MONOTONE SUBSEQUENCES

Let $\sigma = (k_1, k_2, \dots, k_{n^2+1})$ be a linear ordering of $\{1, \dots, n^2 + 1\}$. Claim: *^σ contains ^a monotonic subsequence of length ⁿ* + 1.

Example:

•
$$
n = 3
$$
 and $N = n^2 + 1 = 10$:

$$
\sigma = (9, 5, 1, 7, 10, 6, 4, 3, 2, 8)
$$

has no ascending subsequences of length 4, but has ^adescending subsequence of length 6.

$\sigma = (k_1, k_2, \ldots, k_{n^2+1})$

Let $P = \{(i, k_i) | i = 1, 2, ..., n^2 + 1\}$ with the pointwise order

$$
(i,k_i) \leq_P (j,k_j) \iff i \leq j \text{ and } k_i \leq k_j.
$$

A subsequence σ' of σ is ascending ⇐⇒ *^σ*′ corresponds to ^a chain in *^P*.

Thm 1.56: *^P* has ^a partition to *^w*(*P*) chains. \implies *σ* has a partition of *w*(*P*) ascending subsequences. \implies *σ* has an ascending subsequence of length

 $\geq (n^2+1)/w(P)$

Suppose $(n^2 + 1)/w(P) \le n$

(i.e., no ascending chains of length *ⁿ* ⁺ 1) $m(n) \ge (n^2 + 1)/n \ge n + 1/n$, and so $w(P) \ge n + 1$. Hence there is an antichain *A* of size $t = w(P) \ge n + 1$:

$$
A = \{ (i_1, k_{i_1}), (i_2, k_{i_2}), \dots, (i_t, k_{i_t}) \}
$$

with $i_1 < i_2 < \dots < i_t$ and so

$$
k_{i_1} > k_{i_2} > \dots > k_{i_t}
$$

is descending.

SPERNER

Consider the poset $(2^N, \subseteq)$ for $N = \{1, 2, \ldots, n\}.$

Claim: *If* $\{A_1, A_2, \ldots, A_m\} \subseteq 2^N$ *is an antichain* $(i.e., A_i \nsubseteq A_j$ *, for all* $i \neq j$ *), then*

$$
m \leq {n \choose \lfloor n/2 \rfloor}.
$$

Proof: Counting arguments on maximal chains in ²*^N*.

MARRIAGE THEOREM

Let

$$
N=\{1,2,\ldots,n\}.
$$

Let $\mathscr{S} = \{S_1, S_2, \ldots, S_n\} \subseteq 2^X$ for a finite set $X = \bigcup_{i=1}^n S_i$.

A function $\sigma: N \to X$ is a <u>distinct</u> representative function (DRF)
of \mathcal{L} if for all *i* there exists *i* with $\sigma(i) \in S$ and $\sigma(i) \neq \sigma(k)$ for of *S* if for all *i* there exists *j* with $σ(j) ∈ S_i$ and $σ(j) ≠ σ(k)$ for all *j ≠ k*.
r

For an index set *^I* ⊆ *^N*, denote

$$
S(I) = \bigcup_{i \in I} S_i \, .
$$

 \mathcal{C} *laim.* \mathscr{S} *has a DRF* \Longleftrightarrow *for all* $I \subseteq N$,

$$
|S(I)| \ge |I| \tag{*}
$$

If |*I*| *<* [|]*S*(*I*)[|] for some *^I*, clearly no DRF can exist.

SUFFICIENCY

Define ^a partial order

$$
x \leq i \iff x \in S_i.
$$

on $P = N \cup X$. Then $h(P) = 2$.

Let *A* = *I* ∪ *A*[′] be an *antichain* in *P* with $|A| = w(P)$, where $I \subseteq N$ and $A' \subseteq X$.

Thus $S(I) = \bigcup_{i \in I} S_i \subseteq X \setminus A'$.

Hence, by the condition $|S(I)| \geq |I|$,

 $|X| - |A'|$ ≥ $|S(I)|$ ≥ $|I|$.

Since $A = I \cup A'$, we have $|A| \leq |X|$.

Now $w(P) = |X|$, since *X* is an antichain.

By Dilworth's theorem, *^P* has ^a partition to *^w*(*P*) chains. Each chain has two elements (from *^X* to *^I*), and this gives a matching of $N = \{1, 2, ..., n\} \mapsto X$.

The matching is ^a DRF.