Harju: Spring 2015

EXAMPLES

Chomp is a more than 50 years old game for two persons. There are simple starting posets for which the strategies of the game are unknown.

- Given a poset *P* with the minimum element 0.
- A move consists of picking an element $x \in P$ and removing all $y \ge_P x$.
- If you pick 0, you lose.

Page 8: SUBGROUPS

• The subgroup relation is a partial order. (The poset is a lattice.)

Alternating group A_4 : $G_i \cong C_3$ and $H_i \cong C_2$

The normal subgroup relation

is not a partial order in general.

DIVISIBILITY POSET

$$T = (\mathbb{N} \setminus \{0\}, \mid)$$

Among finite subposets of *T* are the divisibility posets

DIVISOR POSET

A subposet of \mathbb{N}_n : $T_n = \{m : m | n\}$

Exercise. Draw T_{120} . More complicated that one.

PARTITIONS

• The set $\Pi(X)$ of all partitions of X forms a poset under inclusion (partition order):

 $\pi_1 \le \pi_2$ if each block of π_2 is a union of blocks of π_1 i.e., each block of π_1 is contained in some block of π_2 .

• The poset $\Pi(X)$ is related to the poset of equivalence relations Eq(X) on X forms a poset under inclusion.

WORDS

- Let Σ be a set of symbols, called an alphabet. Each sequence of symbols $a_1 a_2 \cdots a_n$, for $n \ge 1$, is a word over Σ .
- Σ^* denotes the set of all words over Σ .
- A word u is a factor of v, $u \le v$, if $v = v_1 u v_2$, where v_1 and v_2 can be empty. Then (Σ^*, \le) is the factor poset of Σ^* .

LEXICOGRAPHIC POSETS

- Let P be a poset. Consider the set of P^* of all words over it. Even if P is finite, P^* is always infinite.
- The lexicographic order \leq_p^{ℓ} on P^* is defined as follows:

$$u \le_P^\ell v \iff v = uw \text{ for some } w, \text{ or}$$

 $u = wau' \text{ and } v = wbv' \text{ where } a <_P b.$

Moreover, we put $\varepsilon \leq_P^\ell u$ for all $u \in P^*$.

It has no maximal elements.
 The empty word is the bottom element.
 If *P* is linearly ordered, so is *P**.

For instance, when $a <^{\ell} b$ then $aababb <^{\ell} abab$.

SUBSEQUENCES

 $P = \Sigma^*$ is a poset under the subsequence order:

$$\left. \begin{array}{l} x = x_1 x_2 \cdots x_n \\ y = y_1 x_1 y_2 x_2 \cdots y_n x_n y_{n+1} \end{array} \right\} \implies x \leq_P^* y.$$

For instance, in $P = \{a, b\}^*$,

 $aab \leq_p^* abaaba$

CODINGS

Let $\Sigma = \{-, +\}$ be a binary alphabet. If P is a poset then each sequence $s = (x_0, ..., x_n)$, where $x_i \bowtie x_{i+1}$, can be associated with a word $\sigma(s) = (\sigma_0, ..., \sigma_{n-1})$ where

$$\sigma_i = \begin{cases} + & \text{if } x_i \leq_P x_{i+1}, \\ - & \text{if } x_i \geq_P x_{i+1}. \end{cases}$$