MONOTONE SUBSEQUENCES

Let $\sigma = (k_1, k_2, ..., k_{n^2+1})$ be a linear ordering of $\{1, ..., n^2 + 1\}$. Claim: σ contains a monotonic subsequence of length n + 1.

Example:

•
$$n = 3$$
 and $N = n^2 + 1 = 10$:

$$\sigma = (9, 5, 1, 7, 10, 6, 4, 3, 2, 8)$$

has no ascending subsequences of length 4, but has a descending subsequence of length 6.

$$\sigma = (k_1, k_2, \ldots, k_{n^2+1})$$

Let $P = \{(i, k_i) \mid i = 1, 2, ..., n^2 + 1\}$ with the pointwise order

$$(i,k_i) \leq_P (j,k_j) \iff i \leq j \text{ and } k_i \leq k_j.$$

A subsequence σ' of σ is ascending $\iff \sigma'$ corresponds to a chain in *P*.

Thm 1.56: *P* has a partition to w(P) chains. $\Rightarrow \sigma$ has a partition of w(P) ascending subsequences. $\Rightarrow \sigma$ has an ascending subsequence of length

 $\geq (n^2 + 1)/w(P)$

Suppose $(n^2 + 1)/w(P) \le n$

(i.e., no ascending chains of length n + 1) then $w(P) \ge (n^2 + 1)/n \ge n + 1/n$, and so $w(P) \ge n + 1$. Hence there is an antichain *A* of size $t = w(P) \ge n + 1$:

$$A = \{ (i_1, k_{i_1}), (i_2, k_{i_2}), \dots, (i_t, k_{i_t}) \}$$

with $i_1 < i_2 < \dots < i_t$ and so
 $k_{i_1} > k_{i_2} > \dots > k_{i_t}$

is descending.

SPERNER

Consider the poset $(2^N, \subseteq)$ for $N = \{1, 2, \dots, n\}$.

Claim: If $\{A_1, A_2, \dots, A_m\} \subseteq 2^N$ is an antichain (i.e., $A_i \notin A_j$, for all $i \neq j$), then

$$m \leq \binom{n}{\lfloor n/2 \rfloor}.$$

Proof: Counting arguments on maximal chains in 2^N .

MARRIAGE THEOREM

Let

$$N=\{1,2,\ldots,n\}.$$

Let $\mathscr{S} = \{S_1, S_2, \dots, S_n\} \subseteq 2^X$ for a finite set $X = \bigcup_{i=1}^n S_i$.

A function $\sigma: N \to X$ is a <u>distinct</u> representative function (DRF) of \mathscr{S} if for all *i* there exists *j* with $\sigma(j) \in S_i$ and $\sigma(j) \neq \sigma(k)$ for all $j \neq k$.

For an index set $I \subseteq N$, denote

$$S(I) = \bigcup_{i \in I} S_i.$$

Claim. \mathscr{S} has a DRF \iff for all $I \subseteq N$,

$$|S(I)| \ge |I|. \tag{(*)}$$

If |I| < |S(I)| for some *I*, clearly no DRF can exist.

SUFFICIENCY

Define a partial order

$$x \leq i \iff x \in S_i$$
.

on $P = N \cup X$. Then h(P) = 2.

Let $A = I \cup A'$ be an *antichain* in *P* with |A| = w(P), where $I \subseteq N$ and $A' \subseteq X$.

Thus $S(I) = \bigcup_{i \in I} S_i \subseteq X \setminus A'$.

Hence, by the condition $|S(I)| \ge |I|$,

 $|X| - |A'| \ge |S(I)| \ge |I|.$

Since $A = I \cup A'$, we have $|A| \le |X|$.

Now w(P) = |X|, since X is an antichain.

By Dilworth's theorem, *P* has a partition to w(P) chains. Each chain has two elements (from *X* to *I*), and this gives a matching of $N = \{1, 2, ..., n\} \mapsto X$.

The matching is a DRF.