
Combinatorial Enumeration (2017)
Problem Set 3 (Feb. 2)

1 How many lattice paths w ∈ {u, r}∗ : (0,0) → (n, k) are there that visit the point
(x , y), where 0≤ x ≤ n and 0≤ y ≤ k?

Solution. There are
�x+y

x

�
paths (0, 0) → (x , y) and

�n−x+k−y
n−x

�
paths (x , y) → (n, k).

Hence the answer is �
x + y

x

�
·
�

n− x + k− y
n− x

�
.

2 Let n and k be fixed positive integers. How many positive integer solutions are there
for the (in)equality

(a) x1 + x2 + · · ·+ xk = n ? (b) x1 + x2 + · · ·+ xk < n ?

Solution. (a) Reduce the equality to (x0 + 1)1+ (x1 + 1) + · · ·+ (xk−1 + 1) = n. This
gives
�n−1

k−1

�
.

Second solution. Let

A= {(x1, x2, . . . , xk) |
k∑

i=1

x i = n, x i ≥ 1} ,

and consider the mapping α: A→ 2[1,n−1] defined by

α(x1, x2, . . . , xk) = {x1, x1 + x2, . . . , x1 + x2 + · · ·+ xk−1} .
Clearly, α is bijective onto the (k−1)-subsets of [1, n−1] the number of which is

�n−1
k−1

�
.

(b) The number of solutions is the same as for x1 + x2 + · · ·+ xk+1 = n, i.e.,
�n−1

k

�
.

3 We say that w= a1a2 · · · an with n≥ 1 and ai ∈ [0, k−1] is a step word, if for each
index i, we have ai+1 = ai or ai+1 = ai+1 (mod k) (where the index i+1 is modulo
n). For instance, w = 2234001 is a step word for k = 5, but 112 is not, since while
closing the sequences, 2+1 ̸≡ 1 (mod 5). Show that the number G(n) of step words
of length n is

G(n) = k
∑
i≥0

�
n
ki

�
.

(Recall that
�n

m

�
= 0 if m> n.)

Solution. The step words are in 1− 1 correspondence with the sequences

(a1; r1, r2, . . . , rn), where ai+1 = ai + ri with ri ∈ {0,1}.
E.g. 2234001 is represented by (2;0, 1, 1,1, 0, 1, 1). A sequence is a step word if and
only if the number of ones is divisible by k, i.e., G(n) = k

∑
i≥0

� n
ki

�
, where the coefficient

k counts the first elements a1 of the words.

Additional note. For k ≥ 3, further evaluation of the sum is bit more complicated.
By Guichard’s theorem (1995), k

∑
i≥0

� n
ki

�
=
∑k

i=1(1 + ζ
i
k)

n, where ζk = e2πi/k is a
complex primitive kth root of unity.

4 Let f (n) be the number of integer sequences 1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ n such that
ai ≥ i for each i ∈ [1, n]. Show that f (n) is a Catalan number.
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Solution. Note first that an = n by the conditions. There is a bijection onto the lattice
paths (0,0) → (n, n). Each ai corresponds to the word uai−ai−1 r. E.g., the sequence
2,3,3, 4 with n= 4 corresponds to uururrur.

5 A finite set S ⊆ [1, n] is said to be self-centred, if |S| ∈ S. Denote by Mn the family of
the minimal self-centred sets of [1, n], i.e., those self-centred sets that do not have
proper self-centred subsets. Find |Mn| for all n≥ 1.

Solution. The answer is the nth Fibonacci number.

First, S is minimal self-centred if and only if |S| = min(S) (the smallest element of S).
Indeed, if k ∈ S with k < |S|, then the k smallest elements of S form a self-centred
subset.

We prove the claim by induction on n. For n ≤ 2, the set {1} is the unique set in Mn.
These give Fibonacci numbers. Let then n ≥ 3. We construct |Mn−1| + |Mn| minimal
self-centred subsets of [1, n+ 1].

(A) Clearly Mn ⊆ Mn+1. This gives |Mn| sets in Mn+1 that are exactly those S ∈ Mn+1
with n+ 1 /∈ S.

(B) On the other hand, let S ∈ Mn−1 be any. Define

A(S) = {i + 1 | i ∈ S} ∪ {n+ 1}.
Its smallest element is |S| + 1 = |A(S)|, and so A(S) ∈ Mn+1. Also, A(S) /∈ Mn, since
n + 1 ∈ A(S), and hence A(S) is not counted in (A). There are |Mn−1| minimal self-
centred subsets A(S). Finally, each A ∈ Mn+1 with n + 1 ∈ A is of the form A = A(S).
Indeed, necessarily 1 /∈ A, and for S = {x − 1 | x ∈ A, x ̸= n + 1}, |S| = |A| − 1 is the
smallest element of S, and hence S ∈ Mn−1, and then A= A(S).

Remark. As a consequence, we have the following binomial formula for the nth Fi-
bonacci number an:

an =
n∑

k=1

�
n− k
k− 1

�
.

Indeed, this the number of pairs (k, A), where k ∈ [1, n] and A ⊆ [k + 1, n] with |A| =
k− 1.

6 Count the number of permutations in Sn, for n ≥ 3, that fix at least one element of
{1,2,3}.

Solution. Let Fi denote the set of all α such that α(i) = i. By PIE,

|F1 ∪ F2 ∪ F3|= |F1|+ |F2|+ |F3| − |F1 ∩ F2| − |F1 ∩ F3| − |F2 ∩ F3|+ |F1 ∩ F2 ∩ F3|
= (n− 1)!+ (n− 1)!+ (n− 1)!− (n− 2)!− (n− 2)!− (n− 2)!+ (n− 3)!

= 3(n− 1)!− 3(n− 2)!+ (n− 3)!

= (n− 3)!
�
3n2 − 12n+ 13
�

.
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7 Show that the number an of permutations α ∈ Sn, where α(i) ̸= i + 1, for i =
1,2, . . . , n− 1, is

an =
n−1∑
k=0

(−1)k
�

n− 1
k

�
(n− k)! .

Solution. Let Ai = {α | α(i) = i + 1}. Then |Ai|= (n− 1)!, and

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |= (n− k)! for i1 < i2 < . . .< ik .

Now, an =
��A1 ∩ · · · ∩ An−1

��. By PIE,

an = |Sn|+
n−1∑
k=1

(−1)k
∑ |Ai1 ∩ Ai2 ∩ · · · ∩ Aik |

=
n−1∑
k=1

(−1)k
�

n− 1
k

�
(n− k)! .


