Graph Theory: Problem Set 9 March 22 (2018)

1 Let *G* be a maximal planar graph with $v_G \ge 4$, and denote $n_k = \#\{v \mid d_G(v) = k\}$, for all *k*. Show that

$$\sum_{k\geq 2}(6-k)n_k=12$$

2 Show that if $v_G \ge 11$, then *G* or its complement \overline{G} is not planar.

Remark. HARARY, BATTLE AND KODOMA, and TUTTE (1962) showed that if $v_G \ge 9$, then *G* or its complement \overline{G} is not planar. This seems to lack an elegant proof. (The result was obtained by looking through all graphs of order 9.)

3 For which values $k \ge 2$ is the complement \overline{Q}_k of the *k*-cube planar?

4 The **girth** $\gamma(G)$ of a graph *G* is the length of a shortest cycle in *G*.

(a) Let *G* be a connected planar graph with $\gamma(G) \ge 3$. Show that

$$\varepsilon_G \leq \frac{\gamma(G)}{\gamma(G)-2} \cdot (\nu_G - 2).$$

(b) Let *G* be the Petersen graph. Show that G-e is not planar for all edges $e \in G$.

5 Assume that *G* is planar **uniquely** 4-**colourable**, i.e., if $\alpha, \beta : V_G \rightarrow [1,4]$ are any two proper *k*-colourings of *G*, then there is a permutation π of [1,4] of the colours such that $\beta = \pi \alpha$. Show that *G* is maximal planar.

6 Suppose *G* is a maximal planar graph having at least three vertices, and, moreover, $\chi(G) \leq 3$. Show that *G* is eulerian.