Graph Theory: Problem Set 2¹ January 25 (2018)

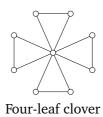
1	Apply Havel-Hakimi to the following sequences. If the sequence is graphical find a graph having the degree sequence. k
	(a) 3, 3, 3, 3, 1 (b) 3, 3, $2, \ldots, 2$ $(k \ge 0)$
2	Let <i>G</i> be a graph with $\delta(G) \ge 2$. Show that there is a connected graph <i>H</i> having the same degree sequence as <i>G</i> .
3	Let <i>T</i> be a tree with $v_T \ge 3$. Let <i>L</i> denote the set of leaves of <i>T</i> . Show that <i>T</i> has a vertex $v \notin L$ that is adjacent to at most one vertex of $V_T \setminus L$.
4	Find a 4-regular graph <i>G</i> that has the following graph as an induced subgraph.
5	Let <i>G</i> be a graph, and $r \ge \Delta(G)$ an integer. Show that there exists an <i>r</i> -regular graph <i>H</i> with <i>G</i> as an induced subgraph.
6	Given a graph <i>G</i> define a relation of the edges $e_1, e_2 \in E_G$ by
	$e_1 \sim e_2 \iff e_1 = e_2$ or there is a cycle <i>C</i> in <i>G</i> such that $e_1, e_2 \in E_C$.
	Show that \sim is an equivalence relation on E_G .
The following exercise gives an alternative algorithm for the minimum weighted span- ning trees.	
	-

7 Let G^{α} be a connected graph with $\alpha: E_G \to \mathbb{R}$, and let *F* be any **greedy subgraph** of *G*, i.e., *F* is a subgraph of a minimum weight spanning subgraph *T* of *G*. Let $e \in E_G \setminus E_F$ be such that $\alpha(e)$ is the minimum among the edges that have at least one end in *F*. Show that also F + e is greedy.

¹Appendix on Windmills.

Windmills of friendship*

A graph *G* is a **friendship graph** if every two vertices $u, v \in G$, $u \neq v$, have a unique common neighbour. A graph *G* is a **windmill** if it consists of triangles that have a unique common vertex (known as the **politician**). Clearly, a windmill is a friendship graph.



This is the **Friendship Theorem** by ERDÖS, RÉNYI AND SÓS (1966), which hopefully has no political implications.

Theorem. If G is a friendship graph, then it is a windmill.

The Friendship Theorem is a bit difficult to prove. It does have a reasonably short proof about five pages by LONGYEAR and PARSONS (1972), but a truly elegant short proof was given by TVERBERG using eigenvalues of matrices.