A. Ehrenfeucht, T. Harju and G. Rozenberg
Theory of 2-Structures
A Framework for Decomposition and Transformation
of Graphs
Published by World Scientific, Singapore, 1999
Contents
-
Preliminaries
- 1.1 Notations 1
- 1.1.1 Sets and functions 1
- 1.1.2 Closure operators 3
- 1.1.3 Relations 4
- 1.1.4 Equivalence relations 6
- 1.2 Partial orders 8
- 1.2.1 Downsets 8
- 1.2.2 Order embeddings 9
- 1.2.3 Linear orders 10
- 1.3 Semigroups and groups 11
- 1.3.1 Notations for semigroups and monoids 11
- 1.3.2 Free monoids (with involution) 12
- 1.3.3 Preliminaries on groups 14
- 1.3.4 Group actions 16
- 1.3.5 Free groups, commutators and verbal identities 17
-
Graph Theoretical Preliminaries
- 2.1 Directed and Undirected Graphs 21
- 2.1.1 Basic notions 21
- 2.1.2 Connectivity of graphs 24
- 2.1.3 Some special graphs 25
- 2.2 Comparability graphs 27
- 2.2.1 Transitively oriented graphs 27
- 2.2.2 Permutation graphs and cographs 29
- 2.2.3 Construction trees of cographs 31
-
2-Structures and Their Clans
- 3.1 Introduction and representations 35
- 3.1.1 Definition of a 2-structure 35
- 3.1.2 Isomorphic 2-structures 37
- 3.1.3 Reversibility 38
- 3.2 Substructures and clans 39
- 3.2.1 Substructures, clans and factors 39
- 3.2.2 Refinements and similarity 41
- 3.2.3 Reversible version 42
- 3.2.4 Graphs and packed components 43
- 3.2.5 Some special 2-structures 46
- 3.3 Closure properties of clans 47
- 3.3.1 Basic closures 47
- 3.3.2 Sibas: set theoretic closure properties 49
- 3.3.3 Clans of factors 51
- 3.4 Prime clans 52
- 3.4.1 Prime members in sibas 52
- 3.4.2 Minimal overlapping clans 53
-
Quotients and Homomorphisms
- 4.1 Quotients 57
- 4.1.1 Factorizations and quotients 57
- 4.1.2 Homomorphisms 59
- 4.1.3 Natural epimorphisms and decompositions 61
- 4.2 Clans and epimorphisms 63
- 4.2.1 Homomorphism theorem 63
- 4.2.2 Prime clans in quotients 66
- 4.2.3 Primitive quotients 68
- 4.3 Other operations 70
- 4.3.1 Premorphisms 70
- 4.3.2 Extensions 71
-
Clan Decomposition
- 5.1 The clan decomposition theorem 75
- 5.1.1 Maximal prime clans 75
- 5.1.2 Special sibas and 2-structures 77
- 5.1.3 The clan decomposition theorem 79
- 5.1.4 The relationship of sibas to 2-structures 81
- 5.2 The shape of a 2-structure 83
- 5.2.1 The shape and its representation as a tree 83
- 5.2.2 Same shapes 84
- 5.3 A construction of prime clans 87
- 5.3.1 A construction of clans 87
- 5.3.2 A construction of prime clans 88
-
Primitive 2-Structures
- 6.1 Small primitive substructures 91
- 6.1.1 Uniformly imprimitive 2-structures 91
- 6.1.2 Primitive substructures of 3 or 4 nodes 93
- 6.2 Hereditary properties 96
- 6.2.1 Local and global nodes 96
- 6.2.2 Hereditary properties 98
- 6.3 Critically primitive 2-structures 99
- 6.3.1 The parity theorem 99
- 6.3.2 The list of critically primitive 2-structures 102
-
Angular 2-Structures
- 7.1 Angularity 109
- 7.1.1 All-connectivity 109
- 7.1.2 All-connected skew angular 2-structures 113
- 7.2 T-structures 116
- 7.2.1 T-structures and partial orders 116
- 7.2.2 $T_2$-structures 118
- 7.3 Linear orders and Schr\" o der numbers 121
- 7.3.1 Bi-orders and linear orders 121
- 7.3.2 Uniformly imprimitive linear orders 122
- 7.3.3 Parenthesis words and Schr\" o der numbers 124
-
Labelled 2-Structures
- 8.1 Introduction to $\ell $2-structures 129
- 8.1.1 Definitions 129
- 8.1.2 Substructures, clans and quotients 132
