Combinatorial Enumeration (2017)

Problem Set 6 (Feb. 23)

- 1 Apply Cauchy-Frobenius to the following 3 × 3 board, where each square can be coloured by red or blue. The plane isometries (rotations and reflections) determine which boards are similar.
 - (a) What is the answer if there are no restrictions?
 - (b) What is the answer if exactly two of the squares are red?

Solution. (a) The set *X* od all colourings has $2^9 = 512$ elements. The isometries and the number of their fixed points are given in the following table.

α	ε	σ_1	σ_2	σ_3	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$
$ Fix(\alpha) $	2 ⁹	2 ³	2 ⁵	2 ³	2 ⁶	2 ⁶	2 ⁶	2 ⁶

Here σ_i 's are rotations of 90°, 180° and 270°, and ρ_i 's are the reflections. We have |G| = 8 and so $\operatorname{Orb}_G(X)| = \frac{816}{8} = 102$.

(b) Assume exactly two squares have colour 1. Now, $|X| = \binom{9}{2} = 36$.

α	ε	σ_1	σ_2	σ_3	$ ho_1$	$ ho_2$	$ ho_3$	$ ho_4$
$ Fix(\alpha) $	36	0	4	0	6	6	6	6

So that $|\operatorname{Orb}_{G}(X)| = \frac{64}{8} = 8$.

2 How many open necklaces are there of *n* beads in *k* colours? In other words, let *A* be an alphabet of *k* letters, and define the **mirror image** of a word $w = a_1a_2\cdots a_n$ by $w^R = a_na_{n-1}\cdots a_1$. Two words as similar, if they are mirror images of each other. How many dissimilar words are there of length *n*?

Solution. Let *X* be the set of all words of length *n*. Then $|X| = k^n$. Now, $G = \{\varepsilon, \rho\}$ and so |G| = 2.

$$\frac{\alpha \mid |\operatorname{Fix}(\alpha)|}{\varepsilon \quad k^{n}}$$
$$\frac{\rho \quad k^{[n+1/2]}}{k^{n} + k^{[n+1/2]}}$$
$$|\operatorname{Orb}_{G}(X)| = \frac{k^{n} + k^{[n+1/2]}}{2}.$$

3 Consider a cube with a colouring of its vertices. Find the cycle index polynomial P_G . Apply it to the case of 2 colours. Symmetries are the rotations of the 3-dimensional space; see Example 7.8.

Solution. See Example 7.8: There are 24 rotations. Rotations and vertex colours:

$$\begin{split} z_1^8 & (\text{identity}), \\ 8z_1^2 z_3^2 & (\text{rotations } 120^\circ), \\ 6z_2^4 & (\text{rotations } 180^\circ), \\ 3z_2^4 & (\text{rotations } 180^\circ), \\ 6z_4^2 & (\text{rotations } 180^\circ), \\ P_G &= \frac{1}{24} (z_1^8 + 9z_2^4 + 6z_4^2 + 8z_1^2 z_3^2). \end{split}$$

When |K| = m, then

$$P_G(m,\ldots m) = \frac{1}{24}(m^8 + 9m^4 + 6m^2 + 8m^4) = \frac{1}{24}(m^8 + 17m^4 + 6m^2).$$

and when m = 2, we have $P_G(2, ..., 2) = 23$.

4 Consider a wheel of 24 sectors that rotates around its centre. Count by Pólya-Redfield the number of ways the sectors can be coloured with two colours.

Solution. The group is $G = C_{24}$ for which the cycle index polynomial is

$$P_G(z_1, z_2, \dots, z_{24}) = \frac{1}{24} \left(z_1^{24} + z_2^{12} + 2z_3^8 + 2z_4^6 + 2z_6^4 + 4z_8^3 + 4z_{12}^2 + 8z_{24} \right),$$

and here $P_G(2,...,2) = \frac{16782048}{24} = 699252.$

5 Consider an 8×8 checker board. In a **configuration** of the board each square is either left empty or a piece is placed on it. Find the polynomial P_G when similarities are defined by the rotations of the board. Find the total number of configurations of the board.

Solution. Let X = [1, 64] be the set of squares enumerated from the upper left corner to right and down. The rotations with their polynomials are:

$$\begin{aligned} \varepsilon &= (1)(2)\dots(64) & z_1^{64} \\ \sigma_1 &= (1\ 8\ 64\ 57)(2\ 16\ 63\ 49)\dots & z_4^{16} \\ \sigma_2 &= (1\ 64)(2\ 63) & z_2^{32} \\ \sigma_3 &= (1\ 57\ 64\ 8)(2\ 49\ 63\ 16)\dots & z_4^{16} \end{aligned}$$

Hence

$$P_G(z_1, z_2, z_3, z_4) = \frac{1}{4} (z_1^{64} + z_2^{32} + 2z_4^{16}).$$

The colours are $K = \{0, 1\}$ (empty square/checker). The total number of patterns without restrictions is

$$P_G(2,2,2,2) = \frac{1}{4} (2^{64} + 2^{32} + 2^{17}).$$

6 Continue the previous exercise. How many different configurations are there on a 8×8 board, when 16 checkers are placed on its squares?

Solution. We give a general type of solution here; $K = \{0, 1\}, X = [1, 64]$, and again $\omega: K \to \mathbb{Q}[x, y]$ with $\omega(0) = y$ and $\omega(1) = x$. Then $\sum_{a \in K} \omega(a) = x + y$. By Theorem 8.6,

(0.1)
$$\sum_{P} \omega(P) = P_G((x+y), (x^2+y^2), (x^3+y^3), (x^4+y^4)).$$

Let $f : X \to K$ be a way to put the checkers on the board, and let $P = \operatorname{Orb}_G(f)$. Thus P consists of the similar configurations. Then $\omega(P) = \omega(f) = \prod_{x \in X} \omega(f(x)) = x^i y^{64-i}$. We have

$$P_G((x+y), (x^2+y^2), (x^3+y^3), (x^4+y^4)) = \frac{1}{4}((x+y)^{64} + (x^2+y^2)^{32} + 2(x^4+y^4)^{16}).$$

The coefficient $x^{16}y^{48}$ (put 16 checkers) is

$$\frac{1}{4}\left(\binom{64}{16} + \binom{32}{8} + 2\binom{16}{4}\right).$$

7 Show that the cycle index polynomial of the cyclic group C_n is

$$P_{C_n}(z_1, z_2, \dots, z_n) = \frac{1}{n} \sum_{d|n} \phi(d) z_d^{n/d}.$$

Solution. The rotations of the necklace form C_n , where the generator angle 360/n. If a rotation α has order d, then α is a composition of n/d d-cycles, and thus it has cycle type $z_d^{n/d}$.