f(A)$:

$$
\sum_{x \in A} \frac{1}{|f^{-1}(f(x))|} = \sum_{y \in f(A)} \sum_{x \in f^{-1}(y)} \frac{1}{|f^{-1}(f(x))|}
$$

=
$$
\sum_{y \in f(A)} \sum_{x \in f^{-1}(y)} \frac{1}{|f^{-1}(y)|} = \sum_{y \in f(A)} 1 = |f(A)|.
$$

5 Let *X* be an *n*-set. How many pairs (A, B) are there for which $A ⊆ B ⊆ X$?

Solution. There are 3^n such pairs, because the solutions (A, B) are in 1-1 correspondence with the triples $(A, B \setminus A, X \setminus B)$ (of disjoint subsets that form a partition of *X*). The elements of X can be placed in 3^n different ways to these three sets.

6 Let $\pi: X \to X$ be a permutation of prime order *p* on a finite set *X*, i.e., $\pi^p = \pi \pi \cdots \pi$ (*p* times) is the identity function on *X*. Shown that $|X| \equiv k \pmod{p}$, where *k* is the number of the fixed points of π : $\pi(x) = x$.

Solution. For each $x \in X$, $\pi^{i}(x) = x$ if and only if *i* divides the order *p* of π . Hence $i = 1$ or *p*, since *p* is a prime number. Hence each orbit $Orb(x) = \{x, \pi(x), ...\}$ has size 1 or *p*. The orbits form a partition of *X*. Those of size 1 consist of the fixed points.

7 Let *A* and *B* be finite sets and *α*: *A× B →* R a (weight) function. Show that

$$
\sum_{f:A\to B}\prod_{a\in A}\alpha(a,f(a))=\prod_{a\in A}\sum_{b\in B}\alpha(a,b).
$$

Solution. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_k\}$. Each ordered *n*-tuple $(x_1, x_2, \ldots, x_n) \in B^n$ corresponds to a unique function $f : A \to B$ specified by $f(a_i) = x_i$. Therefore

$$
\sum_{f:A\to B} \prod_{a\in A} \alpha(a, f(a)) = \sum_{(x_1, x_2, ..., x_n)\in B^n} \alpha(a_1, x_1) \alpha(a_2, x_2) \cdots \alpha(a_n, x_n)
$$

\n
$$
= \sum_{x_1\in B} \sum_{x_2\in B} \cdots \sum_{x_n\in B} \alpha(a_1, x_1) \alpha(a_2, x_2) \cdots \alpha(a_n, x_n)
$$

\n
$$
= \sum_{x_1\in B} \alpha(a_1, x_1) \cdot \left(\sum_{x_2\in B} \cdots \sum_{x_n\in B} \alpha(a_2, x_2) \cdots \alpha(a_n, x_n) \right)
$$

\n
$$
= \cdots
$$

\n
$$
= \sum_{x_1\in B} \alpha(a_1, x_1) \sum_{x_2\in B} \alpha(a_2, x_2) \cdots \sum_{x_n\in B} \alpha(a_n, x_n)
$$

\n
$$
= \sum_{x\in B} \alpha(a_1, x) \sum_{x\in B} \alpha(a_2, x) \cdots \sum_{x\in B} \alpha(a_n, x)
$$

\n
$$
= \prod_{a\in A} \sum_{b\in B} \alpha(a, b).
$$

Remark. The field $\mathbb R$ can obviously be replaced by any commutative ring.