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1 Let G be a 3-regular graph. Show that κ(G) = κ′(G).

2 Suppose G is 2-connected.

(a) Let uv ∈ G be an edge. Show that G−uv is 2-connected if and only if u and v

are on a common cycle of G−uv.

(b) Show that G is minimally 2-connected, i.e., none of its proper spanning sub-

graphs are 2-connected, if and only if all cycles are induced subgraphs (i.e., they

have no chords).

The next exercise will be used in the new proof of Brooks’ theorem.

3 Let G be a 2-connected graph with δ(G) ≥ 3. Show that either G is complete or it

has an induced path z1 − x − z2 such that G−{z1, z2} is connected.

4 Let G1 and G2 be two different maximal k-connected subgraphs of the graph G.

Show that |VG1
∩ VG2
| < k.

5 Prove the part of Theorem 2.10 needed in Theorem 2.11:

(a) Let dG(v) ≥ k for a vertex v ∈ G. Show that if G−v is k-connected, then G is

k-connected.

(b) Let G be k-connected with v ∈ G and S ⊆ VG \ {v} such that |S| ≥ k. Then there

exists a (v,S)-fan of k paths.

6 Let G be a connected graph. Show that G is eulerian if and only if there are cycles

C1, C2, . . . , Ck in G for some k ≥ 1 such that each edge of G belongs to exactly one

of these.

7 Let G be a connected graph where each edge belongs to a triangle (i.e., in a C3).

Show that G has a spanning Eulerian subgraph.

Remark. The complete bipartite graph Kn,m, where n and m are both odd, is not a

spanning subgraph of any eulerian graph G. However, A all other connected graphs are

spanning subgraphs of eulerian graphs.2

1Appendix for Menger’s theorem
2Boesch, Suffel, Tindell: The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79 –

84.
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Menger’s theorem for κ= 2

Here is a short proof of Menger’s theorem for κ = 2: Let νG ≥ 3. A graph G is 2-connected

if and only if every two vertices are connected by at least two independent paths.

Proof. Suppose first that G has a cut vertex w. Then there are vertices u, v such that

every path u
⋆

−→ v goes through w. Hence, in this case there is only one independent

path u
⋆

−→ v.

Assume then that G is 2-connected. We prove the claim by induction on the distance

dG(u, v). First let dG(u, v) = 1. The edge uv is not a bridge, and hence it belongs to a

cycle. Hence there are two independent paths u
⋆

−→ v.

Suppose then that dG(u, v) = k ≥ 2, and let P : u
⋆

−→ v be a path of length k. Assume that

P : u
⋆

−→ w −→ v. By the induction hypothesis, there are independent paths P1, P2 : u
⋆

−→

w, since now dG(u, w) = k − 1. Moreover, since G is 2-connected, G−w is connected.

Thus there exists a path Q : u
⋆

−→ v in G−w. Let x be the last vertex of Q that is in P1

or in P2, say P1. (Such an x exists since, at least, u is in Q and in both P1 and P2.) Let

P1 = P11P12 : u
⋆

−→ x
⋆

−→ w, and Q = Q1Q2 : u
⋆

−→ x
⋆

−→ v. The required independent paths

are now: P11Q2 and P2(uv). �


