Combinatorial Enumeration (2017) Problem Set 3 (Feb. 2)

1 How many lattice paths $w \in \{u, r\}^*$: $(0, 0) \rightarrow (n, k)$ are there that visit the point (x, y), where $0 \le x \le n$ and $0 \le y \le k$?

Solution. There are $\binom{x+y}{x}$ paths $(0,0) \to (x,y)$ and $\binom{n-x+k-y}{n-x}$ paths $(x,y) \to (n,k)$. Hence the answer is $\binom{x+y}{x} \cdot \binom{n-x+k-y}{x}$

$$\binom{x+y}{x} \cdot \binom{n-x+k-y}{n-x}.$$

2 Let *n* and *k* be fixed positive integers. How many *positive* integer solutions are there for the (in)equality

(a) $x_1 + x_2 + \dots + x_k = n$? (b) $x_1 + x_2 + \dots + x_k < n$?

Solution. (a) Reduce the equality to $(x_0 + 1)1 + (x_1 + 1) + \dots + (x_{k-1} + 1) = n$. This gives $\binom{n-1}{k-1}$.

Second solution. Let

$$A = \{(x_1, x_2, \dots, x_k) \mid \sum_{i=1}^k x_i = n, \ x_i \ge 1\},\$$

and consider the mapping $\alpha: A \rightarrow 2^{[1,n-1]}$ defined by

$$\alpha(x_1, x_2, \dots, x_k) = \{x_1, x_1 + x_2, \dots, x_1 + x_2 + \dots + x_{k-1}\}.$$

Clearly, α is bijective onto the (k-1)-subsets of [1, n-1] the number of which is $\binom{n-1}{k-1}$.

(b) The number of solutions is the same as for $x_1 + x_2 + \cdots + x_{k+1} = n$, i.e., $\binom{n-1}{k}$.

3 We say that $w = a_1 a_2 \cdots a_n$ with $n \ge 1$ and $a_i \in [0, k-1]$ is a **step word**, if for each index *i*, we have $a_{i+1} = a_i$ or $a_{i+1} = a_i + 1 \pmod{k}$ (where the index i+1 is modulo *n*). For instance, w = 2234001 is a step word for k = 5, but 112 is not, since while closing the sequences, $2+1 \ne 1 \pmod{5}$. Show that the number G(n) of step words of length *n* is

$$G(n) = k \sum_{i \ge 0} \binom{n}{ki}.$$

(Recall that $\binom{n}{m} = 0$ if m > n.)

Solution. The step words are in 1-1 correspondence with the sequences

 $(a_1; r_1, r_2, \dots, r_n)$, where $a_{i+1} = a_i + r_i$ with $r_i \in \{0, 1\}$.

E.g. 2234001 is represented by (2;0,1,1,1,0,1,1). A sequence is a step word if and only if the number of ones is divisible by k, i.e., $G(n) = k \sum_{i \ge 0} {n \choose ki}$, where the coefficient k counts the first elements a_1 of the words.

Additional note. For $k \ge 3$, further evaluation of the sum is bit more complicated. By Guichard's theorem (1995), $k \sum_{i\ge 0} {n \choose ki} = \sum_{i=1}^{k} (1+\zeta_k^i)^n$, where $\zeta_k = e^{2\pi i/k}$ is a complex primitive *k*th root of unity.

4 Let f(n) be the number of integer sequences $1 \le a_1 \le a_2 \le ... \le a_n \le n$ such that $a_i \ge i$ for each $i \in [1, n]$. Show that f(n) is a Catalan number.

Solution. Note first that $a_n = n$ by the conditions. There is a bijection onto the lattice paths $(0,0) \rightarrow (n,n)$. Each a_i corresponds to the word $u^{a_i - a_{i-1}}r$. E.g., the sequence 2,3,3,4 with n = 4 corresponds to *uururrur*.

5 A finite set $S \subseteq [1, n]$ is said to be **self-centred**, if $|S| \in S$. Denote by M_n the family of the **minimal** self-centred sets of [1, n], i.e., those self-centred sets that do not have proper self-centred subsets. Find $|M_n|$ for all $n \ge 1$.

Solution. The answer is the *n*th Fibonacci number.

First, *S* is minimal self-centred if and only if $|S| = \min(S)$ (the smallest element of *S*). Indeed, if $k \in S$ with k < |S|, then the *k* smallest elements of *S* form a self-centred subset.

We prove the claim by induction on n. For $n \le 2$, the set $\{1\}$ is the unique set in M_n . These give Fibonacci numbers. Let then $n \ge 3$. We construct $|M_{n-1}| + |M_n|$ minimal self-centred subsets of [1, n + 1].

(A) Clearly $M_n \subseteq M_{n+1}$. This gives $|M_n|$ sets in M_{n+1} that are exactly those $S \in M_{n+1}$ with $n+1 \notin S$.

(B) On the other hand, let $S \in M_{n-1}$ be any. Define

$$A(S) = \{i + 1 \mid i \in S\} \cup \{n + 1\}.$$

Its smallest element is |S| + 1 = |A(S)|, and so $A(S) \in M_{n+1}$. Also, $A(S) \notin M_n$, since $n + 1 \in A(S)$, and hence A(S) is not counted in (A). There are $|M_{n-1}|$ minimal selfcentred subsets A(S). Finally, each $A \in M_{n+1}$ with $n + 1 \in A$ is of the form A = A(S). Indeed, necessarily $1 \notin A$, and for $S = \{x - 1 \mid x \in A, x \neq n + 1\}$, |S| = |A| - 1 is the smallest element of *S*, and hence $S \in M_{n-1}$, and then A = A(S).

Remark. As a consequence, we have the following binomial formula for the *n*th Fibonacci number a_n :

$$a_n = \sum_{k=1}^n \binom{n-k}{k-1}.$$

Indeed, this the number of pairs (*k*,*A*), where $k \in [1, n]$ and $A \subseteq [k + 1, n]$ with |A| = k - 1.

6 Count the number of permutations in S_n , for $n \ge 3$, that fix at least one element of $\{1, 2, 3\}$.

Solution. Let F_i denote the set of all α such that $\alpha(i) = i$. By PIE,

$$\begin{split} |F_1 \cup F_2 \cup F_3| &= |F_1| + |F_2| + |F_3| - |F_1 \cap F_2| - |F_1 \cap F_3| - |F_2 \cap F_3| + |F_1 \cap F_2 \cap F_3| \\ &= (n-1)! + (n-1)! + (n-1)! - (n-2)! - (n-2)! - (n-2)! + (n-3)! \\ &= 3(n-1)! - 3(n-2)! + (n-3)! \\ &= (n-3)! \left(3n^2 - 12n + 13\right). \end{split}$$

7 Show that the number a_n of permutations $\alpha \in S_n$, where $\alpha(i) \neq i + 1$, for i = 1, 2, ..., n-1, is

$$a_n = \sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} (n-k)! \, .$$

Solution. Let $A_i = \{ \alpha \mid \alpha(i) = i + 1 \}$. Then $|A_i| = (n - 1)!$, and

$$|A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| = (n-k)!$$
 for $i_1 < i_2 < \dots < i_k$.

Now, $a_n = |\overline{A}_1 \cap \cdots \cap \overline{A}_{n-1}|$. By PIE,

$$a_n = |S_n| + \sum_{k=1}^{n-1} (-1)^k \sum_{k=1}^{k} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}|$$

= $\sum_{k=1}^{n-1} (-1)^k \binom{n-1}{k} (n-k)!.$