Graph Theory: Problem Set 4¹ February 8 (2018)

1 Let *G* be a 3-regular graph. Show that $\kappa(G) = \kappa'(G)$.

2 Suppose *G* is 2-connected.

(a) Let $uv \in G$ be an edge. Show that G-uv is 2-connected if and only if u and v are on a common cycle of G-uv.

(b) Show that *G* is **minimally** 2-**connected**, i.e., none of its proper spanning subgraphs are 2-connected, if and only if all cycles are induced subgraphs (i.e., they have no chords).

The next exercise will be used in the new proof of Brooks' theorem.

- **3** Let *G* be a 2-connected graph with $\delta(G) \ge 3$. Show that either *G* is complete or it has an induced path $z_1 x z_2$ such that $G \{z_1, z_2\}$ is connected.
- 4 Let G_1 and G_2 be two different maximal *k*-connected subgraphs of the graph *G*. Show that $|V_{G_1} \cap V_{G_2}| < k$.
- 5 Prove the part of Theorem 2.10 needed in Theorem 2.11:
 (a) Let d_G(v) ≥ k for a vertex v ∈ G. Show that if G−v is k-connected, then G is k-connected.

(b) Let *G* be *k*-connected with $v \in G$ and $S \subseteq V_G \setminus \{v\}$ such that $|S| \ge k$. Then there exists a (v, S)-fan of *k* paths.

- **6** Let *G* be a connected graph. Show that *G* is eulerian if and only if there are cycles C_1, C_2, \ldots, C_k in *G* for some $k \ge 1$ such that each edge of *G* belongs to exactly one of these.
- 7 Let G be a connected graph where each edge belongs to a triangle (i.e., in a C_3). Show that G has a spanning Eulerian subgraph.

Remark. The complete bipartite graph $K_{n,m}$, where *n* and *m* are both odd, is not a spanning subgraph of any eulerian graph *G*. However, *A* all other connected graphs are spanning subgraphs of eulerian graphs.²

¹Appendix for Menger's theorem

²Boesch, Suffel, Tindell: The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79 – 84.

Menger's theorem for $\kappa = 2$

Here is a short proof of Menger's theorem for $\kappa = 2$: Let $\nu_G \ge 3$. A graph *G* is 2-connected if and only if every two vertices are connected by at least two independent paths.

Proof. Suppose first that *G* has a cut vertex *w*. Then there are vertices u, v such that every path $u \xrightarrow{\star} v$ goes through *w*. Hence, in this case there is only one independent path $u \xrightarrow{\star} v$.

Assume then that *G* is 2-connected. We prove the claim by induction on the distance $d_G(u, v)$. First let $d_G(u, v) = 1$. The edge uv is not a bridge, and hence it belongs to a cycle. Hence there are two independent paths $u \xrightarrow{\star} v$.

Suppose then that $d_G(u, v) = k \ge 2$, and let $P: u \xrightarrow{*} v$ be a path of length k. Assume that $P: u \xrightarrow{*} w \to v$. By the induction hypothesis, there are independent paths $P_1, P_2: u \xrightarrow{*} w$, since now $d_G(u, w) = k - 1$. Moreover, since G is 2-connected, G - w is connected. Thus there exists a path $Q: u \xrightarrow{*} v$ in G - w. Let x be the last vertex of Q that is in P_1 or in P_2 , say P_1 . (Such an x exists since, at least, u is in Q and in both P_1 and P_2 .) Let $P_1 = P_{11}P_{12}: u \xrightarrow{*} x \xrightarrow{*} w$, and $Q = Q_1Q_2: u \xrightarrow{*} x \xrightarrow{*} v$. The required independent paths are now: $P_{11}Q_2$ and $P_2(uv)$.