Graph Theory: Problem Set 7¹ March 8 (2018)

First Mid Term Exam: 6th March Room M2 (10:00-12:00) – Pages 1–46 (up to Ramsey)

1 Consider the complete bipartite $G = K_{5,5}$ together with $\alpha: E_G \rightarrow \{\text{red,blue}\}$. Show that there is a monochromatic $K_{2,2}$.

2 Let $p, q \ge 3$, and suppose that both R(p, q - 1) and R(p - 1, q) are even. Show that

$$R(p,q) \le R(p,q-1) + R(p-1,q) - 1.$$

3 Determine $R_2(C_4)$.

4 Let us recall first how the simple **greedy colouring** works. Let $v_1, v_2, ..., v_n$ be an ordering of V_G . In order i = 1, 2, ..., n, assign

 $\alpha(v_i) = \min\{k \mid \alpha(v_i) \neq k \text{ for all } v_i \in N_G(v_i) \text{ with } j < i\}.$

(a) Show that for each $n \ge 5$, there is a graph *G* together with an ordering $v_1, v_2, ..., v_n$ such that $\alpha(v_i) > \chi(G)$ for some *i*.

(b) Show that for all graphs *G* there exists an ordering $v_1, v_2, ..., v_n$ with $\alpha(v_i) \le \chi(G)$ for all *i*.

Remark. As a special case we can prove (but won't) that every greedy colouring is optimal for graphs that avoid subgraphs P_4 .

5 Let $\alpha: V_G \to [1, k]$ of *G* be a proper colouring. For a subset $S \subseteq G$, let $\alpha(S) = \{\alpha(u) \mid u \in S\}$. Assume $\chi(G) = k$, and $1 \le i \le k$. Show that there exists a vertex $v \in G$ with $\alpha(v) = i$ such that

$$\alpha(N_G(\nu)) = [1,k] \setminus \{i\}.$$

Remark. As a special case we can prove (but won't) that every greedy colouring is optimal for graphs that avoid P_4 as a subgraph.

6 Show that if $\chi(G) > 5$, then *G* has two cycles that have no common vertices.

¹With a Ramsey result for trees.

Theorem (CHVÁTAL (1977)) Let T be a tree of order m. Then

$$R(T,K_n) = (m-1)(n-1) + 1$$
.

Proof. To see that $R(T, K_n) > (m-1)(n-1)$, let $G = K_{(n-1)(m-1)}$ of order (n-1)(m-1). Choose any subgraphs K_{m-1} such that the vertices of these partition the vertex set. Let $\alpha(e) = 1$ for the edges of these, and $\alpha(e) = 2$ for the rest of the edges. It is clear that there is no 1-monochromatic tree *T* of order *m*. On the other hand, the edges coloured by 2 form a (n-1)-bipartite graph, and hence there are no 2-monochromatic K_n .

For the claim $R(T, K_n) \le (m-1)(n-1) + 1$, we first state

Claim (*). Let *T* be a tree of order *m*. Then any graph *G* with $\delta(G) \ge m - 1$ has a subgraph isomorphic to *T*.

For the rest of the claim, we use induction. The claim is trivial for n = 1. Let α be a 2-edge colouring of $K_{(m-1)(n-1)+1}$. If a vertex ν is an end of more than (m-1)(n-2) edges of colour 2, then, by the induction hypothesis, the other ends $(\neq \nu)$ induce a subgraph that has a 1-monochromatic T or a 2-monochromatic K_{n-1} . The latter implies a 2-monochromatic K_n (when ν is added).

So suppose all vertices are ends of at most (m-1)(n-2) edges of colour 2. This means that every vertex is an end of at least

$$(m-1)(n-1) + 1 - 1 - (m-1)(n-2) = m-1$$

edges of colour 1. Now the graph *G* consisting of the edges of colour 1, has $\delta(G) \ge m-1$, and, by the claim (*), it has a subgraph isomorphic to *T*. This proves the claim.