- 8.2 Clan decomposition of $\ell $2-structures 135
- 8.2.1 Uniqueness of decompositions 135
- 8.2.2 The shape of an $\ell $2-structure 138
- 8.2.3 Extensions 139
- 8.3 Graphs and their representations 142
- 8.3.1 Graphs as $\ell $2-structures 142
- 8.3.2 On comparability graphs 143
-
Unstable Labelled 2-Structures
- 9.1 Triangle free and unstable $\ell $2-structures 147
- 9.1.1 Removable edges 147
- 9.1.2 Internal and external nodes 150
- 9.1.3 Triangle-free $\ell $2-structures 151
- 9.2 Heredity in unstable $\ell $2-structures 155
- 9.2.1 The partition of nodes 155
- 9.2.2 Alternating structures 156
- 9.2.3 Degrees of nodes 157
- 9.3 A composition of unstable $\ell $2-structures 159
- 9.3.1 A constructive reduction of primitive $\ell $2-structures 159
- 9.3.2 Pendant components 161
-
Automorphisms of Labelled 2-Structures
- 10.1 Label preserving automorphisms 165
- 10.1.1 The $\ell $-automorphism groups 165
- 10.1.2 Transitivity 167
- 10.1.3 Automorphic actions on factors 169
- 10.1.4 Universality of $\ell $-automorphism groups 172
- 10.2 Nonpreserving automorphisms 175
- 10.2.1 Connections to $\ell $-automorphisms 175
- 10.2.2 Transitivity and associated permutations 176
- 10.2.3 Representing labels by automorphisms 178
-
Switching of Graphs
- 11.1 Introduction to switching 181
- 11.1.1 Definitions 181
- 11.1.2 The group of graphs 183
- 11.1.3 Switching classes 185
- 11.2 Structural properties of switching classes 188
- 11.2.1 A local characterization 188
- 11.2.2 Automorphisms 190
- 11.3 Special problems on undirected graphs 193
- 11.3.1 Two-graphs 193
- 11.3.2 Eulerian graphs 194
- 11.3.3 Pancyclic graphs 195
- 11.3.4 Trees 197
-
Labelled Structures over Groups
- 12.1 Introduction 203
- 12.1.1 Groups and involutions 203
- 12.1.2 Selectors and switching classes 205
- 12.2 An interpretation in networks 207
- 12.2.1 Concurrent behaviour in networks 207
- 12.2.2 Reducing the actions to groups 208
- 12.2.3 Introducing reversibility 210
- 12.3 Examples for some special groups 211
- 12.3.1 The cyclic groups $\@mathbb Z_3$ and $\@mathbb Z_4$ 211
- 12.3.2 The symmetric group $S_3$ 213
-
Clans of Switching Classes
- 13.1 Associated groups 215
- 13.1.1 The group of selectors 215
- 13.1.2 The group of abelian switching classes 217
- 13.2 Clans and horizons 219
- 13.2.1 Spanning trees 219
- 13.2.2 Horizons and constant selectors 220
- 13.2.3 Clans 222
- 13.3 Cardinalities of switching classes 224
- 13.3.1 Some special cases 224
- 13.3.2 Centralizers 224
- 13.3.3 Some improvements 228
-
Quotients and Plane Trees
- 14.1 Quotients of switching classes 231
- 14.1.1 Closure properties of clans 231
- 14.1.2 Quotients 233
- 14.2 Planes and plane trees 234
- 14.2.1 Planes 234
- 14.2.2 Plane trees 237
- 14.2.3 Bijective correspondence of plane trees 239
- 14.2.4 Forms 243
-
Invariants
- 15.1 Free invariants 245
- 15.1.1 General invariants 245
- 15.1.2 Edge monoids 246
- 15.1.3 Variable functions and free invariants 247
- 15.2 Group properties of free invariants 250
- 15.2.1 Abelian property 250
- 15.2.2 Graphs of words 252
- 15.2.3 Verbal identities 255
- 15.3 Invariants on abelian groups 258
- 15.3.1 Independency of free invariants 258
- 15.3.2 Complete sets of invariants 259
- 15.4 Invariants on nonabelian groups 261
- 15.4.1 General observations 261
- 15.4.2 Central characters 262
- 15.4.3 A characterization theorem 265
- Bibliography 269
- Notations 279
- Index 283