## Graph Theory: Problem Set 8 March 15 (2018)

1 (a) Find all 3-critical graphs.(b) Is the next graph critical?



2 Show that a 4-critical graph is either a wheel of even order, or it does not contain any wheels (even or odd) as subgraphs.

**3** Compute the chromatic polynomial of the cycle  $C_n$ , for  $n \ge 3$ .

(a) Let  $E_G = E_1 \cup E_2$  be a partition of the edge set of G, and write  $G_i = G[E_i]$  for i = 1, 2. Show that

 $\chi(G) \leq \chi(G_1)\chi(G_2).$ 

(b) A block of a graph G is a maximal 2-connected subgraph of G. Show that

 $\chi(G) = \max\{\chi(B) \mid B \text{ a block of } G\}.$ 

**1-2-3 Conjecture**.<sup>1</sup> Let *G* be a connected graph of  $n \ge 3$  vertices. Then there exists a weighting of the edges  $\beta : E_G \to \{1, 2, 3\}$  such that the function  $\alpha : V_G \to \mathbb{N}$  defined by

$$\alpha(v) = \sum_{uv \in G} \beta(uv)$$

is a proper vertex colouring.



**6** (a) Let *G* be a triangle-free planar graph. Show that  $\delta(G) \leq 3$ .

(b) Does there exist a planar bipartite graph for which  $\delta(G) = 3$ ?

**Remark.** Some simple looking results in graph theory lack short combinatorial proofs. The following result was proved by GRAHAM AND POLLAK (1971) using linear algebra.

**Theorem.** Let  $\alpha: E_{K_n} \to [1, k]$  be any edge colouring of  $K_n$  such that each subgraph  $K_n[i]$  (of colour *i*) is a complete bipartite graph. Then  $k \ge n - 1$ .

<sup>&</sup>lt;sup>1</sup>M. Karoński, T. Łuczak, A. Thomason, *Edge weights and vertex colors*, J. Combin. Theory Ser. B, 91 (2004) 151–157. (The conjecture is true if the number of colours is 5.)